Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

First year survival of Pinus hartwegii following prescribed burns at different intensities and different seasons in central Mexico

Dante Arturo Rodríguez-Trejo A C , Uriel Baruch Castro-Solis A , Marcelo Zepeda-Bautista A and Richard John Carr B
+ Author Affiliations
- Author Affiliations

A División de Ciencias Forestales, Universidad Autónoma Chapingo, Chapingo, Estado de México, CP 56230, México.

B Natural Resources Canada – Canadian Forest Service, Northern Forestry Centre, 5320 – 122 Street Edmonton, AB T6H 3S5, Canada.

C Corresponding author. Email: dantearturo@yahoo.com

International Journal of Wildland Fire 16(1) 54-62 https://doi.org/10.1071/WF05061
Published: 20 February 2007

Abstract

In forests of young Pinus hartwegii Lindl. on the Ajusco volcano in southern Mexico City, central Mexico, a study was made of tree mortality resulting from low and high intensity prescribed burns. Low intensity burns (backing fire in early morning with high relative humidity) and high intensity burns (head fire at midday with low relative humidity) were conducted in two different seasons: 21 March and 29 May 2002. Five contiguous sites were selected, each consisting of open stands (300–700 trees ha–1) and closed stands (900–2500 trees ha–1). Two sites were used for morning burns, two for afternoon burns, and the fifth remained an unburned control plot. Logistic regression was used to estimate probability of mortality 1 year after the burns as a function of fire season, fire intensity, stand density, and tree diameter at breast height (dbh). Logistic regression was also used to estimate probability of infestation by bark beetles as a function of crown kill. A multiple linear regression model was used to show the effect of crown kill and tree height on live crown area. The probability of mortality was greatest in May high intensity burns, on closed stands and for low dbh trees. May burns had the driest conditions, and closed stands had needle layers that produced fire smouldering. The root system heating is a key mechanism influencing mortality of Pinus hartwegii in closed stands. The treatments creating greatest mortality also resulted in lower live crown areas. According to the multiple regression model, the lower the tree height and the higher the crown kill, the lower the live crown area. The probability of infestation by bark beetles also increased with crown kill.

Resume. Se estudió la mortalidad de Pinus hartwegii Lindl. juveniles ante quemas prescritas de baja y alta intensidad, en el volcán Ajusco, México central. Las primeras fueron en contra de viento y pendiente, por la mañana, con alta humedad relativa; las segundas a favor de viento y pendiente, a mediodía, con baja humedad. Se condujeron en dos épocas: marzo 21 y mayo 29 de 2002. Fueron establecidas cinco parcelas contiguas, cada una con masas abiertas (300–700 árboles ha–1) y masas densas (900–2500 árboles ha–1). Dos parcelas fueron usadas para quemas por la mañana, dos para quemas por la tarde, y una como testigo. Se empleó regresión logística para estimar la probabilidad de mortalidad a un año de las quemas como función de época de quema, intensidad, densidad arbórea, y diámetro normal. También se usó regresión logística para estimar la probabilidad de infestación por insectos descortezadores como función del chamuscado de copa. Mediante regresión lineal múltiple se relacionó el chamuscado de copa y la altura del árbol con el área de copa viva. La mayor probabilidad de mortalidad correspondió a la combinación: quemas en mayo, alta intensidad, masas densas y árboles de diámetro pequeño. Las quemas en mayo mostraron las condiciones más secas, y las masas densas tuvieron hojarasca como combustible principal, que produce combustión sin llamas. El sistema de calentamiento de la raíz es un mecanismo clave que influencia la mortalidad de Pinus hartwegii en masas densas. Los tratamientos con mayor mortalidad exhibieron menores áreas de copa viva. Se tuvo menor área de copa viva a menor altura del árbol y a mayor chamuscado de copa. La probabilidad de infestación por descortezadores aumentó con el chamuscado de copa.

Additional keywords: fire ecology, integral fire management, logistic regression, tree mortality.


References


Alexander ME (1982) Calculating and interpreting forest fire intensities. Canadian Journal of Botany  60, 349–357.
Alexander ME (1998) Crown fire thresholds in exotic pine plantations of Australasia. PhD Thesis, Australian National University, Canberra.

Beverly JL , Martell DL (2003) Modeling Pinus strobus mortality following prescribed fire in Quetico Provincial Park, north-western Ontario. Canadian Journal of Forest Research  33, 740–751.
Crossref | GoogleScholarGoogle Scholar | Brown JK (2000) Ecological principles, shifting fire regimes and management considerations. In ‘Wildland fire in ecosystems. Effects of fire on flora’. (Eds JK Brown, JK Smith) pp. 185–204. USDA Forest Service, General Technical Report RMRS-GTR-42 vol. 2. (Ogden, UT)

Byram GM (1959) Combustion of forest fuels. In ‘Forest Fire: Control and Use’. (Ed. KP Davis) pp. 61–80. (McGraw Hill: New York)

Cibrián-Tovar D, Méndez-Montiel T, Campos-Bolaños R, Yates HOIII, Flores-Lara J (1996) ‘Insectos Forestales de México.’ (UACH, SARH, USDA, NR, COFAN: México).

de Groot WJ, Wardati  , Wang Y (2005) Calibrating the Fine Fuel Moisture Code for grass ignition potential in Sumatra, Indonesia. International Journal of Wildland Fire  14, 161–168.
Crossref | GoogleScholarGoogle Scholar | Espinoza CGM, Muñoz MA (1988) Sistema de clasificación de riesgo para Dendroctonus mexicanus en los bosques de la UIEF San Rafael. México. Tesis de Licenciatura UACH, México.

Fowler JF, Sieg CH (2004) Post-fire mortality of ponderosa pine and Douglas-fir: a review of methods to predict tree death. USDA Forest Service, General Technical Report RMRS-GTR-132. (Fort Collins, CO)

Fulé PZ , Covington WW (1994) Double sampling increases the efficiency of forest floor inventories for Arizona ponderosa pine forests. International Journal of Wildland Fire  4, 3–10.
Crossref | GoogleScholarGoogle Scholar | García E (1981) ‘Apuntes de Climatologia.’ (UNAM: Mexico)

Gill AM (1975) Fire and the Australian flora: a review. Australian Forestry  38, 4–25.
Gobierno de la Ciudad de México (2006) Sistema de monitoreo atmosférico de la Ciudad de México. Available at http://www.sma.df.gob.mx/simat/homecontam.php [Verified 2 June 2006]

Harrington MG (1993) Predicting Pinus ponderosa mortality from dormant season and growing season fire injury. International Journal of Wildland Fire  3, 65–72.
Crossref | GoogleScholarGoogle Scholar | Heinselman ML (1978) Fire in wilderness ecosystems. In ‘Wilderness Management’. (Eds JC Hendee, GH Stankey, RC Lucas) pp. 249–278. USDA Forest Service, Miscellaneous Publication 1365. (Washington, DC)

Hosmer DW, Lemeshow S (2000) ‘Applied Logistic Regression.’ (Wiley: New York)

Keane RE, Ryan KC, Veblen T, Allen CD, Logan J, Hawkes B (2002). The cascading effects of fire exclusion in Rocky Mountain ecosystems. In ‘Rocky Mountain Futures: Ecological Perspective’. (Ed. J Barron) pp. 133–152 (Island Press: Washington, DC)

Keeley JE, Zedler PH (1998) Evolution of life histories in Pinus. In ‘Ecology and Biogeography of Pinus’. (Ed. DM Richardson) pp. 219–249. (Cambridge University Press: Cambridge)

Kelsey RG , Gladwin J (2003) Ethanol in ponderosa pine as an indicator of physiological injury from fire and its relationship to secondary beetles. Canadian Journal of Forest Research  33, 870–884.
Crossref | GoogleScholarGoogle Scholar | Kilgore BM (1981) Fire in ecosystem distribution and structure: western forests and scrublands. In ‘Fire Regimes and Ecosystem Properties: Proceedings of the Conference’. (Compilers HA Mooney, TM Bonnicksen, NL Christensen, JE Lotan, RA Reiners) pp. 58–59. USDA Forest Service, General Technical Report WO-26. (Washington, DC)

Lawson BD , Dalrymple GN (1996) ‘Ground-truthing the Drought Code: field verification of overwinter recharge of forest floor moisture.’ Canada–British Columbia Partnership Agreement on Forest Resource Development  II, 14–16.
Lawson BD, Dalrymple GN, Hawkes BC (1997) Predicting forest floor moisture contents from duff moisture code values. Canadian Forest Service, Pacific Forestry Centre, Technology Transfer Note 06. (Victoria, BC)

Lussier JM, Morin H , Gagnon R (2002) Mortality in black spruce stands of fire of clear-cut origin. Canadian Journal of Forest Research  32, 539–547.
Crossref | GoogleScholarGoogle Scholar | Pyne SJ (2003) ‘Fire: a Brief History.’ (University of Washington Press: Seattle)

Rasmussen LA, Amman GD, Vandygriff JC, Oakes RO, Munson AS, Gibson KE (1996) Bark beetle end word borer infestation in the greater Yellowstone area during 4 post-fire years. USDA Forest Service, Intermountain Forest and Range Experiment Station Research Paper INT-487. (Ogden, UT)

Regelbrugge JC , Conard SG (1993) Modeling tree mortality following wildfire in Pinus ponderosa forests in the Central Sierra-Nevada of California. International Journal of Wildland Fire  3, 139–148.
Crossref | GoogleScholarGoogle Scholar | Robbins LE, Myers RL (1992) Seasonal effects of prescribed burning in Forida: a review. Tall Timbers Research Inc. Miscellaneous Publication no. 8. (Tallahassee, FL)

Rodríguez-Trejo DA , Fulé PZ (2003) Fire ecology of Mexican pines and a fire management proposal. International Journal of Wildland Fire  12, 23–37.
Crossref | GoogleScholarGoogle Scholar | Rothermel RC (1983) How to predict the spread and intensity of forest and range fires. USDA Forest Service, General Technical Report INT-143. (Ogden, UT)

Ryan KC , Frandsen WH (1991) Basal injury from smoldering fres in mature Pinus ponderosa Laws. International Journal of Wildland Fire  1, 107–118.
Crossref | GoogleScholarGoogle Scholar | Secretaría de Medio Ambiente Recursos Naturales y Pesca (1999) Reporte de incendios forestales. (SEMARNAP: México, DF)

Swanson FJ, Franklin JF, Sedell JR (1990) Landscape patterns, disturbance and management in the Pacific Northwest, USA. In ‘Changing Landscapes: An Ecological Perspective’. (Eds IS Zonneveld, RTT Forman) pp. 191–213. (Springer-Verlag: NY)

Thies WG, Westlind DJ , Loewen M (2005) Season of prescribed burn in ponderosa pine forests in eastern Oregon: impact on pine mortality. International Journal of Wildland Fire  14, 223–231.
Crossref | GoogleScholarGoogle Scholar | Trabaud AM (1987) Fire and the survival traits of plants. In ‘The Role of Fire in Ecological Systems’. (Ed. L Trabaud) pp. 65–89. (SPB Academia Publishing: The Hague)

Van Wagner CE (1973) Height of crown scorch in forest fire. Canadian Journal of Forest Research  3, 373–378.
Van Wagner CE (1977) A method of computing fine fuel moisture content throughout the diurnal cycle. Canadian Forestry Service, Petawawa Forest Experiment Station, Information Report PS-X-69. (Chalk River, ON)

Van Wagner CE (1987) Development and structure of the Canadian Forest Fire Weather Index System. Canadian Forestry Service, Forestry Technical Report 35. (Ottawa, ON)

Velázquez-Martínez A, Musálem-Santiago MA, Keyes MR , Zárate LG (1986) Influencia del tratamiento en el suelo y la condición de apertura del dosel en el establecimiento inicial de la regeneración natural de Pinus hartwegii. Agrociencia  64, 147–170.
Whelan RJ (1995) ‘The Ecology of Fire.’ (Cambridge University Press: New York)

Wright HA, Bailey AW (1982) ‘Fire Ecology: United States and Southern Canada.’ (Wiley: New York)