Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Spatial models for estimating fuel loads in the Black Hills, South Dakota, USA

Robin M. Reich A C , John E. Lundquist B and Vanessa A. Bravo A D
+ Author Affiliations
- Author Affiliations

A Department of Forest, Rangeland, and Watershed Stewardship, Colorado State University, Fort Collins, CO 80523, USA.

B Rocky Mountain Research Station, USDA Forest Service, Fort Collins, CO 80521, USA. Telephone: +1 970 498 1095; fax: +1 970 498 1314; email: jlundquist@fs.fed.us

C Corresponding author. Telephone: +1 970 491 6980; fax: +1 970 491 6754; email: robin@cnr.colostate.edu

D Telephone: +1 970 491 6980; fax: +1 970 491 6754; email: vbravo@cnr.colostate.edu

International Journal of Wildland Fire 13(1) 119-129 https://doi.org/10.1071/WF02049
Submitted: 03 July 2002  Accepted: 10 September 2003   Published: 8 April 2004

Abstract

Fire suppression has increased fuel loadings and fuel continuity in many forested ecosystems, resulting in forest structures that are vulnerable to catastrophic fire. This paper describes the statistical properties of models developed to describe the spatial variability in forest fuels on the Black Hills National Forest, South Dakota. Forest fuel loadings (tonnes/ha) are modeled to a 30 m resolution using a combination of trend surface models to describe the coarse-scale variability in forest fuel, and binary regression trees to describe the fine-scale variability associated with site-specific variability in forest fuels. Independent variables used in the models included various Landsat TM bands, forest class, elevation, slope, and aspect. The models accounted for 55% to 72% of the variability in forest fuels. In spite of having highly skewed distributions, cross-validation showed the models to have nominal prediction bias. This paper also evaluates the feasibility of using the estimation error variance to explain estimation uncertainty. The models are allowing us to study the influence of small-scale disturbances on forest fuel loadings and diversity of resident and migratory birds on the Black Hills National Forest.

Additional keywords: binary regression trees; cross-validation; fuels; fuel loading; fuel variability; Landsat imagery.


References


Agee JK , Pickford SG (1985) Vegetation and fuel mapping of North Cascades National Park. Final Report (College of Forest Resources: Seattle) 111 pp.

Agterberg FP (1984) Trend surface analysis. In Spatial statistics and models. (Eds  GL Gaile ,  CJ Willmott )  pp. 147–171. (Reidel: Dordrecht)

Albini FA (1976) Estimating wildfire behavior and effects. USDA Forest Service, Intermountain Forest and Range Experiment Station General Technical Report INT-30 (Ogden, UT) 74 pp.

Anderson HE (1982) Aids to determining fuel models for estimating fire behavior. USDA Forest Service Research Paper INT-305 22 pp.

Andrews PL (1986) BEHAVE: fire prediction and modeling system: BURN subsystem, Part 1. USDA Forest Service, Intermountain Forest and Range Experiment Station General Technical Report INT-194 (Ogden, UT) 130 pp.

Breiman L,  Friedman JH,  Olshen RA,  Stone IJ (1984) Classification and regression trees (Wadsworth: Belmont, CA)  368 pp.

Brown JK, Oberheu RD , Johnston CM (1982) Handbook for inventorying surface fuels and biomass in the Interior West. USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-129 48 pp.

Burgan RE (1987) Concepts and interpreted examples in advanced fuel modeling. USDA Forest Service, Intermountain Research Station General Technical Report INT-238. (Ogden, UT) 40 pp.

Burgan RE, Klaver RW , Klaver JM (1998) Fuel models and fire potential from satellite and surface observations. International Journal of Wildland Fire  8, 159–170.


Chuvieco E , Salvas J (1996) Mapping the spatial distribution of forest fire danger using GIS. International Journal of Geographical Information Systems  10, 333–345.
Crossref | GoogleScholarGoogle Scholar |

Efron B,  Tibshirani RJ (1993) An introduction to the bootstrap (Chapman and Hall: New York)  

ESRI (1995) ARC/INFO Software and on-line help manual (Environmental Research Institute, Inc.: Redlands, CA)  

ESRI (1998) ArcView 3.1 (Environmental Research Institute, Inc.: Redlands, CA)  

Finney MA (1998) FARSITE: Fire area simulator-area model. Development and evaluation. USDA Forest Service, Rocky Mountain Research Station Report RMRS-RP-4 (Ogden, UT) 47 pp.

Friedl MA, Michaelson J, Davis FW, Walker H , Schimel DS (1994) Estimating grassland biomass and leaf area index using ground and satellite data. International Journal of Remote Sensing  15, 1401–1420.


Froiland SG (1990) Natural history of the Black Hills and Badlands (The Center for Western Studies, Augustana College: Sioux Falls, SD)  225 pp.

Geisser S (1975) The predictive sample reuse method with applications. Journal of the American Statistical Association  70, 320–328.


Green K, Finney M, Campbell J, Weinstein D , Landrum V (1995) Using GIS to predict fire behavior. Journal of Forestry  93, 21–25.


Guisan A , Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecological Modelling  135, 147–186.
Crossref | GoogleScholarGoogle Scholar |

Hartigan JA , Wong MA (1979) A k-means clustering algorithm. Applied Statistics  28, 100–108.


Hevesi JA, Istok JD , Flint AL (1992) Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: structural analysis. Journal of Applied Meteorology  31, 661–676.
Crossref | GoogleScholarGoogle Scholar |

Hoffman GR , Alexander RR (1987) Forest vegetation of the Black Hills National Forest of South Dakota and Wyoming: A habitat type classification. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station Research Paper RM-276 (Fort Collins, CO) 48 pp.

Isaaks EH,  Srivastava RM (1989) An introduction to applied geostatistics (Oxford University Press: New York)  561 pp.

Keane RE, Burgan R , van Wagtendonk J (2001) Mapping wildland fuels for fire management across multiple scales: integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire  10, 301–319.
Crossref | GoogleScholarGoogle Scholar |

Kourtz PH (1977) An application of Landsat digital technology to forest fire fuel mapping. Fire ecology in resource management: A workshop (Northern Forest Research Centre: Edmonton)

Kravchenko A , Bullock DG (1999) A comparative study of interpolation methods for mapping soil properties. Agronomy Journal  91, 393–400.


Lundquist JE , Beatty JS (2002) A method for characterizing and mimicking forest canopy gaps caused by different disturbances. Forest Science  48, 582–594.


Mark CA, Bushey CL , Smetanka W (1995) Fuel model identification and mapping for fire behavior prediction in the Absaroka-Beartooth Wilderness, Montana and Wyoming. Proceedings: symposium on fire in wilderness and park management USDA Forest Service General Technical Report INT-GRT-320

Miller W ,  Johnston D (1985) Comparison of fire fuel maps produced using MSS and AVHRR data. In Proceedings of the Pecora X Symposium  pp. 305–314. (American Society for Photogrammetry and Remote Sensing: Falls Church, VA)

Millington AC,  Critchley RW,  Douglas TD,  Ryan P (1994) Estimating woody biomass in sub-Saharan Africa (The World Bank: Washington, D.C.)  

Perry GLW, Sparrow AD , Owens IF (1999) A GIS-supported model for the simulation of the spatial structure of wildland fire, Cass Basin, New Zealand. Journal of Applied Ecology  36, 502–518.
Crossref | GoogleScholarGoogle Scholar |

Pyne SJ,  Andrews PL,  Laven RD (1996) Introduction to wildland fire 2nd edn. (John Wiley and Sons: New York)  769 pp.

Racine CH, Dennis JG , Patterson WA (1985) Tundra fire regimes in the Novak River Watershed, Alaska (USA): 1956–1983. Arctic  38, 194–200.


Rabii HA (1979). An investigation of the utility of Landsat-2 MSS data to the fire-danger rating area, and forest fuel analysis within Crater Lake National Park, Oregon. Ph.D dissertation (Oregon State University) 410 pp.

Razafimpanilo H, Frouin R, Iacobellis SF , Somerville RCJ (1995) Methodology for estimating burned area from AVHRR reflectance data. Remote Sensing of Environment  54, 273–289.
Crossref | GoogleScholarGoogle Scholar |

Reich RM,  Davis RA (1998) On-line spatial library for the S-PLUS statistical software package (Colorado State University: Fort Collins, CO)  

Roberts DA, Gardner M, Regelbrusse J, Pedreros D , Ustin S (1998) Mapping the distribution of wildland fuels using AVIRIS in the Santa Monica Mountains. Remote Sensing of Environment  65, 267–279.
Crossref | GoogleScholarGoogle Scholar |

Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station Research Paper INT-115 40 pp.

Salazar LA (1982) Remote sensing techniques aid in preattack planning for fire management. USDA Research paper PSW-162 19 pp.

Schloeder CA, Zimmermann NE , Jacobs MJ (2001) Comparison of methods for interpolating soil properties using limited data. American Society of Soil Science Journal  65, 470–479.


Shasby MB, Burgan RE , Johnson RR (1981) Broad area forest fuels and topography mapping using digital Landsat and terrain data. Proceedings of 7th international symposium on machine processing of remotely sensed data West Lafayette.

Syrjanen K, Kalliola R, Puolasmaa A , Mattson J (1994) Landscape structure and forest dynamics in subcontinental Russian European taiga. Annales Zoologici Fennici  31, 19–34.


Stone M (1974) Cross-validation choice and assessment of statistical predictions. Journal of the Royal Statistical Society B  36, 111–133.


Turner MG, Hargrove WW, Gardner RH , Romme WH (1994) Effects of fire on landscape heterogeneity in Yellowstone National Park. Journal of Vegetation Science  5, 731–742.


Upton GJG,  Fingleton B (1985) Spatial data analysis by example. Vol. 1, Point pattern and quantitative data (John Wiley and Sons: New York)  409 pp.

Williams MS (1997) A regression technique accounting for heteroscedastic and asymmetric error. Journal of Agricultural Biological & Environmental Statistics  2, 108–129.


Wilson BA, Ow CFW, Heathcott M, Milne D, McCaffrey TM , Franklin SE (1994) Landsat MSS classification of fire fuel types in Wood Buffalo National Park. Global Ecology and Biogeography Letters  4, 33–39.