Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Sexual Health Sexual Health Society
Publishing on sexual health from the widest perspective
RESEARCH ARTICLE

HIV infection and aging of the innate immune system

Anna C. Hearps A , Thomas A. Angelovich A , Anthony Jaworowski A B C , John Mills D E , Alan L. Landay F and Suzanne M. Crowe A C D G
+ Author Affiliations
- Author Affiliations

A AIDS Pathogenesis Research Unit, Centre for Virology, Burnet Institute for Medical Research and Public Health, Melbourne, Vic. 3004, Australia.

B Department of Immunology, Monash University, Melbourne, Vic. 3004, Australia.

C Department of Medicine, Monash University, Melbourne, Vic. 3004, Australia.

D Department of Infectious Diseases, Alfred Hospital, Melbourne, Vic. 3004, Australia.

E Department of Epidemiology & Community Health, Monash University, Melbourne, Vic. 3004, Australia.

F Department of Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612, USA.

G Corresponding author. Email: crowe@burnet.edu.au

Sexual Health 8(4) 453-464 https://doi.org/10.1071/SH11028
Submitted: 22 February 2011  Accepted: 6 May 2011   Published: 30 September 2011

Abstract

The increased life expectancy of HIV-infected individuals due to improved treatment has revealed an unexpected increase in non-AIDS comorbidities that are typically associated with older age including cardiovascular disease, dementia and frailty. The majority of these diseases arise as the result of dysregulated systemic inflammation, and both the aged and HIV-infected individuals exhibit elevated basal levels of inflammation. In the elderly, increased inflammation and age-related diseases are associated with a state of impaired immunity called immunosenescence, which is thought to result from a lifetime of immune stimulation. It is now apparent that HIV induces premature immunosenescence within T-cells; however, the impact of HIV on aging of cells of the innate arm of the immune system is unknown. Innate immune cells play a central role in inflammation and are thus critical for the pathogenesis of inflammatory diseases. Limited evidence suggests HIV infection mimics age-related changes to innate immune cells; however, the extent of this effect and the mechanism underlying these changes remain to be defined. This review focuses on the impact of HIV infection on the function and aging of innate immune cells and discusses potential drivers of premature immunosenescence including chronic endotoxaemia, residual viraemia, telomere attrition and altered cellular signalling.

Additional keywords: AIDS, immunosenescence, inflammation.


References

[1]  Effros RB, Fletcher CV, Gebo K, Halter JB, Hazzard WR, Horne FM, et al Aging and infectious diseases: workshop on HIV infection and aging: what is known and future research directions. Clin Infect Dis 2008; 47 542–53.
Aging and infectious diseases: workshop on HIV infection and aging: what is known and future research directions.Crossref | GoogleScholarGoogle Scholar |

[2]  Crowe SM, Westhorpe CL, Mukhamedova N, Jaworowski A, Sviridov D, Bukrinsky M. The macrophage: the intersection between HIV infection and atherosclerosis. J Leukoc Biol 2010; 87 589–98.
The macrophage: the intersection between HIV infection and atherosclerosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVChsLY%3D&md5=3c23be1f84b9133f4f509e3be6e058e4CAS |

[3]  Currier JS, Taylor A, Boyd F, Dezii CM, Kawabata H, Burtcel B, et al Coronary heart disease in HIV-infected individuals. J AIDS 2003; 4 506–12.

[4]  Maisa A, Westhorpe C, Elliott J, Jaworowski A, Hearps AC, Dart AM, et al Premature onset of cardiovascular disease in HIV-infected individuals: the drugs and the virus. HIV Therapy 2010; 4 675–92.

[5]  Paccou J, Viget N, Legrout-Gerot I, Yazdanpanah Y, Cortet B. Bone loss in patients with HIV infection. Joint Bone Spine 2009; 76 637–41.
Bone loss in patients with HIV infection.Crossref | GoogleScholarGoogle Scholar |

[6]  Desquilbet L, Jacobson LP, Fried LP, Phair JP, Jamieson BD, Holloway M, et al HIV-1 infection is associated with an earlier occurrence of a phenotype related to frailty. J Gerontol A Biol Sci Med Sci 2007; 11 1279–86.

[7]  Brew BJ, Crowe SM, Landay A, Cysique LA, Guillemin G. Neurodegeneration and ageing in the HAART era. J Neuroimmune Pharmacol 2009; 4 163–74.
Neurodegeneration and ageing in the HAART era.Crossref | GoogleScholarGoogle Scholar |

[8]  Odden MC, Scherzer R, Bacchetti P, Szczech LA, Sidney S, Grunfeld C, et al Cystatin C level as a marker of kidney function in human immunodeficiency virus infection: the FRAM study. Arch Intern Med 2007; 167 2213–9.
Cystatin C level as a marker of kidney function in human immunodeficiency virus infection: the FRAM study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVansr%2FE&md5=5d605d02161e3b85b981d1de23275d82CAS |

[9]  Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 2007; 128 92–105.
Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVWqug%3D%3D&md5=60778a95dbbbf7ed7263bca0ed07619fCAS |

[10]  De Martinis M, Franceschi C, Monti D, Ginaldi L. Inflammation markers predicting frailty and mortality in the elderly. Exp Mol Pathol 2006; 80 219–27.
Inflammation markers predicting frailty and mortality in the elderly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1Wktrw%3D&md5=41c6e13267c564eec44aa783f958b1c9CAS |

[11]  Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH, et al Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med 1999; 106 506–12.
Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3ms1OmsA%3D%3D&md5=9c3ae9dc5ef11999c621779baa01832cCAS |

[12]  Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, Lane HC, et al Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med 2008; 5 e203
Inflammatory and coagulation biomarkers and mortality in patients with HIV infection.Crossref | GoogleScholarGoogle Scholar |

[13]  Effros RB. Replicative senescence of CD8 T cells: effect on human ageing. Exp Gerontol 2004; 39 517–24.
Replicative senescence of CD8 T cells: effect on human ageing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2nurw%3D&md5=19c9a0ddd031cb7f0b1cd2bf5fac1bfbCAS |

[14]  Calado RT, Young NS. Telomere diseases. N Engl J Med 2009; 361 2353–65.
Telomere diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGqsrbO&md5=ab2631b2f51ea4718e007f3444388338CAS |

[15]  Spyridopoulos I, Hoffmann J, Aicher A, Brummendorf TH, Doerr HW, Zeiher AM, et al Accelerated telomere shortening in leukocyte subpopulations of patients with coronary heart disease: role of cytomegalovirus seropositivity. Circulation 2009; 120 1364–72.
Accelerated telomere shortening in leukocyte subpopulations of patients with coronary heart disease: role of cytomegalovirus seropositivity.Crossref | GoogleScholarGoogle Scholar |

[16]  Molina-Pinelo S, Vallejo A, Diaz L, Soriano-Sarabia N, Ferrando-Martinez S, Resino S, et al Premature immunosenescence in HIV-infected patients on highly active antiretroviral therapy with low-level CD4 T cell repopulation. J Antimicrob Chemother 2009; 64 579–88.
Premature immunosenescence in HIV-infected patients on highly active antiretroviral therapy with low-level CD4 T cell repopulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWisr7F&md5=fff2dadc926b45c1198a908107291a64CAS |

[17]  Cao W, Jamieson BD, Hultin LE, Hultin PM, Effros RB, Detels R. Premature aging of T cells is associated with faster HIV-1 disease progression. J AIDS 2009; 2 137–47.

[18]  Effros RB, Allsopp R, Chiu CP, Hausner MA, Hirji K, Wang L, et al Shortened telomeres in the expanded CD28– CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. AIDS 1996; 10 F17–22.
Shortened telomeres in the expanded CD28 CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28vis1Cnsw%3D%3D&md5=2f3d37421e4227ce6b0b56cbf2431cfcCAS |

[19]  Appay V, Almeida JR, Sauce D, Autran B, Papagno L. Accelerated immune senescence and HIV-1 infection. Exp Gerontol 2007; 42 432–7.
Accelerated immune senescence and HIV-1 infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1aku7Y%3D&md5=d8c493092e376f859e478128dcdfc5c5CAS |

[20]  Focosi D, Bestagno M, Burrone O, Petrini M. CD57+ T lymphocytes and functional immune deficiency. J Leukoc Biol 2010; 87 107–16.
CD57+ T lymphocytes and functional immune deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1ajsw%3D%3D&md5=c16824d50909c37bb4ed6b596a43911aCAS |

[21]  Wolthers KC, Bea G, Wisman A, Otto SA, de Roda Husman AM, Schaft N, et al T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover. Science 1996; 274 1543–7.
T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xnt1ansbs%3D&md5=5dad3efa1384e8f88b70390ebae85ab7CAS |

[22]  Palmer LD, Weng N, Levine BL, June CH, Lane HC, Hodes RJ. Telomere length, telomerase activity, and replicative potential in HIV infection: analysis of CD4+ and CD8+ T cells from HIV-discordant monozygotic twins. J Exp Med 1997; 185 1381–6.
Telomere length, telomerase activity, and replicative potential in HIV infection: analysis of CD4+ and CD8+ T cells from HIV-discordant monozygotic twins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisVKksbg%3D&md5=2f695c28516c11c62699fc7472d3c78dCAS |

[23]  Bestilny LJ, Gill MJ, Mody CH, Riabowol KT. Accelerated replicative senescence of the peripheral immune system induced by HIV infection. AIDS 2000; 14 771–80.
Accelerated replicative senescence of the peripheral immune system induced by HIV infection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvgtVKjsQ%3D%3D&md5=f6310a8574b7f110aaa9c2aad74dbe12CAS |

[24]  Lages CS, Suffia I, Velilla PA, Huang B, Warshaw G, Hildeman DA, et al Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol 2008; 3 1835–48.

[25]  Suchard MS, Mayne E, Green VA, Shalekoff S, Donninger SL, Stevens WS, et al FOXP3 expression is upregulated in CD4 T cells in progressive HIV-1 infection and is a marker of disease severity. PLoS ONE 2010; 5 e11762
FOXP3 expression is upregulated in CD4 T cells in progressive HIV-1 infection and is a marker of disease severity.Crossref | GoogleScholarGoogle Scholar |

[26]  Arora N, Novak Z, Fowler KB, Boppana SB, Ross SA. Cytomegalovirus viruria and DNAemia in healthy seropositive women. J Infect Dis 2010; 202 1800–3.
Cytomegalovirus viruria and DNAemia in healthy seropositive women.Crossref | GoogleScholarGoogle Scholar |

[27]  Derhovanessian E, Larbi A, Pawelec G. Biomarkers of human immunosenescence: impact of cytomegalovirus infection. Curr Opin Immunol 2009; 21 440–5.
Biomarkers of human immunosenescence: impact of cytomegalovirus infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Cgtrk%3D&md5=82686bf48cee7e5aadd8f8a124de9291CAS |

[28]  Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A. Cytomegalovirus and human immunosenescence. Rev Med Virol 2009; 19 47–56.
Cytomegalovirus and human immunosenescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitF2ht78%3D&md5=2192e13d49790636efaf14b4fccb76f8CAS |

[29]  Looney RJ, Falsey A, Campbell D, Torres A, Kolassa J, Brower C, et al Role of cytomegalovirus in the T cell changes seen in elderly individuals. Clin Immunol 1999; 90 213–9.
Role of cytomegalovirus in the T cell changes seen in elderly individuals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7otVOqsQ%3D%3D&md5=94cb29fa8d77184b0be1033f07d95378CAS |

[30]  Khan N, Hislop A, Gudgeon N, Cobbold M, Khanna R, Nayak L, et al Herpes virus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J Immunol 2004; 12 7481–9.

[31]  Ouyang Q, Wagner WM, Wikby A, Walter S, Aubert G, Dodi AI, et al Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J Clin Immunol 2003; 23 247–57.
Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVWitrY%3D&md5=9a73249722c7ff0884f1824b7b18bf0fCAS |

[32]  Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, et al Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 2005; 202 673–85.
Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSjs7zE&md5=6db9f2bf716ded1efea9d5befc2923e5CAS |

[33]  Ostan R, Bucci L, Capri M, Salvioli S, Scurti M, Pini E, et al Immunosenescence and immunogenetics of human longevity. Neuroimmunomodulation 2008; 15 224–40.
Immunosenescence and immunogenetics of human longevity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVeqsr3I&md5=bb26c8ea81eb70d911bf71ce39454b7aCAS |

[34]  Trzonkowski P, Mysliwska J, Szmit E, Wieckiewicz J, Lukaszuk K, Brydak LB, et al Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination – an impact of immunosenescence. Vaccine 2003; 21 3826–36.
Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination – an impact of immunosenescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1Gkurw%3D&md5=c8c7042ca112b9f1bbfe8c197178421aCAS |

[35]  Webster A, Lee CA, Cook DG, Grundy JE, Emery VC, Kernoff PB, et al Cytomegalovirus infection and progression towards AIDS in haemophiliacs with human immunodeficiency virus infection. Lancet 1989; 334 63–6.
Cytomegalovirus infection and progression towards AIDS in haemophiliacs with human immunodeficiency virus infection.Crossref | GoogleScholarGoogle Scholar |

[36]  Griffiths PD. Studies of viral co-factors for human immunodeficiency virus in vitro and in vivo. J Gen Virol 1998; 79 213–20.
| 1:CAS:528:DyaK1cXotVCntA%3D%3D&md5=3d6f060b613968d7e4181c5d3ccdb51eCAS |

[37]  van de Berg PJ, Griffiths SJ, Yong SL, Macaulay R, Bemelman FJ, Jackson S, et al Cytomegalovirus infection reduces telomere length of the circulating T cell pool. J Immunol 2010; 184 3417–23.
Cytomegalovirus infection reduces telomere length of the circulating T cell pool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Wrtrc%3D&md5=7f596772bec17ce6f7c6ad8ee8b09f49CAS |

[38]  Hoare M, Gelson WT, Das A, Fletcher JM, Davies SE, Curran MD, et al CD4+ T-lymphocyte telomere length is related to fibrosis stage, clinical outcome and treatment response in chronic hepatitis C virus infection. J Hepatol 2010; 53 252–60.
CD4+ T-lymphocyte telomere length is related to fibrosis stage, clinical outcome and treatment response in chronic hepatitis C virus infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVGrsLc%3D&md5=9269106816f9ae8cfb50e11725fa0026CAS |

[39]  Kitay-Cohen Y, Goldberg-Bittman L, Hadary R, Fejgin MD, Amiel A. Telomere length in hepatitis C. Cancer Genet Cytogenet 2008; 187 34–8.
Telomere length in hepatitis C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGgsLfM&md5=39c4e8b89f69002e52da316c72902682CAS |

[40]  Villanueva JL, Solana R, Alonso MC, Pena J. Changes in the expression of HLA-class II antigens on peripheral blood monocytes from aged humans. Dis Markers 1990; 2 85–91.

[41]  Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol 2010; 11 30
Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults.Crossref | GoogleScholarGoogle Scholar |

[42]  Nyugen J, Agrawal S, Gollapudi S, Gupta S. Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol 2010; 30 806–13.
Impaired functions of peripheral blood monocyte subpopulations in aged humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyrsrrF&md5=710bcddee8d784ed9a8e7695241484c1CAS |

[43]  Ancuta P, Kamat A, Kunstman KJ, Kim EY, Autissier P, Wurcel A, et al Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS ONE 2008; 3 e2516
Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients.Crossref | GoogleScholarGoogle Scholar |

[44]  Thieblemont N, Weiss L, Sadeghi HM, Estcourt C, Haeffner-Cavaillon N. CD14llow CD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection. Eur J Immunol 1995; 25 3418–24.
CD14llow CD16high: a cytokine-producing monocyte subset which expands during human immunodeficiency virus infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVCrsA%3D%3D&md5=d77ecdc5293110c6fd3f833abccb67d9CAS |

[45]  Jaworowski A, Ellery P, Maslin CL, Naim E, Heinlein AC, Ryan CE, et al Normal CD16 expression and phagocytosis of Mycobacterium avium complex by monocytes from a current cohort of HIV-1-infected patients. J Infect Dis 2006; 193 693–7.
Normal CD16 expression and phagocytosis of Mycobacterium avium complex by monocytes from a current cohort of HIV-1-infected patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitF2htL0%3D&md5=e19c447ab50e58fd2ca064897c1498cbCAS |

[46]  Gomez CR, Nomellini V, Faunce DE, Kovacs EJ. Innate immunity and aging. Exp Gerontol 2008; 43 718–28.
Innate immunity and aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVGku7Y%3D&md5=cc04aee0014e92367b7fd598d5730f03CAS |

[47]  Jaworowski A, Crowe S. Mechanisms of HIV impairment of phagocytosis by monocytes and macrophages. In: Herbein G, editor. Macrophage and HIV infection. Kerala: Transworld Research Network; 2007. pp. 159–82.

[48]  Kedzierska K, Azzam R, Ellery P, Mak J, Jaworowski A, Crowe SM. Defective phagocytosis by human monocyte/macrophages following HIV-1 infection: underlying mechanisms and modulation by adjunctive cytokine therapy. J Clin Virol 2003; 26 247–63.
Defective phagocytosis by human monocyte/macrophages following HIV-1 infection: underlying mechanisms and modulation by adjunctive cytokine therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsValsb4%3D&md5=7f490bfdeef27efeeddcc57ae5e73ac0CAS |

[49]  Kedzierska K, Churchill M, Maslin CL, Azzam R, Ellery P, Chan HT, et al Phagocytic efficiency of monocytes and macrophages obtained from Sydney blood bank cohort members infected with an attenuated strain of HIV-1. J Acquir Immune Defic Syndr 2003; 34 445–53.
Phagocytic efficiency of monocytes and macrophages obtained from Sydney blood bank cohort members infected with an attenuated strain of HIV-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1GmsL8%3D&md5=4185f2ede44a3e3bb315aa0e90196decCAS |

[50]  Crowe SM, Vardaxis NJ, Kent SJ, Maerz AL, Hewish MJ, McGrath MS, et al HIV infection of monocyte-derived macrophages in vitro reduces phagocytosis of Candida albicans. J Leukoc Biol 1994; 3 318–27.

[51]  Biggs BA, Hewish M, Kent S, Hayes K, Crowe SM. HIV-1 infection of human macrophages impairs phagocytosis and killing of Toxoplasma gondii. J Immunol 1995; 11 6132–9.

[52]  Kedzierska K, Mak J, Mijch A, Cooke I, Rainbird M, Roberts S, et al Granulocyte-macrophage colony-stimulating factor augments phagocytosis of Mycobacterium avium complex by human immunodeficiency virus type 1-infected monocytes/macrophages in vitro and in vivo. J Infect Dis 2000; 181 390–4.
Granulocyte-macrophage colony-stimulating factor augments phagocytosis of Mycobacterium avium complex by human immunodeficiency virus type 1-infected monocytes/macrophages in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslansQ%3D%3D&md5=a2379db37a79686dd8abb9aab8498049CAS |

[53]  Kedzierska K, Ellery P, Mak J, Lewin SR, Crowe SM, Jaworowski A. HIV-1 down-modulates gamma signaling chain of Fc gamma R in human macrophages: a possible mechanism for inhibition of phagocytosis. J Immunol 2002; 6 2895–903.

[54]  Azzam R, Lal L, Goh SL, Kedzierska K, Jaworowski A, Naim E, et al Adverse effects of antiretroviral drugs on HIV-1-infected and -uninfected human monocyte-derived macrophages. J AIDS 2006; 1 19–28.

[55]  Hasegawa Y, Sawada M, Ozaki N, Inagaki T, Suzumura A. Increased soluble tumor necrosis factor receptor levels in the serum of elderly people. Gerontology 2000; 46 185–8.
Increased soluble tumor necrosis factor receptor levels in the serum of elderly people.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsV2lsbw%3D&md5=e07cbdc9afb2b6f077c156f3b4448b17CAS |

[56]  Shurin GV, Yurkovetsky ZR, Chatta GS, Tourkova IL, Shurin MR, Lokshin AE. Dynamic alteration of soluble serum biomarkers in healthy aging. Cytokine 2007; 39 123–9.
Dynamic alteration of soluble serum biomarkers in healthy aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFekurnP&md5=af2b3320c28a11f091521af7d86f6299CAS |

[57]  Jenny NS, Tracy RP, Ogg MS, Luong Le A, Kuller LH, Arnold AM, et al In the elderly, interleukin-6 plasma levels and the -174G>C polymorphism are associated with the development of cardiovascular disease. Arterioscler Thromb Vasc Biol 2002; 22 2066–71.
In the elderly, interleukin-6 plasma levels and the -174G>C polymorphism are associated with the development of cardiovascular disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1Chsr4%3D&md5=81ec02a416bd891c7a6a120fecd4f6d7CAS |

[58]  Breen EC, Rezai AR, Nakajima K, Beall GN, Mitsuyasu RT, Hirano T, et al Infection with HIV is associated with elevated IL-6 levels and production. J Immunol 1990; 2 480–4.

[59]  Godfried MH, van der Poll T, Jansen J, Romijin JA, Schattenkerk JK, Endert E, et al Soluble receptors for tumour necrosis factor: a putative marker of disease progression in HIV infection. AIDS 1993; 7 33–6.
Soluble receptors for tumour necrosis factor: a putative marker of disease progression in HIV infection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s7otlCgsw%3D%3D&md5=684b6662b14c2fc961494f14ce74462bCAS |

[60]  Zangerle R, Fuchs D, Sarcletti M, Gallati H, Reibnegger G, Wachter H, et al Increased concentrations of soluble tumor necrosis factor receptor 75 but not of soluble intercellular adhesion molecule-1 are associated with the decline of CD4+ lymphocytes in HIV infection. Clin Immunol Immunopathol 1994; 72 328–34.
Increased concentrations of soluble tumor necrosis factor receptor 75 but not of soluble intercellular adhesion molecule-1 are associated with the decline of CD4+ lymphocytes in HIV infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1ymurc%3D&md5=5326f0540ddbafebdd0f0f4e8d184124CAS |

[61]  French MA, King MS, Tschampa JM, da Silva BA, Landay AL. Serum immune activation markers are persistently increased in patients with HIV infection after 6 years of antiretroviral therapy despite suppression of viral replication and reconstitution of CD4+ T cells. J Infect Dis 2009; 200 1212–5.
Serum immune activation markers are persistently increased in patients with HIV infection after 6 years of antiretroviral therapy despite suppression of viral replication and reconstitution of CD4+ T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyqs7fE&md5=f6bab5fd3fc9ef932900b6ae1a2ef4dbCAS |

[62]  Mariani E, Pulsatelli L, Neri S, Dolzani P, Meneghetti A, Silvestri T, et al RANTES and MIP-1alpha production by T lymphocytes, monocytes and NK cells from nonagenarian subjects. Exp Gerontol 2002; 37 219–26.
RANTES and MIP-1alpha production by T lymphocytes, monocytes and NK cells from nonagenarian subjects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlCm&md5=91e187cbb987686b958f99c33de28a31CAS |

[63]  Delpedro AD, Barjavel MJ, Mamdouh Z, Faure S, Bakouche O. Signal transduction in LPS-activated aged and young monocytes. J Interferon Cytokine Res 1998; 18 429–37.
Signal transduction in LPS-activated aged and young monocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktVemu7c%3D&md5=92158445a7b8877826b4671f8ac55e05CAS |

[64]  Gon Y, Hashimoto S, Hayashi S, Koura T, Matsumoto K, Horie T. Lower serum concentrations of cytokines in elderly patients with pneumonia and the impaired production of cytokines by peripheral blood monocytes in the elderly. Clin Exp Immunol 1996; 1 120–6.

[65]  Hu PF, Hultin LE, Hultin P, Hausner MA, Hirji K, Jewett A, et al Natural killer cell immunodeficiency in HIV disease is manifest by profoundly decreased numbers of CD16+ CD56+ cells and expansion of a population of CD16dim CD56- cells with low lytic activity. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 3 331–40.

[66]  Jacobs R, Hintzen G, Kemper A, Beul K, Kempf S, Behrens G, et al CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol 2001; 31 3121–6.
CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFSgur8%3D&md5=afe036ee91d6385fe420c1dfc4b79332CAS |

[67]  Frey M, Packianathan NB, Fehniger TA, Ross ME, Wang WC, Stewart CC, et al Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets. J Immunol 1998; 1 400–8.

[68]  Jiao Y, Qiu Z, Xie J, Li D, Li T. Reference ranges and age-related changes of peripheral blood lymphocyte subsets in Chinese healthy adults. Sci China C Life Sci 2009; 7 643–50.

[69]  Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, et al NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol 1999; 34 253–65.
NK phenotypic markers and IL2 response in NK cells from elderly people.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisV2qurw%3D&md5=7ca7fa4a794724b5933b1da427311bbdCAS |

[70]  Hayhoe RP, Henson SM, Akbar AN, Palmer DB. Variation of human natural killer cell phenotypes with age: identification of a unique KLRG1-negative subset. Hum Immunol 2010; 71 676–81.
Variation of human natural killer cell phenotypes with age: identification of a unique KLRG1-negative subset.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVeltL4%3D&md5=3c358ba5040871b28f402d034ae0deb3CAS |

[71]  Chidrawar SM, Khan N, Chan YL, Nayak L, Moss PA. Ageing is associated with a decline in peripheral blood CD56bright NK cells. Immun Ageing 2006; 3 10
Ageing is associated with a decline in peripheral blood CD56bright NK cells.Crossref | GoogleScholarGoogle Scholar |

[72]  Hong HS, Eberhard JM, Keudel P, Bollmann BA, Ballmaier M, Bhatnagar N, et al HIV infection is associated with a preferential decline in less-differentiated CD56dim CD16+ NK cells. J Virology 2010; 2 1183–8.

[73]  Bjorkstrom NK, Ljunggren HG, Sandberg JK. CD56 negative NK cells: origin, function, and role in chronic viral disease. Trends Immunol 2010; 73 401–6.
CD56 negative NK cells: origin, function, and role in chronic viral disease.Crossref | GoogleScholarGoogle Scholar |

[74]  Ogata K, Yokose N, Tamura H, An E, Nakamura K, Dan K, et al Natural killer cells in the late decades of human life. Clin Immunol Immunopathol 1997; 84 269–75.
Natural killer cells in the late decades of human life.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2svivVansg%3D%3D&md5=b9d2e8173fc15880debf3d9d6afd3bb1CAS |

[75]  Ogata K, An E, Shioi Y, Nakamura K, Luo S, Yokose N, et al Association between natural killer cell activity and infection in immunologically normal elderly people. Clin Exp Immunol 2001; 124 392–7.
Association between natural killer cell activity and infection in immunologically normal elderly people.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvisFSqtw%3D%3D&md5=7c6b7f1c7b397b9e385e2bfba1b3dd5cCAS |

[76]  Lichtfuss GF, Meehan AC, Cheng WJ, Cameron PU, Lewin SR, Crowe SM, et al HIV inhibits early signal transduction events triggered by CD16 cross-linking on NK cells, which are important for antibody-dependent cellular cytotoxicity. J Leukoc Biol 2011; 89 149–58.
HIV inhibits early signal transduction events triggered by CD16 cross-linking on NK cells, which are important for antibody-dependent cellular cytotoxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2rur4%3D&md5=fb68959ff81b86c18f12fd8f37a23b79CAS |

[77]  Della Bella S, Bierti L, Presicce P, Arienti R, Valenti M, Saresella M, et al Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol 2007; 122 220–8.
Peripheral blood dendritic cells and monocytes are differently regulated in the elderly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFWguw%3D%3D&md5=8a490530bc3fd5e0f45da76403ae1b4fCAS |

[78]  Martinson JA, Roman-Gonzalez A, Tenorio AR, Montoya CJ, Gichinga CN, Rugeles MT, et al Dendritic cells from HIV-1 infected individuals are less responsive to toll-like receptor (TLR) ligands. Cell Immunol 2007; 250 75–84.
Dendritic cells from HIV-1 infected individuals are less responsive to toll-like receptor (TLR) ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVCntrc%3D&md5=7dad01004ed6a73c9da09f70084c2c60CAS |

[79]  Panda A, Qian F, Mohanty S, van Duin D, Newman FK, Zhang L, et al Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol 2010; 184 2518–27.
Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitV2ksbw%3D&md5=bb602484d34e6ca798fb7a318f75a7f8CAS |

[80]  Shodell M, Siegal FP. Circulating, interferon-producing plasmacytoid dendritic cells decline during human ageing. Scand J Immunol 2002; 56 518–21.
Circulating, interferon-producing plasmacytoid dendritic cells decline during human ageing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVWjsbs%3D&md5=cf4ef1beee4113012958b095cbcd40d0CAS |

[81]  Lehmann C, Harper JM, Taubert D, Hartmann P, Fatkenheuer G, Jung N, et al Increased interferon alpha expression in circulating plasmacytoid dendritic cells of HIV-1-infected patients. J Acquir Immune Defic Syndr 2008; 48 522–30.
Increased interferon alpha expression in circulating plasmacytoid dendritic cells of HIV-1-infected patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptFSmtb0%3D&md5=f09770548806f24d4bee4a33af47b57aCAS |

[82]  Martinson JA, Tenorio AR, Montoya CJ, Al-Harthi L, Gichinga CN, Krieg AM, et al Impact of class A, B and C CpG-oligodeoxynucleotides on in vitro activation of innate immune cells in human immunodeficiency virus-1 infected individuals. Immunology 2007; 120 526–35.
Impact of class A, B and C CpG-oligodeoxynucleotides on in vitro activation of innate immune cells in human immunodeficiency virus-1 infected individuals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVOmtLc%3D&md5=0548c8d24b3e6b60b65befde2f421a59CAS |

[83]  Nowroozalizadeh S, Mansson F, da Silva Z, Repits J, Dabo B, Pereira C, et al Studies on toll-like receptor stimuli responsiveness in HIV-1 and HIV-2 infections. Cytokine 2009; 46 325–31.
Studies on toll-like receptor stimuli responsiveness in HIV-1 and HIV-2 infections.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVCju70%3D&md5=67cfa34ea56112816b5bab254b09c8f6CAS |

[84]  Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, et al Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 2009; 30 325–33.
Human innate immunosenescence: causes and consequences for immunity in old age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotF2gtrk%3D&md5=18fdc7bfeff6c67ed2f7e6839cd8f356CAS |

[85]  Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Curr Opin Immunol 2010; 22 507–13.
Aging of the innate immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVersbjI&md5=7b6e84c35300889e02a915c7f5d0b826CAS |

[86]  Fortin CF, McDonald PP, Lesur O, Fulop T. Aging and neutrophils: there is still much to do. Rejuvenation Res 2008; 11 873–82.
Aging and neutrophils: there is still much to do.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yntrfO&md5=ae96b99ebd1835f601b6cfda92fa3fc3CAS |

[87]  Wenisch C, Patruta S, Daxbock F, Krause R, Horl W. Effect of age on human neutrophil function. J Leukoc Biol 2000; 1 40–5.

[88]  Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, et al Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 2001; 6 881–6.

[89]  Tortorella C, Simone O, Piazzolla G, Stella I, Antonaci S. Age-related impairment of GM-CSF-induced signalling in neutrophils: role of SHP-1 and SOCS proteins. Ageing Res Rev 2007; 6 81–93.
Age-related impairment of GM-CSF-induced signalling in neutrophils: role of SHP-1 and SOCS proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslOmu7g%3D&md5=e74807ce88fc7719445979dcc3cfaccaCAS |

[90]  Meddows-Taylor S, Pendle S, Tiemessen CT. Altered expression of CD88 and associated impairment of complement 5a-induced neutrophil responses in human immunodeficiency virus type 1-infected patients with and without pulmonary tuberculosis. J Infect Dis 2001; 183 662–5.
Altered expression of CD88 and associated impairment of complement 5a-induced neutrophil responses in human immunodeficiency virus type 1-infected patients with and without pulmonary tuberculosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVWrtbk%3D&md5=97db72aeb8aa2ad3a463f19a07606c81CAS |

[91]  Roilides E, Walsh TJ, Pizzo PA, Rubin M. Granulocyte colony-stimulating factor enhances the phagocytic and bactericidal activity of normal and defective human neutrophils. J Infect Dis 1991; 163 579–83.
Granulocyte colony-stimulating factor enhances the phagocytic and bactericidal activity of normal and defective human neutrophils.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M7ktVShtA%3D%3D&md5=0205325e0bbe3f12c0e20a0bddd0e9bbCAS |

[92]  Ellis M, Gupta S, Galant S, Hakim S, VandeVen C, Toy C, et al Impaired neutrophil function in patients with AIDS or AIDS-related complex: a comprehensive evaluation. J Infect Dis 1988; 158 1268–76.
Impaired neutrophil function in patients with AIDS or AIDS-related complex: a comprehensive evaluation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M%2FmslGltw%3D%3D&md5=b83ab2ad3472ade064eec3ae078a6b48CAS |

[93]  Heit B, Jones G, Knight D, Antony JM, Gill MJ, Brown C, et al HIV and other lentiviral infections cause defects in neutrophil chemotaxis, recruitment, and cell structure: immunorestorative effects of granulocyte-macrophage colony-stimulating factor. J Immunol 2006; 9 6405–14.

[94]  Noursadeghi M, Katz DR, Miller RF. HIV-1 infection of mononuclear phagocytic cells: the case for bacterial innate immune deficiency in AIDS. Lancet Infect Dis 2006; 6 794–804.
HIV-1 infection of mononuclear phagocytic cells: the case for bacterial innate immune deficiency in AIDS.Crossref | GoogleScholarGoogle Scholar |

[95]  Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 2000; 908 244–54.
| 1:STN:280:DC%2BD3czpvF2qsw%3D%3D&md5=7c87b80519d68e01417ae790fcbcee2eCAS |

[96]  Hunt PW, Martin JN, Sinclair E, Bredt B, Hagos E, Lampiris H, et al T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J Infect Dis 2003; 187 1534–43.
T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFeisLY%3D&md5=c11c2d9fbfe419477056f596bee57de7CAS |

[97]  Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 2006; 12 1365–71.
Microbial translocation is a cause of systemic immune activation in chronic HIV infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OntbnK&md5=7e8b07d2c3ac4ffdb719bd3c9b567224CAS |

[98]  Douek D. HIV disease progression: immune activation, microbes, and a leaky gut. Top HIV Med 2007; 4 114–7.

[99]  Medvedev AE, Piao W, Shoenfelt J, Rhee SH, Chen H, Basu S, et al Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J Biol Chem 2007; 282 16042–53.
Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVajsL8%3D&md5=26dde04ddc4209e11539549657f2d624CAS |

[100]  Boehmer ED, Goral J, Faunce DE, Kovacs EJ. Age-dependent decrease in Toll-like receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein kinase expression. J Leukoc Biol 2004; 2 342–9.

[101]  Lester RT, Yao XD, Ball TB, McKinnon LR, Omange WR, Kaul R, et al HIV-1 RNA dysregulates the natural TLR response to subclinical endotoxemia in Kenyan female sex-workers. PLoS ONE 2009; 4 e5644
HIV-1 RNA dysregulates the natural TLR response to subclinical endotoxemia in Kenyan female sex-workers.Crossref | GoogleScholarGoogle Scholar |

[102]  Mureith MW, Chang JJ, Lifson JD, Ndung’u T, Altfeld M. Exposure to HIV-1-encoded Toll-like receptor 8 ligands enhances monocyte response to microbial encoded Toll-like receptor 2/4 ligands. AIDS 2010; 24 1841–8.
Exposure to HIV-1-encoded Toll-like receptor 8 ligands enhances monocyte response to microbial encoded Toll-like receptor 2/4 ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Wqtrg%3D&md5=c76ffe4134a52ce18f828ce303af116bCAS |

[103]  Wiesner P, Choi SH, Almazan F, Benner C, Huang W, Diehl CJ, et al Low doses of lipopolysaccharide and minimally oxidized low-density lipoprotein cooperatively activate macrophages via nuclear factor kappa B and activator protein-1: possible mechanism for acceleration of atherosclerosis by subclinical endotoxemia. Circ Res 2010; 107 56–65.
Low doses of lipopolysaccharide and minimally oxidized low-density lipoprotein cooperatively activate macrophages via nuclear factor kappa B and activator protein-1: possible mechanism for acceleration of atherosclerosis by subclinical endotoxemia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosV2hsL8%3D&md5=2f20867025af3c371f7baa24c513937dCAS |

[104]  Nowroozalizadeh S, Mansson F, da Silva Z, Repits J, Dabo B, Pereira C, et al Microbial translocation correlates with the severity of both HIV-1 and HIV-2 infections. J Infect Dis 2010; 201 1150–4.
Microbial translocation correlates with the severity of both HIV-1 and HIV-2 infections.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltlertb8%3D&md5=d687c1366b63c15c3450f223004aea8dCAS |

[105]  Jiang W, Lederman MM, Hunt P, Sieg SF, Haley K, Rodriguez B, et al Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis 2009; 199 1177–85.
Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVOms7c%3D&md5=79434dabc3c839659ce2cfd36fdd0cbeCAS |

[106]  Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408 239–47.
Oxidants, oxidative stress and the biology of ageing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFGltb0%3D&md5=693b8e3c6722e325b8d205299dd1dc91CAS |

[107]  Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov 2009; 3 73–80.
Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1ChsL0%3D&md5=ffdceeaa0d9033d4c2f9899ae2b74760CAS |

[108]  De la Fuente M, Miquel J. An update of the oxidation–inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 2009; 15 3003–26.
An update of the oxidation–inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvVyntrs%3D&md5=778064f78b73a2ac3062e0f01734bff3CAS |

[109]  Maitra U, Singh N, Gan L, Ringwood L, Li L. IRAK-1 contributes to lipopolysaccharide-induced reactive oxygen species generation in macrophages by inducing NOX-1 transcription and Rac1 activation and suppressing the expression of antioxidative enzymes. J Biol Chem 2009; 284 35403–11.
IRAK-1 contributes to lipopolysaccharide-induced reactive oxygen species generation in macrophages by inducing NOX-1 transcription and Rac1 activation and suppressing the expression of antioxidative enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCqurjP&md5=5acfdfe17b4bc2b129577c019e558f08CAS |

[110]  Gil L, Martinez G, Gonzalez I, Tarinas A, Alvarez A, Giuliani A, et al Contribution to characterization of oxidative stress in HIV/AIDS patients. Pharmacol Res 2003; 47 217–24.
Contribution to characterization of oxidative stress in HIV/AIDS patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Gis74%3D&md5=4b2c09a11e73d7c6c793287fa12285f8CAS |

[111]  Wanchu A, Rana SV, Pallikkuth S, Sachdeva RK. Short communication: oxidative stress in HIV-infected individuals: a cross-sectional study. AIDS Res Hum Retroviruses 2009; 25 1307–11.
Short communication: oxidative stress in HIV-infected individuals: a cross-sectional study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSjuw%3D%3D&md5=ea8c28f8a1175954ffed69e23678ebffCAS |

[112]  Mandas A, Iorio EL, Congiu MG, Balestrieri C, Mereu A, Cau D, et al Oxidative imbalance in HIV-1 infected patients treated with antiretroviral therapy. J Biomed Biotechnol 2009; 2009 749575

[113]  Coaccioli S, Crapa G, Fantera M, Del Giorno R, Lavagna A, Standoli ML, et al Oxidant/antioxidant status in patients with chronic HIV infection. Clin Ter 2010; 1 55–8.

[114]  Lagathu C, Eustace B, Prot M, Frantz D, Gu Y, Bastard JP, et al Some HIV antiretrovirals increase oxidative stress and alter chemokine, cytokine or adiponectin production in human adipocytes and macrophages. Antivir Ther 2007; 4 489–500.

[115]  Caron M, Auclairt M, Vissian A, Vigouroux C, Capeau J. Contribution of mitochondrial dysfunction and oxidative stress to cellular premature senescence induced by antiretroviral thymidine analogues. Antivir Ther 2008; 1 27–38.

[116]  Jiang B, Hebert VY, Li Y, Mathis JM, Alexander JS, Dugas TR. HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis. Toxicol Appl Pharmacol 2007; 224 60–71.
HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOgu7fJ&md5=dca47488ab1bd7d5b5cfab5829138f00CAS |

[117]  Masia M, Padilla S, Bernal E, Almenar MV, Molina J, Hernandez I, et al Influence of antiretroviral therapy on oxidative stress and cardiovascular risk: a prospective cross-sectional study in HIV-infected patients. Clin Ther 2007; 29 1448–55.
Influence of antiretroviral therapy on oxidative stress and cardiovascular risk: a prospective cross-sectional study in HIV-infected patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVemurjF&md5=b3cf8ccb24e1d7f4ddaf3140854a9df6CAS |

[118]  Rickabaugh TM, Kilpatrick RD, Hultin LE, Hultin PM, Hausner MA, Sugar CA, et al The dual impact of HIV-1 infection and aging on naive CD4 T-cells: additive and distinct patterns of impairment. PLoS ONE 2011; 1 e16459

[119]  Pommier JP, Gauthier L, Livartowski J, Galanaud P, Boue F, Dulioust A, et al Immunosenescence in HIV pathogenesis. Virology 1997; 231 148–54.
Immunosenescence in HIV pathogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVOgs7k%3D&md5=35d8dfb171081b0e0a4c103abf3026d0CAS |

[120]  Ouyang Q, Baerlocher G, Vulto I, Lansdorp PM. Telomere length in human natural killer cell subsets. Ann N Y Acad Sci 2007; 1106 240–52.
Telomere length in human natural killer cell subsets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1yku78%3D&md5=3516f4386a8b4ac86507a00cb631f156CAS |

[121]  Ballon G, Ometto L, Righetti E, Cattelan AM, Masiero S, Zanchetta M, et al Human immunodeficiency virus type 1 modulates telomerase activity in peripheral blood lymphocytes. J Infect Dis 2001; 183 417–24.
Human immunodeficiency virus type 1 modulates telomerase activity in peripheral blood lymphocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtVarsLk%3D&md5=9bb5a4d8dceb8c9191aa112e80957e73CAS |

[122]  Vignoli M, Stecca B, Furlini G, Re MC, Mantovani V, Zauli G, et al Impaired telomerase activity in uninfected haematopoietic progenitors in HIV-1-infected patients. AIDS 1998; 12 999–1005.
Impaired telomerase activity in uninfected haematopoietic progenitors in HIV-1-infected patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksFemtLg%3D&md5=b164ad94f85f36a73f68befa6963cbccCAS |

[123]  Havlir DV, Strain MC, Clerici M, Ignacio C, Trabattoni D, Ferrante P, et al Productive infection maintains a dynamic steady state of residual viremia in human immunodeficiency virus type 1-infected persons treated with suppressive antiretroviral therapy for five years. J Virol 2003; 77 11212–9.
Productive infection maintains a dynamic steady state of residual viremia in human immunodeficiency virus type 1-infected persons treated with suppressive antiretroviral therapy for five years.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFOgu7k%3D&md5=d5b62cb5f635aefdb09da2594946aa5dCAS |

[124]  Palmer S, Maldarelli F, Wiegand A, Bernstein B, Hanna GJ, Brun SC, et al Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci USA 2008; 105 3879–84.
Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslSiur0%3D&md5=09c968c72f918fc82467f9e1e12e916eCAS |

[125]  Buzon MJ, Massanella M, Llibre JM, Esteve A, Dahl V, Puertas MC, et al HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 2010; 125 460–5.
HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects.Crossref | GoogleScholarGoogle Scholar |

[126]  Cara A, Klotman ME. Retroviral E-DNA: persistence and gene expression in nondividing immune cells. J Leukoc Biol 2006; 80 1013–7.
Retroviral E-DNA: persistence and gene expression in nondividing immune cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOktrfM&md5=d8c642a1aa95e3cdc79cc09247400bd3CAS |

[127]  Gillim-Ross L, Cara A, Klotman ME. HIV-1 extrachromosomal 2-LTR circular DNA is long-lived in human macrophages. Viral Immunol 2005; 18 190–6.
HIV-1 extrachromosomal 2-LTR circular DNA is long-lived in human macrophages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisl2rt7Y%3D&md5=42c954780e7839c962e868c957c92cedCAS |

[128]  Kelly J, Beddall MH, Yu D, Iyer SR, Marsh JW, Wu Y. Human macrophages support persistent transcription from unintegrated HIV-1 DNA. Virology 2008; 372 300–12.
Human macrophages support persistent transcription from unintegrated HIV-1 DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVWiur4%3D&md5=fcd1f69d2801bb69daec07b8f7a32078CAS |

[129]  Wu Y, Marsh JW. Early transcription from nonintegrated DNA in human immunodeficiency virus infection. J Virol 2003; 77 10376–82.
Early transcription from nonintegrated DNA in human immunodeficiency virus infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFymsb4%3D&md5=7651c5896f9031b0f2f5f358ba6d3622CAS |

[130]  Poon B, Chen IS. Human immunodeficiency virus type 1 (HIV-1) Vpr enhances expression from unintegrated HIV-1 DNA. J Virol 2003; 77 3962–72.
Human immunodeficiency virus type 1 (HIV-1) Vpr enhances expression from unintegrated HIV-1 DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVKkurc%3D&md5=b058d959b32f765fa5b166c5b65a5355CAS |

[131]  Wu Y, Marsh JW. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science 2001; 293 1503–6.
Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsVeqsLg%3D&md5=5149534a0b30b0d6b10e210786e02db9CAS |

[132]  Gillim-Ross L, Cara A, Klotman ME. Nef expressed from human immunodeficiency virus type 1 extrachromosomal DNA downregulates CD4 on primary CD4+ T lymphocytes: implications for integrase inhibitors. J Gen Virol 2005; 86 765–71.
Nef expressed from human immunodeficiency virus type 1 extrachromosomal DNA downregulates CD4 on primary CD4+ T lymphocytes: implications for integrase inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit12lt7s%3D&md5=3e1863f9ea53e5ff124f8ec2a6135285CAS |

[133]  Lin X, Irwin D, Kanazawa S, Huang L, Romeo J, Yen TS, et al Transcriptional profiles of latent human immunodeficiency virus in infected individuals: effects of Tat on the host and reservoir. J Virol 2003; 133 8227–36.
Transcriptional profiles of latent human immunodeficiency virus in infected individuals: effects of Tat on the host and reservoir.Crossref | GoogleScholarGoogle Scholar |

[134]  Yim HC, Li JC, Lau JS, Lau AS. HIV-1 Tat dysregulation of lipopolysaccharide-induced cytokine responses: microbial interactions in HIV infection. AIDS 2009; 23 1473–84.
HIV-1 Tat dysregulation of lipopolysaccharide-induced cytokine responses: microbial interactions in HIV infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVSgs7w%3D&md5=08d0775caae17082f5a77b21ca6f934bCAS |

[135]  Kwon HS, Brent MM, Getachew R, Jayakumar P, Chen LF, Schnolzer M, et al Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation. Cell Host Microbe 2008; 3 158–67.
Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVensr0%3D&md5=533f18b313a64348a24bdbb0e0b8080fCAS |

[136]  Doitsh G, Cavrois M, Lassen KG, Zepeda O, Yang Z, Santiago ML, et al Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 2010; 143 789–801.
| 1:CAS:528:DC%2BC3cXhsVygsLfP&md5=9836f7581de9a4b559bfde797d99100eCAS |

[137]  Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PloS ONE 2010; 5 e10667

[138]  Lehrman G, Hogue IB, Palmer S, Jennings C, Spina CA, Wiegand A, et al Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 2005; 366 549–55.
| 1:CAS:528:DC%2BD2MXns1Wgsrk%3D&md5=02dcd04b257d473ae5ab698e2d6aded2CAS |