Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Estimation of grassland biophysical parameters using hyperspectral reflectance for fire risk map prediction

D. Gianelle A C , L. Vescovo A and F. Mason B
+ Author Affiliations
- Author Affiliations

A IASMA Research and Innovation Centre, Fondazione E. Mach, Environment and Natural Resources Area, San Michele all’Adige, I-38040 Trento, Italy.

B MiPAF – Ministero Politiche Agricole e Forestali, Corpo Forestale dello Stato, CNBF-Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale, Via Carlo Ederle 16/a, I-37100 Verona, Italy.

C Corresponding author. Email: gianelle@cealp.it

International Journal of Wildland Fire 18(7) 815-824 https://doi.org/10.1071/WF08005
Submitted: 10 January 2008  Accepted: 9 January 2009   Published: 27 October 2009

Abstract

In remote sensing, the reflectance of vegetation has been successfully used for the assessment of grassland biophysical parameters for decades. Several studies have shown that vegetation indices that are based on narrow spectral bands significantly improve the prediction of vegetation biophysical characteristics. In this work, we analyse the relationships between the biophysical parameters of grasslands and the high-spatial-resolution hyperspectral reflectance values obtained from helicopter platform data using both a spectral vegetation index and a regression approach. The regression approach was favoured as it had optimal results with respect to producing higher R2 values than the spectral index approach (water content, 0.91 v. 0.90; leaf-area index, 0.88 v. 0.61; and green ratio, 0.90 v. 0.83). These three parameters were selected to obtain a fire risk map for the Bosco della Fontana grassland areas. The extreme spatial variability of the fire risk confirmed the hypotheses regarding the importance of obtaining scale-appropriate biophysical maps to model fire risk in fragmented landscapes and ecosystems. More studies are needed in order to investigate both the limits and the opportunities of high-spatial-resolution sensors in highly fragmented landscapes for the remote detection of fire risk and to generalise the obtained results to other grassland vegetation types.

Additional keywords: fragmented landscapes and ecosystems, high-resolution maps, regression approach, vegetation indices.


References


Asrar G, Fuchs M, Kanemasu ET , Hatfield JL (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agronomy Journal  76, 300–306.
Cheney P, Sullivan A (Eds) (1997) ‘Grassfires: Fuel, Weather and Fire Behaviour.’ (CSIRO Publishing: Melbourne)

Clevers JGPW, Van der Heijden GWAM, Verzakov S , Schaepman ME (2007) Estimating grassland biomass using SVM band shaving of hyperspectral data. Photogrammetric Engineering and Remote Sensing  73(10), 1141–1148.
Garvey M, Millie S (1999) ‘Grassland Curing Guide.’ (Victorian Country Fire Authority: Fiskville, Australia)

Gianelle D , Vescovo L (2007) The determination of green herbage ratio in grasslands using spectral reflectance. Methods and ground measurements. International Journal of Remote Sensing  28(5), 931–942.
Crossref | GoogleScholarGoogle Scholar | Kim MS, Daughtry CST, Chappelle EW, McMurtrey JEIII, Walthall CL (1994) The use of high-spectral-resolution bands for estimating absorbed photosynthetically active radiation (APAR). In ‘Proceedings of the 6th Symposium on Physical Measurement and Signatures in Remote Sensing’, Val D’Isere, France. (Ed. G Guyot) pp. 299–306. (CNES: Toulouse, France)

Link SO, Keeler CW, Hill RW , Hagen E (2006) Bromus tectorum cover mapping and fire risk. International Journal of Wildland Fire  15(1), 113–119.
Crossref | GoogleScholarGoogle Scholar | Mason F (Ed.) (2004) Dinamica di una foresta della Pianura Padana. Bosco della Fontana. Seconda edizione con Linee di gestione forestale. Rapporti scientifici 1. Centro Nazionale della Biodiversità Forestale Verona–Bosco della Fontana. (Arcari Editore: Verona, Italy)

Merton RN (1998) Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index. In ‘Proceedings of the Seventh Annual JPL Airborne Earth Science Workshop’, 12–16 January 1998, Pasadena, CA. (NASA Jet Propulsion Laboratory)

Merzlyak MN, Gitelson AA, Chivkunova OB, Solovchenko AE , Pogosyan SI (2003) Application of reflectance spectroscopy for analysis of higher plant pigments. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology  50, 704–710.
Crossref | GoogleScholarGoogle Scholar | CAS | Psomas A, Kneubühler M, Itten K, Zimmermann NE (2007) Hyperspectral remote sensing for seasonal estimation of aboveground biomass in Swiss grassland habitats. In ‘Proceeding of the 10th International Symposium on Physical Measurements and Signatures in Remote Sensing, ISPMSRS’07’, 12–14 March 2007, Davos, Switzerland. (Eds ME Schaepman, S Liang, NE Groot, M Kneubuehler) Vol. XXXVI, part 7/C50, pp. 482–487. (International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences)

Reeves MC, Jerome CW , Running SW (2001) Mapping weekly rangeland vegetation productivity using MODIS algorithms. Journal of Range Management  54, 90–105.
Rouse JW, Hass RH, Shell JA, Deering DW (1974) Monitoring Vegetation Systems in the Great Plains with ERTS-1. In ‘Proceedings 3rd Earth Resources Technology Satellite Symposium’, 10–14 December 1973, Washington DC. Vol. 1, pp. 309–317. (National Aeronautics and Space Administration Scientific and Technical Information Office)

Serrano L, Ustin SL, Roberts DA, Gamon JA , Peñuelas J (2000) Deriving water content of chaparral vegetation from AVIRIS data. Remote Sensing of Environment  74, 570–581.
Crossref | GoogleScholarGoogle Scholar | Zhou W, Zhou Y, Wang S, Zhao Q (2003) Early warning for grassland fire danger in north China using remote sensing. In ‘IEEE International Proceedings of the Geoscience and Remote Sensing Symposium’, 21–25 July, Toulouse, France. Vol. IV, pp. 2505–2507. Available at http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=1294490 [Verified 12 October 2009]