Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Least-limiting water range of the soil seedbed submitted to mechanical and biological chiselling under no-till

O. Guedes Filho A E , A. P. da Silva B , N. F. B. Giarola C and C. A. Tormena D
+ Author Affiliations
- Author Affiliations

A Universidade Federal de Mato Grosso (UFMT), Rodovia Rondonópolis-Guiratinga, KM 06 (MT-270) - Bairro Sagrada Família, 78735-901, Rondonópolis, MT, Brazil.

B Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Av. Pádua Dias 11, 13418-900, Piracicaba, SP, Brazil.

C Universidade Estadual de Ponta Grossa, Departamento de Ciências do Solo e Engenharia Agrícola, Av. General Carlos Cavalcanti 4748, 84030-900, Ponta Grossa, PR, Brazil.

D Universidade Estadual de Maringá, Departamento de Agronomia, Av. Colombo 790, 87020-900 Maringá, PR, Brazil.

E Corresponding author. Email: osvaldoguedes@yahoo.com.br

Soil Research 52(6) 521-532 https://doi.org/10.1071/SR13155
Submitted: 11 May 2013  Accepted: 12 May 2014   Published: 13 August 2014

Abstract

Physical quality of the soil seedbed affects germination, seedling emergence and crop establishment. The aim of this work was to determine the least-limiting water range (LLWR) of a soil seedbed cultivated for 18 consecutive years under no-till (NT) and submitted to mechanical chiselling (NT-M) and biological chiselling by a forage radish cover crop (NT-B). The study was carried out in Ponta Grossa, Paraná, Brazil. The experimental design was randomised complete blocks with four replications. Soil samples at 0–5 and 5–10 cm depths were collected at 6 and 18 months after the start of the experiment which corresponded to maize (October 2009) and soybean (November 2010) planting. Water-retention curve, penetration-resistance curve, soil and relative bulk density, and LLWR were determined. Bulk density did not differ among treatments at 0–5 cm depth for both evaluation periods. At 5–10 cm soil depth, the NT-M treatment showed the lowest bulk density at the first sampling (2009), whereas NT-B showed the highest bulk density at the second sampling (2010). Soil penetration resistance was the most limiting factor of the LLWR, which was greater in NT-M for both soil layers at the first sampling. At the second sampling, the NT treatment had the greatest LLWR at 0–5 cm, but at 5–10 cm soil depth, both NT and NT-M had higher LLWR than NT-B. The efficiency of mechanical chiselling in improving soil seedbed physical quality lasted 18 months after its application. Biological chiselling was efficient in improving soil air-filled porosity in both periods as evaluated by the LLWR.

Additional keywords: bulk density, Raphanus sativus L., soil compaction, soil penetration resistance, soil water retention.


References

Abreu SL, Reichert JM, Reinert DJ (2004) Escarificação mecânica e biológica para a redução da compactação em Argissolo franco arenoso em plantio direto. Revista Brasileira de Ciencia do Solo 28, 519–531.
Escarificação mecânica e biológica para a redução da compactação em Argissolo franco arenoso em plantio direto.Crossref | GoogleScholarGoogle Scholar |

Angers DA, Caron J (1998) Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42, 55–72.
Plant-induced changes in soil structure: processes and feedbacks.Crossref | GoogleScholarGoogle Scholar |

Araújo MA, Tormena CA, Inoue TT, Costa ACS (2004) Efeitos da escarificacão na qualidade física de um Latossolo Vermelho distroférrico após treze anos de semeadura direta. Revista Brasileira de Ciencia do Solo 28, 495–504.
Efeitos da escarificacão na qualidade física de um Latossolo Vermelho distroférrico após treze anos de semeadura direta.Crossref | GoogleScholarGoogle Scholar |

Asgarzadeh H, Mosaddeghu MR, Mahboubi AA, Nosrati A, Dexter AR (2010) Soil water availability for plants as quantified by conventional available water, least limiting water range and integral water capacity. Plant and Soil 335, 229–244.
Soil water availability for plants as quantified by conventional available water, least limiting water range and integral water capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOrt73P&md5=f0bdb5d29e2732bbfd724b0ab24eab44CAS |

Atkinson BS, Sparkes DL, Mooney SJ (2009) The impact of soil structure on the establishment of winter wheat (Triticum aestivum). European Journal of Agronomy 30, 243–257.
The impact of soil structure on the establishment of winter wheat (Triticum aestivum).Crossref | GoogleScholarGoogle Scholar |

Benjamin JG, Nielsen DC, Vigil MF (2003) Quantifying effects of soil conditions on plant growth and crop production. Geoderma 116, 137–148.
Quantifying effects of soil conditions on plant growth and crop production.Crossref | GoogleScholarGoogle Scholar |

Betz CL, Allmaras RR, Copeland SM, Randall GW (1998) Least limiting water range: Traffic and long-term tillage influences in a Webster soil. Soil Science Society of America Journal 62, 1384–1393.
Least limiting water range: Traffic and long-term tillage influences in a Webster soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVOqtbc%3D&md5=834e2941bfe532f7238c2c2ec3dc4af1CAS |

Blanco-Canqui H, Stone LR, Schlegel AJ, Lyon DJ, Vigil MF, Mikha MM, Stahlman PW (2009) No-till induced increase in organic carbon reduces maximum bulk density of soils. Soil Science Society of America Journal 73, 1871–1879.
No-till induced increase in organic carbon reduces maximum bulk density of soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSku7rL&md5=68d48051464dcafe1e7f71873229fdecCAS |

Botta GF, Becerra AT, Melcon FB (2009) Seedbed compaction produced by traffic on four tillage regimes in the rolling Pampas of Argentina. Soil & Tillage Research 105, 128–134.
Seedbed compaction produced by traffic on four tillage regimes in the rolling Pampas of Argentina.Crossref | GoogleScholarGoogle Scholar |

Braunack WA, Dexter AR (1989) Soil aggregation in the seedbed: a review. II. Effect of aggregate sizes on plant growth. Soil & Tillage Research 14, 281–298.
Soil aggregation in the seedbed: a review. II. Effect of aggregate sizes on plant growth.Crossref | GoogleScholarGoogle Scholar |

Bulmer CE, Simpson DG (2005) Soil compaction and water content as factors affecting the growth of lodgepole pine seedlings on sandy clay loam soil. Canadian Journal of Soil Science 85, 667–679.
Soil compaction and water content as factors affecting the growth of lodgepole pine seedlings on sandy clay loam soil.Crossref | GoogleScholarGoogle Scholar |

Busscher WJ (1990) Adjustment of flat-tipped penetrometer resistance data to a common water content. Transaction of the American Society of Agricultural Engineers 33, 519–524.
Adjustment of flat-tipped penetrometer resistance data to a common water content.Crossref | GoogleScholarGoogle Scholar |

Busscher WJ, Bauer PJ, Frederick JR (2002) Recompaction of a coastal loamy sand after deep tillage as a function of subsequent cumulative rainfall. Soil & Tillage Research 68, 49–57.
Recompaction of a coastal loamy sand after deep tillage as a function of subsequent cumulative rainfall.Crossref | GoogleScholarGoogle Scholar |

Calonego JC, Rosolem CA (2010) Soybean root growth and yield in rotation with cover crops under chiseling and no-till. European Journal of Agronomy 33, 242–249.
Soybean root growth and yield in rotation with cover crops under chiseling and no-till.Crossref | GoogleScholarGoogle Scholar |

Calonego JC, Rosolem CA (2011) Least limiting water range in soil under crop rotations and chiseling. Revista Brasileira de Ciencia do Solo 35, 759–771.
Least limiting water range in soil under crop rotations and chiseling.Crossref | GoogleScholarGoogle Scholar |

Calonego JC, Borghi E, Crusciol CAC (2011) Intervalo hídrico ótimo e compactação do solo com cultivo consorciado de milho e braquiária. Revista Brasileira de Ciencia do Solo 35, 2183–2190.
Intervalo hídrico ótimo e compactação do solo com cultivo consorciado de milho e braquiária.Crossref | GoogleScholarGoogle Scholar |

Câmara RK, Klein VA (2005) Escarificação em plantio direto como técnica de conservação do solo e da água. Revista Brasileira de Ciencia do Solo 29, 789–796.
Escarificação em plantio direto como técnica de conservação do solo e da água.Crossref | GoogleScholarGoogle Scholar |

Carter MR (1990) Relative measures of soil bulk density to characterize compaction in tillage studies on fine sandy loams. Canadian Journal of Soil Science 70, 425–433.
Relative measures of soil bulk density to characterize compaction in tillage studies on fine sandy loams.Crossref | GoogleScholarGoogle Scholar |

Chen G, Weil RR (2010) Penetration of cover crops roots through compacted soil. Plant and Soil 331, 31–43.
Penetration of cover crops roots through compacted soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVOhsrY%3D&md5=9ed3a80d04d8dfad66527d25d4333626CAS |

Cresswell HP, Kirkegaard JA (1995) Subsoil amelioration by plant root—the process and the evidence. Australian Journal of Soil Research 33, 221–239.
Subsoil amelioration by plant root—the process and the evidence.Crossref | GoogleScholarGoogle Scholar |

da Silva AP, Kay BD (1997) Effect of soil water content variation on the least limiting water range. Soil Science Society of America Journal 61, 884–888.
Effect of soil water content variation on the least limiting water range.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvVOqsLw%3D&md5=f2b5021c1d43841db501821d45726c60CAS |

da Silva AP, Kay BD (2004) Linking process capability analysis and least limiting water range for assessing soil physical quality. Soil & Tillage Research 79, 167–174.
Linking process capability analysis and least limiting water range for assessing soil physical quality.Crossref | GoogleScholarGoogle Scholar |

da Silva AP, Kay BD, Perfect E (1994) Characterization of the least limiting water range. Soil Science Society of America Journal 58, 1775–1781.
Characterization of the least limiting water range.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlCjsLw%3D&md5=6144f386921578b5764f5a6929066e3bCAS |

Dane JH, Hopmans JH (2002) Water retention and storage. In ‘Methods of soil analysis. IV. Physical methods’. (Eds JH Dane, GC Topp) pp. 671–717. (Soil Science Society of America: Madison, WI, USA)

Dexter AR (1991) Amelioration of soil by natural processes. Soil & Tillage Research 20, 87–100.
Amelioration of soil by natural processes.Crossref | GoogleScholarGoogle Scholar |

Evans SD, Lindstrom MJ, Voorhees WB, Moncrief JF, Nelson GA (1996) Effect of subsoiling and subsequent tillage on soil bulk density, soil moisture, and corn yield. Soil & Tillage Research 38, 35–46.
Effect of subsoiling and subsequent tillage on soil bulk density, soil moisture, and corn yield.Crossref | GoogleScholarGoogle Scholar |

Farias LN, Bonfim-Silva EM, Pietro-Souza W, Vilarinho MKC, da Silva TJA, Guimarães SL (2013) Características morfológicas e produtivas de feijão guandu anão cultivado em solo compactado. Revista Brasileira de Engenharia Agrícola e Ambiental 17, 497–503.
Características morfológicas e produtivas de feijão guandu anão cultivado em solo compactado.Crossref | GoogleScholarGoogle Scholar |

Federação Brasileira de Plantio Direto na Palha (2012) Área de PD. Available at: www.febrapdp.org.br (accessed 28 May 2012).

Finlay MJ, Tisdall JM, McKenzie BM (1994) Effect of tillage below the seed on emergence of wheat seedlings in a hardsetting soil. Soil & Tillage Research 28, 213–225.
Effect of tillage below the seed on emergence of wheat seedlings in a hardsetting soil.Crossref | GoogleScholarGoogle Scholar |

Genro Júnior SA, Reinert DJ, Reichert JM, Albuquerque JA (2009) Atributos físicos de um Latossolo Vermelho e produtividade de culturas cultivadas em sucessão e rotação. Ciência Rural 39, 65–73.
Atributos físicos de um Latossolo Vermelho e produtividade de culturas cultivadas em sucessão e rotação.Crossref | GoogleScholarGoogle Scholar |

Gonçalves WG, Jimenez RL, Araújo Filho JV, Assis RL, Silva GP, Pires FR (2006) Sistema radicular de plantas de cobertura sob compactação do solo. Engenharia Agrícola 26, 67–75.
Sistema radicular de plantas de cobertura sob compactação do solo.Crossref | GoogleScholarGoogle Scholar |

Grable AR, Siemer EG (1968) Effects of bulk density, aggregate size, and soil water suction on oxygen diffusion, redox potential and elongation of corn roots. Soil Science Society of America Journal 32, 180–186.
Effects of bulk density, aggregate size, and soil water suction on oxygen diffusion, redox potential and elongation of corn roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXktFygs70%3D&md5=7ec4d35dc906ea830d5ba502865982e7CAS |

Grossman RB, Reinsch TG (2002) Bulk density and linear extensibility. In ‘Methods of soil analysis. IV. Physical methods’. (Eds JH Dane, GC Topp) pp. 201–225. (Soil Science Society of America: Madison, WI, USA)

Håkansson I (1990) A method for characterizing the state of compactness of the plough layer. Soil & Tillage Research 16, 105–120.
A method for characterizing the state of compactness of the plough layer.Crossref | GoogleScholarGoogle Scholar |

Håkansson I, Myrbeck A, Etana A (2002) A review of research on seedbed preparation for small grains in Sweden. Soil & Tillage Research 64, 23–40.
A review of research on seedbed preparation for small grains in Sweden.Crossref | GoogleScholarGoogle Scholar |

IAPAR (2000) ‘Cartas climáticas do Paraná: Edição ano 2000, versão 1.0.’ (Instituto Agronômico do Paraná: Londrina, Brazil) (CD-ROM)

Imhoff S, da Silva AP, Dias Junior MS, Tormena CA (2001) Quantificação das pressões crítica para o crescimento das plantas. Revista Brasileira de Ciencia do Solo 25, 11–18.

Kadžienɹ G, Munkholm LJ, Mutegi JK (2011) Root growth conditions in the topsoil as affected by tillage intensity. Geoderma 166, 66–73.
Root growth conditions in the topsoil as affected by tillage intensity.Crossref | GoogleScholarGoogle Scholar |

Klein VA, Camara RK (2007) Rendimento da soja e intervalo hídrico ótimo em Latossolo Vermelho sob plantio direto escarificado. Revista Brasileira de Ciencia do Solo 31, 221–227.
Rendimento da soja e intervalo hídrico ótimo em Latossolo Vermelho sob plantio direto escarificado.Crossref | GoogleScholarGoogle Scholar |

Kubota A, Hoshiba K, Bordon J (2005) Green-manure turnip for soybean based no-tillage farming systems in eastern Paraguay. Scientia Agricola 62, 150–158.
Green-manure turnip for soybean based no-tillage farming systems in eastern Paraguay.Crossref | GoogleScholarGoogle Scholar |

Leão TP, da Silva AP, Perfect E, Tormena CA (2005) An algorithm for calculating the least limiting water range of soils. Agronomy Journal 97, 1210–1215.
An algorithm for calculating the least limiting water range of soils.Crossref | GoogleScholarGoogle Scholar |

Lipiec J, Hatano R (2003) Quantification of compaction effects on soil physical properties and crop growth. Geoderma 116, 107–136.
Quantification of compaction effects on soil physical properties and crop growth.Crossref | GoogleScholarGoogle Scholar |

Lipiec J, Håkansson I, Tarkiewicz S, Kossowski J (1991) Soil physical properties and growth of spring barley as related to the degree of compactness of two soils. Soil & Tillage Research 19, 307–317.
Soil physical properties and growth of spring barley as related to the degree of compactness of two soils.Crossref | GoogleScholarGoogle Scholar |

Logsdon SD, Karlen DL (2004) Bulk density as a soil quality indicator during conversion to no-tillage. Soil & Tillage Research 78, 143–149.
Bulk density as a soil quality indicator during conversion to no-tillage.Crossref | GoogleScholarGoogle Scholar |

Mahl D, Silva RB, Gamero CA, Silva PRA (2008) Resistência do solo à penetração, cobertura vegetal e produtividade do milho em plantio direto escarificado. Acta Scientiarum Agronomy 30, 741–747.
Resistência do solo à penetração, cobertura vegetal e produtividade do milho em plantio direto escarificado.Crossref | GoogleScholarGoogle Scholar |

Meek BD, DeTar WR, Rolph D, Rechel ER, Carter LM (1990) Infiltration rate as affected by an alfalfa and no-till cotton cropping system. Soil Science Society of America Journal 54, 505–508.
Infiltration rate as affected by an alfalfa and no-till cotton cropping system.Crossref | GoogleScholarGoogle Scholar |

Nicoloso RS, Amado TJC, Schneider S, Lanzanova ME, Girardello VC, Bragagnolo J (2008) Eficiência da escarificação mecânica e biológica na melhoria dos atributos físicos de um Latossolo muito argiloso e no incremento do rendimento de soja. Revista Brasileira de Ciencia do Solo 32, 1723–1734.
Eficiência da escarificação mecânica e biológica na melhoria dos atributos físicos de um Latossolo muito argiloso e no incremento do rendimento de soja.Crossref | GoogleScholarGoogle Scholar |

Olibone D, Encide-Olibone AP, Rosolem CA (2010) Least limiting water range and crop yields as affected by crop rotations and tillage. Soil Use and Management 26, 485–493.
Least limiting water range and crop yields as affected by crop rotations and tillage.Crossref | GoogleScholarGoogle Scholar |

Reichert JM, Suzuki LEAS, Reinert DJ, Horn R, Håkansson I (2009) Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil & Tillage Research 102, 242–254.
Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils.Crossref | GoogleScholarGoogle Scholar |

Reinert DJ, Albuquerque JA, Reichert JM, Aita C, Andrada MMC (2008) Limites críticos de densidade do solo para o crescimento de raízes de plantas de cobertura em Argissolo Vermelho. Revista Brasileira de Ciencia do Solo 32, 1805–1816.
Limites críticos de densidade do solo para o crescimento de raízes de plantas de cobertura em Argissolo Vermelho.Crossref | GoogleScholarGoogle Scholar |

Ross PJ, Willians J, Bristow KL (1991) Equations for extending water retention curves to dryness. Soil Science Society of America Journal 55, 923–927.
Equations for extending water retention curves to dryness.Crossref | GoogleScholarGoogle Scholar |

SAS Institute (2002) ‘SAS: user’s guide: statistics.’ 9th edn (SAS Institute: Cary, NC, USA)

Secco D, Reinert DJ (1997) Efeitos imediato e residual de escarificadores em Latossolo Vermelho-escuro sob plantio direto. Engenharia Agrícola 16, 52–61.

Shaver TM, Peterson GA, Sherrod LA (2003) Cropping intensification in dryland systems improves soil physical properties: Regression relations. Geoderma 116, 149–164.
Cropping intensification in dryland systems improves soil physical properties: Regression relations.Crossref | GoogleScholarGoogle Scholar |

Shipitalo MJ, Protz R (1987) Comparison of morphology and porosity of a soil under conventional and zero tillage. Canadian Journal of Soil Science 67, 445–456.
Comparison of morphology and porosity of a soil under conventional and zero tillage.Crossref | GoogleScholarGoogle Scholar |

Silva GL, Lima HV, Campanha MM, Gilkes RJ, Oliveira TS (2011) Soil physical quality of Luvisols under agroforestry, natural vegetation and conventional crop management systems in the Brazilian semi-arid region. Geoderma 167–168, 61–70.
Soil physical quality of Luvisols under agroforestry, natural vegetation and conventional crop management systems in the Brazilian semi-arid region.Crossref | GoogleScholarGoogle Scholar |

Silva SGC, da Silva AP, Giarola NFB, Tormena CA, Sá JCM (2012) Temporary effect of chiseling on the compaction of a rhodic hapludox under no-tillage. Revista Brasileira de Ciencia do Solo 36, 547–555.
Temporary effect of chiseling on the compaction of a rhodic hapludox under no-tillage.Crossref | GoogleScholarGoogle Scholar |

Soil Survey Staff (2010) ‘Keys to Soil Taxonomy.’ 11th edn (USDA-Natural Resources Conservation Service: Washington, DC)

Taylor HM, Roberson GM, Parker JR (1966) Soil strength-root penetration relations to medium to coarse-textured soil materials. Soil Science 102, 18–22.
Soil strength-root penetration relations to medium to coarse-textured soil materials.Crossref | GoogleScholarGoogle Scholar |

Tormena CA, da Silva AP, Libardi PL (1999) Soil physical quality of a Brazilian Oxisol under two tillage systems using the least limiting water range approach. Soil & Tillage Research 52, 223–232.
Soil physical quality of a Brazilian Oxisol under two tillage systems using the least limiting water range approach.Crossref | GoogleScholarGoogle Scholar |

Tormena CA, Araújo MA, Fidalski J, Costa JM (2007) Variação temporal do intervalo hídrico ótimo de um Latossolo Vermelho distroférrico sob sistemas de plantio direto. Revista Brasileira de Ciencia do Solo 31, 211–219.
Variação temporal do intervalo hídrico ótimo de um Latossolo Vermelho distroférrico sob sistemas de plantio direto.Crossref | GoogleScholarGoogle Scholar |

Unger PW, Kaspar TC (1994) Soil compaction and root growth: A review. Agronomy Journal 86, 759–766.
Soil compaction and root growth: A review.Crossref | GoogleScholarGoogle Scholar |

Utomo WH, Dexter AR (1981) Soil friability. Journal of Soil Science 32, 203–213.
Soil friability.Crossref | GoogleScholarGoogle Scholar |

Vieira ML, Klein VA (2007) Propriedades físico-hídricas de um latossolo vermelho submetido a diferentes sistemas de manejo. Revista Brasileira de Ciencia do Solo 31, 1271–1280.
Propriedades físico-hídricas de um latossolo vermelho submetido a diferentes sistemas de manejo.Crossref | GoogleScholarGoogle Scholar |

Williams SM, Weil RR (2004) Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Science Society of America Journal 68, 1403–1409.
Crop cover root channels may alleviate soil compaction effects on soybean crop.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVKitrs%3D&md5=a1de9a4fccfc5a6372120f11254729e3CAS |