Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Estimating direct carbon emissions from Canadian wildland fires1

William J. de Groot A E , Robert Landry B , Werner A. Kurz C , Kerry R. Anderson A , Peter Englefield A , Robert H. Fraser B , Ronald J. Hall A , Ed Banfield A , Donald A. Raymond B , Vincent Decker B , Tim J. Lynham D and Janet M. Pritchard A
+ Author Affiliations
- Author Affiliations

A Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, 5320 – 122nd Street, Edmonton, AB T6H 3S5 Canada.

B Natural Resources Canada, Earth Sciences Sector, Canada Centre for Remote Sensing, 588 Booth Street, Ottawa, ON K1A 0Y7 Canada.

C Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada.

D Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, ON P6A 2E5 Canada.

E Corresponding author. Email: bill.degroot@nrcan.gc.ca

International Journal of Wildland Fire 16(5) 593-606 https://doi.org/10.1071/WF06150
Submitted: 7 November 2006  Accepted: 2 May 2007   Published: 26 October 2007

Abstract

In support of Canada’s National Forest Carbon Monitoring, Accounting and Reporting System, a project was initiated to develop and test procedures for estimating direct carbon emissions from fires. The Canadian Wildland Fire Information System (CWFIS) provides the infrastructure for these procedures. Area burned and daily fire spread estimates are derived from satellite products. Spatially and temporally explicit indices of burning conditions for each fire are calculated by CWFIS using fire weather data. The Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) provides detailed forest type and leading species information, as well as pre-fire fuel load data. The Boreal Fire Effects Model calculates fuel consumption for different live biomass and dead organic matter pools in each burned cell according to fuel type, fuel load, burning conditions, and resulting fire behaviour. Carbon emissions are calculated from fuel consumption. CWFIS summarises the data in the form of disturbance matrices and provides spatially explicit estimates of area burned for national reporting. CBM-CFS3 integrates, at the national scale, these fire data with data on forest management and other disturbances. The methodology for estimating fire emissions was tested using a large-fire pilot study. A framework to implement the procedures at the national scale is described.

Additional keywords: fire behaviour, fuel consumption, remote sensing.


Acknowledgements

Contributions to the project by the following people are greatly appreciated: Richard Carr, Heather Dickenson, Caren Dymond, Mike Gartrell, Dave Jacques, Jin Ji-zhong, Bryan Lee, John Little, Vern Peters, Brian Simpson, Rod Suddaby, Andrew Trebble, and Joost van der Sanden. Funding for this project was provided by the Government Related Initiatives Program (GRIP) of the Canadian Space Agency, the Program of Energy Research and Development (PERD), and the federal government of Canada.


References


Alberta Forest Service (1985) ‘Alberta Phase 3 Forest Inventory: Yield Tables for Unmanaged Stands.’ Energy and Natural Resources Report Number Department 60a. (Alberta Energy and Natural Resources: Edmonton, AB)

Alexander ME, Stocks BJ, Lawson BD (1991) Fire behavior in black spruce–lichen woodland: the Porter Lake project. Canadian Forest Service Information Report NOR-X-310. (Edmonton, AB)

Alexander ME, Stefner CN, Mason JA, Stocks BJ, Hartley GR, Maffey ME, Wotton BM, Taylor SW, Lavoie N, Dalrymple GN (2004) Characterizing the jack pine–black spruce fuel complex of the International Crown Fire Modelling Experiment. Canadian Forest Service Information Report NOR-X-393. (Edmonton, AB)

Amiro BD, Todd JB, Wotton BM, Logan KA, Flannigan MD, Stocks BJ, Mason JA, Martell DL , Hirsch KG (2001) Direct carbon emissions from Canadian forest fires, 1959–1999. Canadian Journal of Forest Research  31, 512–525.
Crossref | GoogleScholarGoogle Scholar | Byram GM (1959) Combustion of forest fuels. In ‘Forest Fire: Control and Use’. (Ed. KP Davis) pp. 61–89. (McGraw-Hill: New York)

Canadian Forest Service (1984) Tables for the Canadian Forest Fire Weather Index System. Canadian Forest Service Forestry Technical Report 25. 4th edn. (Ottawa, ON)

Cihlar J (2000) Land cover mapping of large areas from satellites: status and research priorities. International Journal of Remote Sensing  21, 1093–1114.
Crossref | GoogleScholarGoogle Scholar | de Groot WJ (2006) Modeling Canadian wildland fire carbon emissions with the Boreal Fire Effects (BORFIRE) model. In ‘Proceedings of the 5th International Conference on Forest Fire Research’. 27–30 November 2006, Figueira da Foz, Portugal. (Ed. DX Viegas) (CD-ROM) (Elsevier BV: Amsterdam)

de Groot WJ, Bothwell PM, Carlsson DH, Logan K (2002) Simulating the impacts of future fire regimes and fire management strategies on vegetation and fuel dynamics in western Canada using a boreal fire effects model (BORFIRE). In ‘Forest Fire Research and Wildland Fire Safety’. (Ed. DX Viegas) (Millpress: Rotterdam)

de Groot WJ, Bothwell PM, Carlsson DH , Logan K (2003) Simulating the effects of future fire regimes on western Canadian boreal forests. Journal of Vegetation Science  14, 355–364.
Crossref | GoogleScholarGoogle Scholar | Ecological Stratification Working Group (1995) ‘A National Ecological Framework for Canada.’ Report and national map at 1 : 7 500 000. (Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch: Ottawa/Hull, ON)

Englefield P, Lee BS, Fraser RH, Landry R, Hall RJ, Lynham TJ, Cihlar J, Li Z, Jin J, Ahern FJ (2004) Applying geographic information systems and remote sensing to forest fire monitoring, mapping and modelling in Canada. In ‘Proceedings of the 22nd Tall Timbers Fire Ecology Conference: Fire in Temperate, Boreal and Montane Ecosystems’. (Eds RT Engstrom, KEM Galley, WJ de Groot) pp. 240–245. (Tall Timbers Research Station: Tallahassee, FL)

Environment Canada (2006) National inventory report: 1990–2004, greenhouse gas sources and sinks in Canada: the Canadian government’s submission to the UN Framework Convention on Climate Change (April 2006). (Environment Canada, Greenhouse Gas Division: Ottawa, ON) Available at http://www.ec.gc.ca/pdb/ghg/inventory_report/2004_report/toc_e.cfm [Verified 30 April 2007]

Falkowski MJ, Gessler PE, Morgan P, Hudak AT , Smith AMS (2005) Characterizing and mapping forest fuels using ASTER imagery and gradient modeling. Forest Ecology and Management  217, 129–146.
Crossref | GoogleScholarGoogle Scholar | Forestry Canada Fire Danger Group (1992) ‘Development and Structure of the Canadian Forest Fire Behavior Prediction System.’ Forestry Canada Information Report ST-X-3. (Ottawa, ON)

Frank A, Finnigan C (2005) Developing a fuel type classification for Saskatchewan. In ‘Proceedings of the 26th Canadian Symposium on Remote Sensing’. 14–16 June 2005, Wolfville, NS, Canada. (Canadian Aeronautics and Space Institute: Ottawa, ON)

Franklin SE , Wulder MA (2002) Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas. Progress in Physical Geography  26, 173–205.
Crossref | GoogleScholarGoogle Scholar | Gray SL, Power K (1997) Canada’s forest inventory 1991: the 1994 version – technical supplement. Canadian Forest Service Information Report BC-X-363. (Victoria, BC)

Halliwell DH, Apps MJ (1997) ‘BOReal Ecosystem–Atmosphere Study (BOREAS) Biometry and Auxiliary Sites: Soils and Detritus Data.’ (Canadian Forest Service: Edmonton, AB)

Harrington JB, Flannigan MD, Van Wagner CE (1983) ‘A study of the relation of components of the Fire Weather Index to monthly area burned by wildfire in Canada 1953–80.’ Canadian Forest Service Information Report PI-X-25. (Petawawa, ON)

Kasischke ES , Bruhwiler LP (2002) Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. Journal of Geophysical Research  107, 8146.
Crossref | GoogleScholarGoogle Scholar | Kasischke ES, O’Neill KP, French NHF, Bourgeau-Chavez LL (2000) Controls on patterns of biomass burning in Alaskan boreal forests. In ‘Fire, Climate Change, and Carbon Cycling in the North American Boreal Forest’. (Eds ES Kasischke, BJ Stocks) pp. 173–196. (Springer-Verlag: New York)

Kasischke ES, Hyer EJ, Novelli PC, Bruhwiler LP, French NHF, Sukhinin AI, Hewson JH , Stocks BJ (2005) Influences of boreal fire emissions on northern hemisphere atmospheric carbon and carbon monoxide. Global Biogeochemical Cycles  19, GB1012.
Crossref | GoogleScholarGoogle Scholar | Kurz WA, Apps MJ, Webb TM, McNamee PJ (1992) ‘The Carbon Budget of the Canadian Forest Sector: Phase I.’ Forestry Canada Information Report NOR-X-326. (Edmonton, AB)

Lambert M-C, Ung CH , Raulier F (2005) Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research  35, 1996–2018.
Crossref | GoogleScholarGoogle Scholar | Mathews G (1993) The carbon content of trees. Forestry Commission Technical Paper 4. (Edinburgh, Scotland)

McRae DJ (1980) Preliminary fuel consumption guidelines for prescribed burning in Ontario slash fuel complexes. Canadian Forestry Service Information Report O-X-316. (Sault Ste. Marie, ON)

Merrill DF, Alexander ME (1987) Glossary of forest fire management terms, 4th edn. National Research Council of Canada Report No. 26516. (Ottawa, ON)

Nadeau LB, McRae DJ, Jin J-Z (2005) Development of a national fuel-type map for Canada using fuzzy logic. Canadian Forest Service Information Report NOR-X-406. (Edmonton, AB)

Nalder IA , Wein RW (1999) Long-term forest floor carbon dynamics after fire in upland boreal forests of western Canada. Global Biogeochemical Cycles  13, 951–968.
Crossref | GoogleScholarGoogle Scholar | Power K, Gillis MD (2006) Canada’s forest inventory 2001. Natural Resources Canada, Canadian Forest Service, Information Report BC-X-408E. (Victoria, BC)

Price C , Rind D (1994) The impact of a 2 × CO2 climate on lightning-caused fires. Journal of Climate  7, 1484–1494.
Crossref | GoogleScholarGoogle Scholar | Quintilio D, Fahnestock GR, Dubé DE (1977) Fire behavior in upland jack pine: the Darwin Lake project. Canadian Forest Service Information Report NOR-X-174. (Edmonton, AB)

Quintilio D, Alexander ME, Ponto RL (1991) Spring fires in a semimature trembling aspen stand in central Alberta. Canadian Forest Service Information Report NOR-X-323. (Edmonton, AB)

Richter D, Kasischke ES, O’Neill KP (2000) Post-fire stimulation of microbial decomposition in black spruce (Picea mariana L.) forest soils: a hypothesis. In ‘Fire, Climate Change, and Carbon Cycling in the North American Boreal Forest’. (Eds ES Kasischke, BJ Stocks) pp. 197–213. (Springer-Verlag: New York)

Rollins MG, Keane RE , Parsons RA (2004) Mapping fuels and fire regimes using remote sensing, ecosystem simulation, and gradient modeling. Ecological Applications  14, 75–95.
Crossref | GoogleScholarGoogle Scholar | Siltanen RM, Apps MJ, Zoltai SC, Mair RM, Strong WL (1997) A soil profile and organic carbon database for Canadian forest and tundra mineral soils. (Canadian Forest Service: Edmonton, AB)

Spence J, Volney J, Sidders D, Luchkow S, Vinge T, Oberle F, Gilmore D, Bielech JP, Wearmouth P, Edwards J, Bothwell P, Shorthouse D, Wilkinson D, Brais S (2002) The EMEND experience. In ‘Advances in Forest Management: from Knowledge to Practice, Proceedings of SFMN Conference’. 13–15 November 2002, Edmonton, AB, Canada. (Eds TS Veeman, PN Duinker, BJ Macnab, AG Coyne, KM Veeman, GA Binsted, D Korber) pp. 40–44. (Sustainable Forest Management Network: Edmonton, AB)

Stocks BJ (1987) Fire behavior in immature jack pine. Canadian Journal of Forest Research  17, 80–86.
Stocks BJ (1991) The extent and impact of forest fires in northern circumpolar countries. In ‘Global Biomass Burning. Atmospheric, Climatic and Biospheric Implications’. (Ed. JS Levine) pp. 197–202. (MIT Press: Cambridge, MA)

Stocks BJ, Lawson BD, Alexander ME, Van Wagner CE, McAlpine RS, Lynham TJ , Dubé DE (1989) The Canadian Forest Fire Danger Rating System: an overview. Forestry Chronicle  65, 450–457.
Tymstra C, Ellehoj EA (1994) Fire behavior prediction fuel type mapping using the Alberta Vegetation Inventory. In ‘Proceedings of the GIS '94 Symposium’. 21–24 February 1994, Vancouver, BC. pp. 887–893. (Polaris Conferences: Vancouver, BC)

Van Wagner CE (1987) Development and structure of the Canadian Forest Fire Weather Index System. Canadian Forest Service Forestry Technical Report 35. (Ottawa, ON)

Van Wagner CE, Pickett TL (1985) Equations and FORTRAN program for the Canadian Forest Fire Weather Index System. Canadian Forestry Service Forestry Technical Report 33. (Ottawa, ON)

Weber MG (1990) Response of immature aspen ecosystems to cutting and burning in relation to vernal leaf-flush. Forest Ecology and Management  31, 15–33.
Crossref | GoogleScholarGoogle Scholar | Wein RW (1983) Fire behaviour and ecological effects in organic terrain. In ‘The Role of Fire in Northern Circumpolar Ecosystems’. (Eds RW Wein, DA MacLean) pp. 81–95. (Wiley: Toronto, ON)

Woodall CW, Holden GR , Vissage JS (2004) Fuel mapping for the future. Fire Management Today  64, 19–21.


Wotton BM , Flannigan MD (1993) Length of the fire season in a changing climate. Forestry Chronicle  69, 187–192.


Wotton BM, Martell DL , Logan KA (2003) Climate change and people-caused forest fire occurrence in Ontario. Climatic Change  60, 275–295.
Crossref | GoogleScholarGoogle Scholar |

Wulder MA, Dechka JA, Gillis MA, Luther JE, Hall RJ, Beaudoin A , Franklin SE (2003) Operational mapping of the land cover of the forested area of Canada with Landsat data: EOSD land cover program. Forestry Chronicle  79, 1075–1083.


Yokelson RJ, Susott R, Ward DE, Reardon J , Griffith DWT (1997) Emissions from smouldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy. Journal of Geophysical Research  102, 18865–18877.
Crossref | GoogleScholarGoogle Scholar |




1 A paper presented in session 020, ‘Global Fire Trends and Climate Change,’ at the XXII International Union of Forest Research Organizations World Congress in Brisbane, Australia, 8–13 August 2005.

2 Fuel types include: C-1 (spruce-lichen woodland), C-2 (boreal spruce), C-3 and C-4 combined (mature and immature jack or lodgepole pine), C-5 (red and white pine), C-6 (conifer plantation), C-7 (ponderosa pine/Douglas-fir), D-1 (leafless aspen), M-1 and M-2 (boreal mixedwood), O-1 (grass).

3 An operational-scale version of the model, user’s guide, and tutorials are freely available at http://carbon.cfs.nrcan.gc.ca/, accessed 20 September 2007.