Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Functional diversity of the microbial community in Mediterranean maquis soils as affected by fires

Rosaria D’Ascoli A C , Flora A. Rutigliano A , Raffaele A. De Pascale A , Anna Gentile B and Amalia Virzo De Santo B
+ Author Affiliations
- Author Affiliations

A Dipartimento di Scienze Ambientali, Seconda Università degli Studi Napoli, Via Vivaldi 43, 81100 Caserta, Italy.

B Dipartimento di Biologia Vegetale, Università degli Studi di Napoli Federico II, Via Foria 223, 80139 Napoli, Italy.

C Corresponding author. Telephone: +39 823 274644; fax: +39 823 274605; email: rosaria.dascoli@unina2.it

International Journal of Wildland Fire 14(4) 355-363 https://doi.org/10.1071/WF05032
Submitted: 31 March 2005  Accepted: 4 July 2005   Published: 25 November 2005

Abstract

Fire is a disturbance in the Mediterranean region associated with frequent drought periods, and can affect the soil microbial community, which plays a fundamental role in nutrient cycling. In the present study the effect of low- and high-severity experimental fires on the soil microbial community was evaluated in an Italian Mediterranean maquis. Burned and unburned soils were compared for functional diversity, specific activities, microbial biomass, fungal mycelia and fungal fraction of microbial carbon, during the first year after fire. In the first week after fire, changes in the functional diversity were observed in burned soils, differing also between low- and high-severity fires. Respiration responses to specific organic compounds were generally lower in burned soils during the whole study period, with a percentage of changed responses from 2 to 70%. The general reduction in burned soils of the fungal fraction of microbial carbon (19–61%) and active mycelia (16–55%), together with the increase in microbial biomass carbon (29–42%) during the first 3 months after fire, suggest a larger and longer effect of fire on fungi than on bacteria. The results indicate a rapid recovery of functional diversity in soil after burning despite the persistent reduction of microbial community activity and the change in its structure.

Additional keywords: catabolic evenness; fungal mycelia; microbial biomass.


References


Agrawal AK (1990) Floristic composition and phenology of temperate grasslands of Western Himalaya as affected by scraping, fire and heavy grazing. Vegetatio  88, 177–187.
Crossref | GoogleScholarGoogle Scholar | Allen SE (1989) ‘Chemical analysis of ecological materials.’ (Blackwell Scientific Publications: Oxford)

Anderson JM (1981) ‘Ecology for environmental sciences: biosphere, ecosystems and man.’ (Edward Arnold: London)

Bääth E (1980) Soil fungal biomass after clear-cutting of a pine forest in Central Sweden. Soil Biology & Biochemistry  12, 495–500.
Crossref | GoogleScholarGoogle Scholar | Beer T, Gill AM, Moore PHR (1988) Australian bushfire danger under changing climate regimes. In ‘Greenhouse: planning for climate change’. (Ed. GI Pearman) pp. 421–427. (CSIRO: East Melbourne)

Bengtsson J (1998) Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Applied Soil Ecology  10, 191–199.
Crossref | GoogleScholarGoogle Scholar | Booyesen P de V, Tainton NN (Eds) (1984) ‘Ecological effects of fire in South African ecosystems.’ (Springer-Verlag: Berlin)

Brussaard L, Behanpelletier VM, Bignell DE, Brown VK , Didden W (1997) Biodiversity and ecosystem functioning in soil. Ambio  26, 563–570.
Carballas M, Acea MJ, Cabaneiro A, Trasar C, Villar MC, et al. (1993) Organic matter, nitrogen, phosphorus and microbial population evolution in forest humiferous acid soils after wildfires. In ‘Fire in Mediterranean ecosystems’. (Eds L Trabaud, R Prodon) pp. 379–385. Ecosystems research report no. 5. (Commission of the European Communities: Brussels)

De Luis M, Baeza MJ, Raventós J , González-Hidalgo JC (2004) Fuel characteristics and fire behaviour in mature Mediterranean gorse shrublands. International Journal of Wildland Fire  13, 79–87.
Crossref | GoogleScholarGoogle Scholar | di Gennaro A (2002) ‘I sistemi di terre della Campania.’ (Edizioni S.EL.CA.: Firenze)

Dumontet S, Dinel H, Scopa A, Mazzatura A , Saracino A (1996) Post-fire soil microbial biomass and nutrient content of a pine forest soil from a dunal mediterranean environment. Soil Biology & Biochemistry  28, 1467–1475.
Crossref | GoogleScholarGoogle Scholar | Dunn PH, DeBano LF (1977) Fire’s effects on the biological properties of chaparral soils. In ‘Proceedings of symposium on the environmental consequences of fire and fuel management in Mediterranean ecosystems’. USDA Forest Service General Technical Report WO-3. pp. 75–84. (Washington, DC)

Esposito A, Strumia S, Buonanno M, Castaldo-Cobianchi R, Mazzoleni S (1998) Analysis of bryophyte dynamics after fires of pine woodlands and Mediterranean macchia, southern Italy. In ‘Fire management and landscape ecology’. (Ed. L Trabaud) pp. 77–85. (International Association of Wildland Fire: Fairfield, WA)

Esposito A, Mazzoleni S , Strumia S (1999) Post-fire bryophyte dynamics in Mediterranean vegetation. Journal of Vegetation Science  10, 261–268.
FAO (1998) World reference base for soil resources. In ‘World soil resources’. Report No. 84. (FAO: Rome)

Flannigan MD , Van Wagner CE (1991) Climate change and wildfire in Canada. Canadian Journal of Forest Research  21, 66–72.
Gill AM, Groves RH, Noble IR (Eds) (1981) ‘Fire and the Australian biota.’ (Australian Academy of Science: Canberra)

Giller KE, Beare MH, Lavalle P, Izac AMN , Swift MJ (1997) Agricultural intensification, soil biodiversity and agroecosystem function. Applied Soil Ecology  6, 3–16.
Crossref | GoogleScholarGoogle Scholar | Iovieno P, Alfani A, Rutigliano FA, Virzo De Santo A (1996) Inquinamento urbano. 3. Morfologia delle ife fungine in relazione al contenuto di sostanza organica e di elementi in traccia nel suolo. In ‘Atti del VII Congresso Nazionale della Società Italiana di Ecologia, Napoli, Italy, S.It.E. Atti 17’. (Eds Società Italiana di Ecologia) pp. 733–736. (Giannini & Figli: Napoli)

Killham K (1994) ‘Soil ecology.’ (Cambridge University Press: Cambridge)

Laterra P (1997) Post burn recovery in the flooding pampa: impact of an invasive legume. Journal of Range Management  50, 274–277.
Le Coz J (1990) ‘Espaces méditerranéens et dynamiques agraires: état territorial et communautés rurales. Option méditerranéens Serie B 2.’ (Ciheam-Unesco/Mab: Paris)

Loftfield N, Flessa H, Augustin J , Beese F (1997) Automated gas chromatographic system for rapid analysis of the atmospheric trace gases methane, carbon dioxide and nitrous oxide. Journal of Environmental Quality  26, 560–564.
Magurran AE (1988) ‘Ecological diversity and its measurement.’ (Croom Helm: London)

McKee WH (1982) ‘Changes in soil fertility following prescribed burning on coastal plain pine sites.’ USDA Forest Service, Southeastern Forest Experiment Station Research Paper SE-234.

Molina MJ, Llinares JV (1998) Effects of fire intensity on the soil properties related to structure: organic matter, aggregate stability and water retention capacity. In ‘Fire management and landscape ecology’. (Ed. L Trabaud) pp. 35–50. (International Association of Wildland Fire: Fairfield, WA)

Molina MJ , Llinares JV (2001) Temperature–time curves at the soil surface in maquis summer fires. International Journal of Wildland Fire  10, 45–52.
Crossref | GoogleScholarGoogle Scholar | Moreno JM, Oechel WC (1994) Fire intensity as a determinant factor of postfire plant recovery in southern California chaparral. In ‘The role of fire in Mediterranean-type ecosystems’. (Eds JM Moreno, WC Oechel) Ecological Studies 107, pp. 26–45. (Springer-Verlag: New York)

Naveh Z (1975) The evolutionary significance of fire in the Mediterranean region. Vegetatio  29, 199–208.
Olson JS (1981) Carbon balance in relation to fire regimes. In ‘Fire regimes and ecosystem properties’. (Eds HA Mooney, TM Bonnicksen, NL Chrinstensen, JE Lotan, WA Reiners) pp. 327–378. USDA Forest Service General Technical Report WO-26. (Washington, DC)

Pietikäinen J , Fritze H (1993) Microbial biomass and activity in the humus layer following burning: short term effects of two different fires. Canadian Journal of Forest Research  23, 1275–1285.
Prodon R, Fons R, Athias-Binche F (1987) The impact of fire on animal communities in Mediterranean area. In ‘The role of fire in ecological systems’. (Ed. L Trabaud) pp. 121–157. (SPB Academic: The Hague)

Rahkonen J, Pietikäinen J , Jokela H (1999) The effects of flame weeding on soil microbial biomass. Biological Agriculture and Horticulture  16, 363–368.
Rundel PW (1981) Fire as an ecological factor. In ‘Physiological plant ecology. I. Responses to the physical environment’. (Eds OL Lange, PS Nobel, CB Osmond, H Ziegler) Encyclopedia of Plant Physiology, New Series, Vol. 12A, pp. 501–538. (Springer-Verlag: Berlin)

Rutigliano FA, Virzo De Santo A, Alfani A, Esposito A (1995) Attività metabolica di suoli campani in funzione degli incendi. In ‘Atti del VI Congresso Nazionale della Società Italiana di Ecologia, Venezia, Italy, S.It.E. Atti 16’. (Eds Società Italiana di Ecologia) pp. 535–538. (Edizioni Zara: Parma)

Rutigliano FA, Fierro AR, De Pascale RA, De Marco A, Virzo De Santo A (2002a) Role of fire on soil organic matter turnover and microbial activity in a Mediterranean burned area. In ‘Soil mineral–organic matter–microorganism interactions and ecosystem health’. (Eds A Violante, PM Huang, J-M Bollag, L Gianfreda) Developments in soil science 28B, pp. 205–215. (Elsevier Science: Amsterdam)

Rutigliano FA, D’Ascoli R, De Marco A, Virzo De Santo A (2002b) Soil microbial community as influenced by experimental fires of different intensities. In ‘Fire and biological processes’. (Eds L Trabaud, R Prodon) pp. 137–149. (Backhuys Publishers: Leiden)

Rutigliano FA, D’Ascoli R , Virzo De Santo A (2004) Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover. Soil Biology & Biochemistry  36, 1719–1729.
Crossref | GoogleScholarGoogle Scholar | Swift MJ, Heal OW, Anderson JM (1979) ‘Decomposition in terrestrial ecosystems.’ (Blackwell Scientific Publications: Oxford)

Trabaud L, Grandjanny M (2002) Post-fire reconstitution of the flowering phenology in Mediterranean shrubland plants. In ‘Fire and biological processes’. (Eds L Trabaud, R Prodon) pp. 99–113. (Backhuys Publishers: Leiden)

Trabaud L , Lepart J (1980) Diversity and stability in garriga ecosystems after fire. Vegetatio  43, 49–57.
Crossref | GoogleScholarGoogle Scholar | van Veen JA, Heijnen CE (1994) The fate and activity of microorganisms introduced into soil. In ‘Soil biota: management in sustainable farming systems’. (Eds CE Pankhurst, BM Double, VVSR Gupta, PR Grace) pp. 63–71. (CSIRO: Adelaide)

Vásquez FJ, Acea MJ , Carballas T (1993) Soil microbial population after wildfire. FEMS Microbial Ecology  13, 93–104.
Crossref | GoogleScholarGoogle Scholar | Wright HA, Bailey AW (1982) ‘Fire ecology. United States and Southern Canada.’ (John Wiley & Sons: New York)

Zak JC, Willig MR, Moorhead DL , Widman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biology & Biochemistry  26, 1101–1108.
Crossref | GoogleScholarGoogle Scholar |