Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Topsoil structure in no-tilled soils in the Rolling Pampa, Argentina

C. R. Alvarez A E , M. A. Taboada A B C , S. Perelman D and H. J. M. Morrás B
+ Author Affiliations
- Author Affiliations

A Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, CP (1417), Ciudad Autónoma de Buenos Aires, Argentina.

B Instituto de Suelos, Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y de los Reseros s/n, CP (1686), Hurlingham, Buenos Aires, Argentina.

C Consejo Nacional de Investigaciones Científicas y Técnicas. Av. Rivadavia 1917 (C1033AAJ) Ciudad Autónoma de Buenos Aires - República Argentina.

D IFEVA (Facultad de Agronomía, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Av. San Martín 4453, CP (1417), Ciudad Autónoma de Buenos Aires, Argentina.

E Corresponding author. Email: alvarezc@agro.uba.ar

Soil Research 52(6) 533-542 https://doi.org/10.1071/SR13281
Submitted: 26 September 2013  Accepted: 22 April 2014   Published: 14 August 2014

Abstract

Some topsoil physical properties evolve unfavourably under continuous, no-till farming. On the Pampa, loam soils under no-till sometimes have lower infiltration rates than those conventionally tilled; this is due to the occurrence of platy and massive structures. In this study, we aimed to identify the soil management practices that promote platy structure formation, and explain the soil physical behaviour linked to the thickness of platy structures in relation to infiltration rate, bulk density and shear strength. Six fields with different numbers of years under agriculture and diverse previous crops (maize or wheat–soybean double crop) were sampled, distinguishing within each field headlands (areas with higher traffic) and centre (lower traffic). Twenty samples were taken at random along a 200-m transect to characterise soil structure (platy, granular or massive) and the thickness of the platy structure. Principal component analysis revealed linkages between previous crop and location in each field and type of structure. ANOVA showed a significant (P < 0.05) interaction of previous crop × location. The frequency and thickness of the platy structures were lower, and those of granular structures higher, under wheat–soybean double cropping and in the centre of the field. Greater thickness of the platy structure determined lower water infiltration rate (r = –0.337; P < 0.01) and greater soil shear strength (r = 0.297, P < 0.01). Micromorphological analysis indicated the dominance of massive and platy structure in the headlands and bioturbation in the centre of the fields with wheat–soybean double cropping. These results suggest bioturbation, crop-root binding and low machinery traffic as the main factors minimising soil evolution towards unfavourable structural types under no-till farming in the area.

Additional keywords: infiltration rate, machinery traffic, no-till, shear strength, structural types.


References

Álvarez CR, Taboada MA, Gutiérrez Boem FH, Bono A, Fernández PL, Prystupa P (2009) Topsoil properties as affected by tillage systems in the Rolling Pampa region of Argentina. Soil Science Society of America Journal 73, 1242–1250.
Topsoil properties as affected by tillage systems in the Rolling Pampa region of Argentina.Crossref | GoogleScholarGoogle Scholar |

Barbosa OA, Taboada MA, Rodríguez MB, Cosentino DJ (1997) Regeneración de la estructura en un suelo franco limoso de la Pampa Ondulada en diferentes fases de degradación. Ciencia del Suelo 15, 81–88.

Barbosa OA, Taboada MA, Cosentino DJ (1999) Contracción al secado de agregados en diferentes fases de degradación de un suelo franco limoso de la Pampa Ondulada. Ciencia del Suelo 17, 1–7.

Bartlett M, Ritz K (2011) The zoological generation of soil structure. In ‘The architecture and biology of soils’. (Eds K Ritz, I Young) pp. 71–85. (CABI: Wallingford, UK)

Bonel BA, Morras HJM, Bisaro V (2005) Microstructure and organic matter modifications in an Argiudoll under different conditions of cultivation and conservation. Ciencia del Suelo 23, 1–12.

Burke W, Gabriels D, Bouma J (1986) ‘Soil structure assessment.’ (A. A. Balkema: Rotterdam)

Cosentino DJ, Pecorari C (2002) Impact of low-density minerals on physical properties of soils of the Pampean region. Ciencia del Suelo 20, 9–16.

De Battista JJ, Pecorari C, Albrecht R (2005) Evaluación del estado estructural de suelos con agricultura continua en siembra directa, en: Indicadores de calidad de suelos. Estación Experimental Agropecuaria General Villegas. Boletín Técnico 4, pp. 31–39.

Degens BP (1997) Macro-aggregation of soils by biological bonding and binding mechanisms and the factors affecting these: a review. Australian Journal of Soil Research 35, 431–459.
Macro-aggregation of soils by biological bonding and binding mechanisms and the factors affecting these: a review.Crossref | GoogleScholarGoogle Scholar |

Dexter AR (1988) Advances in the characterization of soil structure. Soil & Tillage Research 11, 199–238.
Advances in the characterization of soil structure.Crossref | GoogleScholarGoogle Scholar |

Díaz-Zorita M, Duarte GA, Grove JH (2002) A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina. Soil & Tillage Research 65, 1–18.
A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina.Crossref | GoogleScholarGoogle Scholar |

Drees I Karathanasis A Wilding I Blevins R 1994 Micromorphological characteristics of long-term no-till and conventionally tilled soils. Soil Science Society of America Journal 58 508 517

Fernández PL, Alvarez CR, Schindler V, Taboada MA (2010) Changes in topsoil bulk density after grazing crop residues under no-till farming. Geoderma 159, 24–30.
Changes in topsoil bulk density after grazing crop residues under no-till farming.Crossref | GoogleScholarGoogle Scholar |

Ferreras LA, Costa JL, Garcia FO, Pecorari C (2000) Effect of no tillage on some soil physical properties of a structural degraded Petrocalcic Paleudoll of the southern ‘Pampa’ of Argentina. Soil & Tillage Research 54, 31–39.
Effect of no tillage on some soil physical properties of a structural degraded Petrocalcic Paleudoll of the southern ‘Pampa’ of Argentina.Crossref | GoogleScholarGoogle Scholar |

Gardner CMK, Layrea KB, Unger PW (1999) Soil texture and structure. In ‘Soil physical constraints to plant growth and crop production’. Ch. 2. pp. 7–20. (FAO: Rome)

Horn R, Way T, Rostek J (2003) Effect of repeated tractor wheeling on stress/strain properties and consequnces on physical properties in structured arable soils. Soil & Tillage Research 73, 101–106.
Effect of repeated tractor wheeling on stress/strain properties and consequnces on physical properties in structured arable soils.Crossref | GoogleScholarGoogle Scholar |

Hubert F, Hallaire V, Sardini P, Caner L, Heddadj D (2007) Pore morphology changes under tillage and no-tillage practices. Geoderma 142, 226–236.
Pore morphology changes under tillage and no-tillage practices.Crossref | GoogleScholarGoogle Scholar |

Hussain I, Olson KR, Wander MM, Karlen DL (1999) Adaptation of soil quality indices and application to three tillage systems in southern Illinois. Soil & Tillage Research 50, 237–249.
Adaptation of soil quality indices and application to three tillage systems in southern Illinois.Crossref | GoogleScholarGoogle Scholar |

INTA (2013) Datos Analíticos del Perfil Típico de la Serie O’Higgins en. INTA. Available at: www.inta.gov.ar/suelos/cartas/series/O’Higgins.htm (accessed 20 August 2013)

Kay BD, Grant CD, Groenevelt PH (1985) Significance of ground freezing on soil bulk density under zero tillage. Soil Science Society of America Journal 49, 973–978.
Significance of ground freezing on soil bulk density under zero tillage.Crossref | GoogleScholarGoogle Scholar |

Lipiec J, Kuś J, Słowińska-Jurkiewicz A, Nosalewicz A (2006) Soil porosity and water infiltration as influenced by tillage methods. Soil & Tillage Research 89, 210–220.
Soil porosity and water infiltration as influenced by tillage methods.Crossref | GoogleScholarGoogle Scholar |

Micucci FG, Taboada MA (2006) Soil physical properties and soybean (Glycine max Merrill) root abundance in conventionally- and zero-tilled soils in the humid Pampas of Argentina. Soil & Tillage Research 86, 152–162.
Soil physical properties and soybean (Glycine max Merrill) root abundance in conventionally- and zero-tilled soils in the humid Pampas of Argentina.Crossref | GoogleScholarGoogle Scholar |

Morrás H, Bonel B (2005) Microstructure differentiation in a Typic Argiudoll in the Pampean Region of Argentina under conventional and no-till agricultural systems. Two converging pathways to a similar organic matter content. Geophysical Research Abstracts 7, 01337

Morrás H, Irurtia C, Ibarlucea C, Lantin M, Michelena R (2001) Recuperación de suelos pampeanos degradados mediante siembra directa y subsolado. In ‘Siembra Directa II’. Ediciones del INTA. (Eds Panigatti, Buschiazzo, Marelli) pp. 263–278. (INTA: Buenos Aires)

Morrás H, Bonel B, Michelena R (2004) Características microestructurales del horizonte superficial de algunos suelos pampeanos bajo siembra directa. In ‘Actas XIX Congreso Argentino de la Ciencia del Suelo’. Paraná. (CD-ROM) (Asociación Argentino de la Ciencia del Suelo)

Morrás H, Bonel M, Moretti L, Favret E, Bressan E (2008) Porosidad y microestructura superficial de un Argiudol típico bajo siembra directa y labranza reducida. In ‘Actas XXI Congreso Argentino de la Ciencia del Suelo’. Potrero de los Funes, San Luis. (CD-ROM) (Asociación Argentino de la Ciencia del Suelo)

Morrás H, Bonel B, Fernandez P, Kraemer F, Alvarez C (2012) Topsoil microstructural models in no-till Pampean Mollisols of Argentina. Morphology and development. In ‘14th International Working Meeting on Soil Micromorphology’. Lleida, Spain. (CD-ROM) (Eds RM Poch, M Casamitjana, M. Francis) (International Union of Soil Science)

Morris NL, Miller PCR, Orson JH, Froud-Williams RJ (2010) The adoption lf non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment. A review. Soil & Tillage Research 108, 1–15.
The adoption lf non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment. A review.Crossref | GoogleScholarGoogle Scholar |

Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In ‘Methods of soil analysis. Part 2. Agronomy’. (Ed. AL Page) pp. 539–579. (American Society of Agronomy: Madison, WI, USA)

Neter J, Wasserman W (1974) ‘Applied linear statistical models: regression analysis of variance and experimental design.’ (Richard D. Irwin Publishing: Chicago, IL, USA)

Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant and Soil 76, 319–337.
Soil organic matter and structural stability: mechanisms and implications for management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvFSksbw%3D&md5=6696ee1cb823d8a64c5d87b555f2e02eCAS |

Oades JM (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56, 377–400.
The role of biology in the formation, stabilization and degradation of soil structure.Crossref | GoogleScholarGoogle Scholar |

Rhoton FE (2000) Influence of time on soil response to no-till practices. Soil Science Society of America Journal 64, 700–709.
Influence of time on soil response to no-till practices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1eqt7g%3D&md5=8a8b735b0a87e9b6e73fa01af94b28d4CAS |

Ríos de Saluso M, Saluso A, Paparotti O, Debona C (2001) Asociación entre la macrofauna del suelo y la siembra directa en el oeste de Entre Ríos. In ‘Siembra Directa II’. Ediciones del INTA. (Eds Panigatti, Buschiazzo, Marelli) pp. 83–95. (INTA: Buenos Aires)

Sasal MC, Andriulo AE, Taboada MA (2006) Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinean Pampas. Soil & Tillage Research 87, 9–18.
Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinean Pampas.Crossref | GoogleScholarGoogle Scholar |

Shipitalo MJ, Protz R (1987) Comparison of morphology and porosity of soil under conventional and zero tillage. Canadian Journal of Soil Science 67, 445–456.
Comparison of morphology and porosity of soil under conventional and zero tillage.Crossref | GoogleScholarGoogle Scholar |

Słowińska-Jurkiewicz A, Domźal H (1991) The structure of the cultivated horizon of soil compacted by wheels of agricultural tractors. Soil & Tillage Research 19, 215–226.
The structure of the cultivated horizon of soil compacted by wheels of agricultural tractors.Crossref | GoogleScholarGoogle Scholar |

Soil Quality Institute (2011) Soil quality test kit guide. USDA-ARS-NRCS. Available at: http://ocw.tufts.edu/data/32/383298.pdf

Soil Survey Division Staff (1993) ‘Soil survey manual.’ Soil Conservation Service. U.S. Department of Agriculture Handbook 18. USDA. Available at: www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_050993.pdf (accessed 27 July 2014)

Soracco CG, Lozano LA, Sarli GO, Gelati PR, Filgueira R (2010) Anisotropy of saturated hydraulic conductivity in a soil under conservation and no-till treatments. Soil & Tillage Research 109, 18–22.
Anisotropy of saturated hydraulic conductivity in a soil under conservation and no-till treatments.Crossref | GoogleScholarGoogle Scholar |

Stengel P, Douglas J, Guerif J, Gross M, Monnier R, Cannel R (1984) Factors influencing the variation of some properties of soils in relation to their suitability for direct drill. Soil & Tillage Research 4, 35–53.
Factors influencing the variation of some properties of soils in relation to their suitability for direct drill.Crossref | GoogleScholarGoogle Scholar |

Stoops G (2003) ‘Guidelines for analysis and description of soil and regolith thin sections.’ (Soil Science Society of America: Madison, WI, USA)

Strudley MW, Green TR, Ascough JC (2008) Tillage effects on soil hydraulic properties in space and time: state of the science. Soil & Tillage Research 99, 4–48.
Tillage effects on soil hydraulic properties in space and time: state of the science.Crossref | GoogleScholarGoogle Scholar |

Taboada MA, Micucci FG, Cosentino DJ, Lavado RS (1998) Comparison of compaction induced by conventional and zero tillage in two soils of the Rolling Pampa of Argentina. Soil & Tillage Research 49, 57–63.
Comparison of compaction induced by conventional and zero tillage in two soils of the Rolling Pampa of Argentina.Crossref | GoogleScholarGoogle Scholar |

Taboada MA, Lavado RS, Rubio G, Cosentino DJ (2001) Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table. Geoderma 101, 49–64.
Soil volumetric changes in natric soils caused by air entrapment following seasonal ponding and water table.Crossref | GoogleScholarGoogle Scholar |

Taboada MA, Barbosa OA, Rodríguez MB, Cosentino DJ (2004) Mechanisms of aggregation in a silty loam under different simulated management regimes. Geoderma 123, 233–244.
Mechanisms of aggregation in a silty loam under different simulated management regimes.Crossref | GoogleScholarGoogle Scholar |

Taboada MA, Barbosa OA, Cosentino DJ (2008) Null creation of air-filled structural pores by soil cracking and shrinkage in silty loam soils. Soil Science 173, 130–142.
Null creation of air-filled structural pores by soil cracking and shrinkage in silty loam soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlyisL4%3D&md5=dd06925a3747402c872a559f7a7adeffCAS |

Thomas GW, Haszler GR, Blevins RL (1996) The effects of organic matter and tillage on maximum compactability of soils using the proctor test. Soil Science 161, 502–508.
The effects of organic matter and tillage on maximum compactability of soils using the proctor test.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltFeqtLk%3D&md5=6081fb84781adf3eed396fc10b4fbaefCAS |

Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soil. Journal of Soil Science 33, 141–163.
Organic matter and water stable aggregates in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlsVels7w%3D&md5=f6c245c6895f4530987e9d1c09ce7befCAS |

VandenBygaart AJ, Protz R, Tomlin AD, Miller JJ (1999) Tillage system effects on near-surface soil morphology: observations from the landscape to micro-scale in silt loam soils of southwestern Ontario. Soil & Tillage Research 51, 139–149.
Tillage system effects on near-surface soil morphology: observations from the landscape to micro-scale in silt loam soils of southwestern Ontario.Crossref | GoogleScholarGoogle Scholar |

Voorhees WB, Lindstrom MJ (1984) Long-term effects of tillage method on soil tilth independent of wheel traffic compaction. Soil Science Society of America Journal 48, 152–156.
Long-term effects of tillage method on soil tilth independent of wheel traffic compaction.Crossref | GoogleScholarGoogle Scholar |

Warburton D, Klimstra W (1984) Wildlife use on no-till and conventionally tilled corn fields. Journal of Soil and Water Conservation 39, 327–330.

Wilson-Rummenie A, Radford L, Robertson G, Simpson G, Bell K (1999) Reduced tillage increases population density of soil macrofauna in a semiarid environment in Central Queensland. Environmental Entomology 28, 163–172.