Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Forecasting intentional wildfires using temporal and spatiotemporal autocorrelations

Jeffrey P. Prestemon A E , María L. Chas-Amil B , Julia M. Touza C and Scott L. Goodrick D
+ Author Affiliations
- Author Affiliations

A USDA Forest Service, Southern Research Station, PO Box 12254, Research Triangle Park, NC 27709, USA.

B Department of Quantitative Economics, University of Santiago de Compostela, Baixada Burgo das Nazóns s/n, E-15782 Santiago de Compostela, Spain.

C Department of Applied Economics, University of Vigo, Campus Lagoas-Marcosende, E-36310 Vigo, Spain.

D USDA Forest Service, Southern Research Station, 320 Green Street, Athens, GA 30602, USA.

E Corresponding author. Email: jprestemon@fs.fed.us

International Journal of Wildland Fire 21(6) 743-754 https://doi.org/10.1071/WF11049
Submitted: 6 April 2011  Accepted: 1 February 2012   Published: 10 July 2012

Abstract

We report daily time series models containing both temporal and spatiotemporal lags, which are applied to forecasting intentional wildfires in Galicia, Spain. Models are estimated independently for each of the 19 forest districts in Galicia using a 1999–2003 training dataset and evaluated out-of-sample with a 2004–06 dataset. Poisson autoregressive models of order P – PAR(P) models – significantly out-perform competing alternative models over both in-sample and out-of-sample datasets, reducing out-of-sample root-mean-squared errors by an average of 15%. PAR(P) and static Poisson models included covariates deriving from crime theory, including the temporal and spatiotemporal autoregressive time series components. Estimates indicate highly significant autoregressive components, lasting up to 3 days, and spatiotemporal autoregression, lasting up to 2 days. Models also applied to predict the effect of increased arrest rates for illegal intentional firesetting indicate that the direct long-run effect of an additional firesetting arrest, summed across forest districts in Galicia, is –139.6 intentional wildfires, equivalent to a long-run elasticity of –0.94.

Additional keywords: arrest, arson, autoregressive, crime, Galicia, incendiary, Poisson, Spain, time series.


References

Agnew R, Brezina T, Wright JP, Cullen FT (2002) Strain, personality traits, and delinquency: extending general strain theory. Criminology 40, 43–72.
Strain, personality traits, and delinquency: extending general strain theory.Crossref | GoogleScholarGoogle Scholar |

Akers RL (1973) ‘Deviant Behavior: a Social Learning Approach.’ (Wadsworth Publishing Company, Inc: Bermont, CA)

APAS and IDEM (Asociación para la Promoción de Actividades Socioculturales and Instituto de Estudios del Medio) (2005) ‘Estado del Conocimiento sobre las Causas de los Incendios Forestales en España.’ Available at http://www.idem21.com/descargas/pdfs/CAUSAS_IF.pdf [Verified 10 January 2011]

Aptech Systems (2003) ‘Gauss 5.0 Software.’ (Maple Valley, WA)

Associated Press (2003) Catching wildfire arsonists is task that often takes years. North Country Times, 2 November 2003. Available at http://www.nctimes.com/news/article_3b1531e2-3354-5fd8-a747-b7fa6da5c007.html [Verified 7 June 2012]

Barrio M, Loureiro M, Chas-Amil ML (2007) Aproximación a las pérdidas económicas ocasionadas a corto plazo por los incendios forestales en Galicia en 2006. Economía Agraria y Recursos Naturales 7, 45–64.

Becker GS (1968) Crime and punishment: an economic approach. The Journal of Political Economy 76, 169–217.
Crime and punishment: an economic approach.Crossref | GoogleScholarGoogle Scholar |

Brandt PT, Williams JT (2001) A linear Poisson autoregressive model: the Poisson AR(P) model. Political Analysis 9, 164–184.
A linear Poisson autoregressive model: the Poisson AR(P) model.Crossref | GoogleScholarGoogle Scholar |

Brantingham PL, Brantingham PJ (1993) Environment, routine, and situation: toward a pattern theory of crime. In ‘Routine Activity and Rational Choice (Advances in Criminological Theory)’. (Eds RV Clarke, M Felson) Vol. 5, pp. 259–294. (Transaction Publications: New Brunswick, NJ)

Burdett K, Lagos R, Wright R (2003) Crime, inequality, and unemployment. The American Economic Review 93, 1764–1777.
Crime, inequality, and unemployment.Crossref | GoogleScholarGoogle Scholar |

Burgess R, Akers RL (1966) A differential association-reinforcement theory of criminal behavior. Social Problems 14, 128–147.
A differential association-reinforcement theory of criminal behavior.Crossref | GoogleScholarGoogle Scholar |

Butry DT, Prestemon JP (2005) Spatio-temporal wildland arson crime functions. In ‘American Agricultural Economics Association 2005 Annual meeting’, 24–27 July 2005, Providence, RI. Available at http://purl.umn.edu/19197 [Verified 22 February 2011]

Castedo Dorado F, Juarez Relaño I, Ramírez Cisneros J, Ruiz Pérez I, Rodríguez Rodríguez C, Velez Fraile L (2007) Utilidad del análisis de la estadística de incendios en las estrategias de prevención y extinción. Un caso de estudio. In ‘Proceedings of the 4th International Wildland Fire Conference’, 13–17 May 2007, Seville, Spain. (Ministerio de Medio Ambiente: Madrid, Spain)

Cernkovich SA, Giordano PC, Rudolph JL (2000) Race, crime, and the American dream. Journal of Research in Crime and Delinquency 37, 131–170.
Race, crime, and the American dream.Crossref | GoogleScholarGoogle Scholar |

Cohen LE, Felson M (1979) Social change and crime rate trends: a Routine Activity approach. American Sociological Review 44, 588–605.
Social change and crime rate trends: a Routine Activity approach.Crossref | GoogleScholarGoogle Scholar |

Cornish D, Clarke RV (Eds) (1986) ‘The Reasoning Criminal: Rational Choice Perspectives on Offending.’ (Springer-Verlag: New York)

Di Tella R, Schargrodsky E (2004) Do police reduce crime? Estimates using the allocation of police forces after a terrorist attack. The American Economic Review 94, 115–133.
Do police reduce crime? Estimates using the allocation of police forces after a terrorist attack.Crossref | GoogleScholarGoogle Scholar |

Goodrick SL (2002) Modification of the Fosberg fire weather index to include drought. International Journal of Wildland Fire 11, 205–221.
Modification of the Fosberg fire weather index to include drought.Crossref | GoogleScholarGoogle Scholar |

Gould ED, Weinberg BA, Mustard DB (2002) Crime rates and local labor market opportunities in the United States: 1979–1997. The Review of Economics and Statistics 84, 45–61.
Crime rates and local labor market opportunities in the United States: 1979–1997.Crossref | GoogleScholarGoogle Scholar |

Griffith DA (2002) A spatial filtering specification for the auto-Poisson model. Statistics & Probability Letters 58, 245–251.
A spatial filtering specification for the auto-Poisson model.Crossref | GoogleScholarGoogle Scholar |

Hagan J, Peterson RD (1995) ‘Crime and Inequality.’ (Stanford University Press: Stanford, CA)

Hartkamp AD, De Beurs K, Stein A, White JW (1999) ‘Interpolation Techniques for Climate Variables.’ Natural Resources Group Geographical Information Series NRG-GIS Series 99-01. (International Maize and Wheat Improvement Center (CIMMYT): Mexico City, Mexico) Available at http://apps.cimmyt.org/Research/NRG/pdf/NRGGIS%2099_01.pdf [Verified 7 June 2012]

Hirschi T (1969) ‘Causes of Delinquency.’ (University of California Press: Berkeley, CA)

Instituto Galego de Estatística (2011) Banco de datos municipal. (Instituto Galego de Estatística) Available at http://www.ige.eu/igebdt/esq.jsp?paxina=002003003&c=-1&idioma=gl&ruta=navmunicipal.jsp%3FESP%3D [Verified 11 January 2011]

Krinsky I, Robb AL (1986) On approximating the statistical properties of elasticities. The Review of Economics and Statistics 68, 715–719.
On approximating the statistical properties of elasticities.Crossref | GoogleScholarGoogle Scholar |

MARM (Ministerio de Medio Ambiente y Medio Rural y Marino) (2005) Anuario de estadísticas forestales 2005. Available at http://www.mma.es/portal/secciones/biodiversidad/montes_politica_forestal/estadisticas_forestal/produccion.htm [Verified 11 January 2011]

Martín P (Ed.) (2004) Towards methods for investigating on wildland fire causes. EUFIRELAB, EVR1-CT-2002-40028, Deliverable D-05-02. Available at http://www.eufirelab.org/prive/directory/units_section_5/D-05-03/D-05-03.pdf [Verified 7 June 2012]

Martínez J, Vega-Garcia C, Chuvieco E (2009) Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management 90, 1241–1252.
Human-caused wildfire risk rating for prevention planning in Spain.Crossref | GoogleScholarGoogle Scholar |

Molano FJ, Rodríguez C, Ponte J (2007) ‘Informe sobre a Investigación de Incendios Forestais en Galicia. Verán 2006.’ (Deputación Provincial de A Coruña: Galicia, Spain)

Prestemon JP, Butry DT (2005) Time to burn: modeling wildland arson as an autoregressive crime function. American Journal of Agricultural Economics 87, 756–770.
Time to burn: modeling wildland arson as an autoregressive crime function.Crossref | GoogleScholarGoogle Scholar |

Rodríguez y Silva F (2009) La eficiencia económica en la extinción de incendios forestales: una aproximación metodológica desde el diagnóstico del peligro y el registro de la experiencia. In ‘Proceedings of Technical Meeting of the Fire Service: Capacity for Managing Forest Fires’, 18–19 November 2009, Solsona, Lleida, Spain. Available at http://www.jornadesbombers.ctfc.cat/docs/articles/26_article_F_Rodríguez.pdf [Verified 12 January 2011]

Smith SW (2007) 7 detained for arson in Greek fires. CBS News, 11 February 2009. Available at http://www.cbsnews.com/stories/2007/08/24/world/main3202975.shtml [Verified 4 January 2011]

Teague B, McLeod R, Pascoe S (2010) 2009 Victorian Bushfires Royal Commission, Final Report: Volume 1 – The Fires and the Fire-Related Deaths. (Government of Victoria: Melbourne, Australia) Available at http://www.royalcommission.vic.gov.au/Commission-Reports [Verified 7 June 2012]

USA Department of Justice–Federal Bureau of Investigation (2007) Uniform crime reporting program data (United States): county-level detailed arrest and offense data, 2000–2005. (Interuniversity Consortium for Political and Social Research: Ann Arbor, MI)

USDA/USDI (2010) National Interagency Fire Management Integrated Database (NIFMID). Available at http://famweb.nwcg.gov [Verified 30 July 2010]

Yatchew A, Griliches Z (1985) Specification error in Probit models. The Review of Economics and Statistics 67, 134–139.
Specification error in Probit models.Crossref | GoogleScholarGoogle Scholar |