Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Areas of endemism and environmental heterogeneity: a case study in Mexican legumes

Maribel Arenas-Navarro https://orcid.org/0000-0003-3540-8041 A B , Tania Escalante C , César Miguel-Talonia A , Ana Silva-Galicia A and Oswaldo Téllez-Valdés https://orcid.org/0000-0002-7449-378X D *
+ Author Affiliations
- Author Affiliations

A Unidad de Posgrado, Coordinación del Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Edificio D 1er piso, Ciudad Universitaria, Coyoacán, CP 04510, México City, México.

B Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Morelia, Michoacán, CP 58190, México.

C Grupo de Biogeografía de la Conservación, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, CP 04510, México City, México.

D Laboratorio de Recursos Naturales, UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, México.

* Correspondence to: tellez@unam.mx

Handling Editor: Malte Ebach

Australian Systematic Botany 36(1) 21-37 https://doi.org/10.1071/SB21037
Submitted: 15 December 2021  Accepted: 25 January 2023   Published: 22 February 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

Fabaceae is a monophyletic family comprising more than 22 000 species worldwide. In Mexico, it is the second-most species rich family, inhabiting multiple ecosystems with a high diversity of life forms. Our aims were to (1) identify areas of endemism (AEs) by using endemicity analysis at different cell sizes (1°, 0.5° and 0.25°) for 488 Mexican legumes, (2) describe the climatic and topographic heterogeneity of AE, (3) determine whether there is a positive relationship between AEs and climatic and topographic heterogeneity and (4) examine the conservation status of legumes that defined the AEs. We found six general AEs, supported by 63 species, with endemicity index values ranging from 2.05 to 6.86. These general areas had zones where biogeographical provinces intersected and exhibited a higher environmental heterogeneity. Areas detected at 1° showed a positive relationship between endemicity index and environmental heterogeneity. Legume species currently lack legal protection in Mexico, 69% of the endemic species do not have an evaluation category according to the International Union for Conservation of Nature, and eight species are in some risk category. Future conservation efforts should focus on protecting endemism areas from accomplishing representative natural protected areas.

Keywords: climatic heterogeneity, conservation status, endemicity analysis, endemicity index, Fabaceae, Mexico, natural protected areas, topographic heterogeneity.


References

Aagesen L, Szumik CA, Zuloaga FO, Morrone O (2009) Quantitative biogeography in the South America highlands recognizing the Altoandina, Puna and Prepuna through the study of Poaceae. Cladistics 25, 295–310.
Quantitative biogeography in the South America highlands recognizing the Altoandina, Puna and Prepuna through the study of Poaceae.Crossref | GoogleScholarGoogle Scholar |

Aagesen L, Szumik C, Goloboff P (2013) Consensus in the search for areas of endemism. Journal of Biogeography 40, 2011–2016.
Consensus in the search for areas of endemism.Crossref | GoogleScholarGoogle Scholar |

Alvez-Valles CM, Balslev H, Carvalho FA, Garcia-Villacorta R, Grandez C, Neto LM (2018) Endemism and conservation of Amazon palms. Biodiversity and Conservation 27, 765–784.
Endemism and conservation of Amazon palms.Crossref | GoogleScholarGoogle Scholar |

Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, Muellner-Riehl AN, Kreft H, Linder HP, Badgley C, Fjeldså J, Fritz SA, Rahbek C, Herman F, Hooghiemstra H, Hoorn C (2018) Geological and climatic influences on mountain biodiversity. Nature Geoscience 11, 718–725.
Geological and climatic influences on mountain biodiversity.Crossref | GoogleScholarGoogle Scholar |

Aragón-Parada J, Rodríguez A, Munguía-Lino G, De-Nova JA, Salinas-Rodríguez MM, Carrillo-Reyes P (2021) Endemic vascular plants of the Sierra Madre del Sur, Mexico. Botanical Sciences 99, 643–660.
Endemic vascular plants of the Sierra Madre del Sur, Mexico.Crossref | GoogleScholarGoogle Scholar |

Arenas-Navarro M, Téllez-Valdés O, López-Segoviano G, Murguía-Romero M, Tello JS (2019) Environmental correlates of Leguminosae species richness in Mexico: quantifying the contributions of energy and environmental seasonality. (Dryad) [Dataset].
| Crossref |

Arenas-Navarro M, Téllez-Valdés O, López-Segoviano G, Murguía-Romero M, Tello JS (2020a) Environmental correlates of Leguminosae species richness in Mexico: quantifying the contributions of energy and environmental seasonality. Biotropica 52, 70–80.
Environmental correlates of Leguminosae species richness in Mexico: quantifying the contributions of energy and environmental seasonality.Crossref | GoogleScholarGoogle Scholar |

Arenas-Navarro M, García-Oliva F, Torres-Miranda A, Téllez-Valdés O, Oyama K (2020b) Environmental filters determine the distribution of tree species in a threatened biodiversity hotspot in western Mexico. Botanical Sciences 98, 219–237.
Environmental filters determine the distribution of tree species in a threatened biodiversity hotspot in western Mexico.Crossref | GoogleScholarGoogle Scholar |

Arriaga L, Aguilar C, Espinosa D, Jiménez R (1997) ‘Regionalización ecológica y biogeográfica de México.’ [‘Ecological and biogeographic regionalization of Mexico.’] (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) [In Spanish]

Azani N, Babineau M, Bailey CD, Banks H, Barbosa AR, Pinto RB, Boatwright JS, Borges LM, Brown GK, Bruneau A, Candido E, Cardoso D, Chung K, Clark RP, Conceição AdS, Crisp M, Cubas P, Delgado-Salinas A, Dexter KG, Doyle JJ, Duminil J, Egan AN, de la Estrella M, Falcão MJ, Filatov DA, Fortuna-Perez AP, Fortunato RH, Gagnon E, Gasson P, Rando JG, de Azevedo Tozzi AMG, Gunn B, Harris D, Haston E, Hawkins JA, Herendeen PS, Hughes CE, Iganci JRV, Javadi F, Kanu SA, Kazempour-Osaloo S, Kite GC, Klitgaard BB, Kochanovski FJ, Koenen EJM, Kovar L, Lavin M, le Roux M, Lewis GP, de Lima HC, López-Roberts MC, Mackinder B, Maia VH, Malécot V, Mansano VF, Marazzi B, Mattapha S, Miller JT, Mitsuyuki C, Moura T, Murphy DJ, Nageswara-Rao M, Nevado B, Neves D, Ojeda DI, Pennington RT, Prado DE, Prenner G, de Queiroz LP, Ramos G, Filardi FLR, Ribeiro PG, de Lourdes Rico-Arce M, Sanderson MJ, Santos-Silva J, São-Mateus WMB, Silva MJS, Simon MF, Sinou C, Snak C, de Souza ÉR, Sprent J, Steele KP, Steier JE, Steeves R, Stirton CH, Tagane S, Torke BM, Toyama H, da Cruz DT, Vatanparast M, Wieringa JJ, Wink M, Wojciechowski MF, Yahara T, Yi T, Zimmerman E (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: the Legume Phylogeny Working Group (LPWG). Taxon 66, 44–77.
A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: the Legume Phylogeny Working Group (LPWG).Crossref | GoogleScholarGoogle Scholar |

Barajas-Barbosa MP, Weigelt P, Borregaard MK, Keppel G, Kreft H (2020) Environmental heterogeneity dynamics drive plant diversity on oceanic islands. Journal of Biogeography 47, 2248–2260.
Environmental heterogeneity dynamics drive plant diversity on oceanic islands.Crossref | GoogleScholarGoogle Scholar |

Barneby RC (1983) Dragma hippomanicum IX. A new Astragalus (Leguminosae: Astragalanae) from sandstone rim-rock in new México. Brittonia 35, 109–110.
Dragma hippomanicum IX. A new Astragalus (Leguminosae: Astragalanae) from sandstone rim-rock in new México.Crossref | GoogleScholarGoogle Scholar |

Bertelli S, Szumik C, Goloboff PA, Giannini NP, Navarro‐Sigüenza AG, Peterson AT, Cracraft J (2017) Mexican land birds reveal complexity in fine‐scale patterns of endemism. Journal of Biogeography 44, 1836–1846.
Mexican land birds reveal complexity in fine‐scale patterns of endemism.Crossref | GoogleScholarGoogle Scholar |

Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution 5, 694–700.
SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses.Crossref | GoogleScholarGoogle Scholar |

Bruchmann I, Hobohm C (2014) Factors that create and increase endemism. In ‘Endemism in vascular plants’. (Ed. C Hobohm) pp. 51–68. (Springer: Netherlands)

Carrillo-Reyes P, Sosa V, Mort ME (2009) Molecular phylogeny of the Acre clade (Crassulaceae): dealing with the lack of definitions for Echeveria and Sedum. Molecular Phylogenetics and Evolution 53, 267–276.
Molecular phylogeny of the Acre clade (Crassulaceae): dealing with the lack of definitions for Echeveria and Sedum.Crossref | GoogleScholarGoogle Scholar |

Casagranda MD, Lizarralde de Grosso M (2013) Areas of endemism: methodological and applied biogeographic contributions from South America. In ‘Current progress in biological research’. (Ed. M Silva-Opps) pp. 3–18. (Intech Open)

Casagranda MD, Roig-Juñent S, Szumik C (2009) Endemismo a diferentes escalas espaciales: un ejemplo con Carabidae (Coleoptera: Insecta) de América del Sur austral. Revista Chilena de Historia Natural 82, 17–42.
Endemismo a diferentes escalas espaciales: un ejemplo con Carabidae (Coleoptera: Insecta) de América del Sur austral.Crossref | GoogleScholarGoogle Scholar |

Cervantes ZY, Cornejo-Olgín SL, Lucero-Márquez R, Espinoza-Rodríguez JM, Miranda-Viquez E, Pineda-Velázquez A (1990) ‘Provincias Fisiográficas de México. Clasificación de Regiones Naturales de México II, IV.10.2. Atlas Nacional de México. Vol. II. Escala 1:4000000.’ [‘Physiographic Provinces of Mexico. Classification of Natural Regions of Mexico II, IV.10.2. National Atlas of Mexico. Vol II. Scale 1:4000000.’] (Instituto de Geografía, UNAM: México City, México) [In Spanish]

Cué-Bär E, Villaseñor JL, Morrone JJ, Ibarra-Manríquez G (2006) Identifying priority areas for conservation in Mexican tropical deciduous forest based on tree species. Interciencia 31, 712–719. ISSN 0378-1844.

Cuervo-Robayo AP, Téllez-Valdés O, Gómez-Albores MA, Venegas-Barrera CS, Manjarrez J, Martínez-Meyer E (2014) An update of high-resolution monthly climate surfaces for Mexico. International Journal of Climatology 34, 2427–2437.
An update of high-resolution monthly climate surfaces for Mexico.Crossref | GoogleScholarGoogle Scholar |

Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan JF, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O’Brien E, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7, 1121–1134.
Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness.Crossref | GoogleScholarGoogle Scholar |

Dávila P, Villaseñor JL, Medina RL, Ramírez AR, Salinas AT, Sánchez JK, Tenorio P (1993) ‘Listados florísticos de México: flora del Valle de Tehuacán–Cuicatlán, México.’ [‘Floristic lists of Mexico: flora of the Tehuacan–Cuicatlan Valley, Mexico.’] (Instituto de Biología, UNAM: México City, México) [In Spanish]

Dávila P, Arizmendi MDC, Valiente‐Banuet A, Villaseñor JL, Casas A, Lira R (2002) Biological diversity in the Tehuacán–Cuicatlán Valley, México. Biodiversity and Conservation 11, 421–442.
Biological diversity in the Tehuacán–Cuicatlán Valley, México.Crossref | GoogleScholarGoogle Scholar |

Delgado-Salinas A, Torres-Colín L, Luna-Cavazos M, Bye R (2021) Diversity of useful Mexican legumes: analyses of herbarium specimen records. Diversity 13, 267
Diversity of useful Mexican legumes: analyses of herbarium specimen records.Crossref | GoogleScholarGoogle Scholar |

De-Nova JA, Castillo-Lara P, Gudiño-Cano AK, García-Pérez J (2018) Flora endémica del estado de San Luis Potosí y regiones adyacentes en México. [Endemic flora of the state of San Luis Potosí and adjacent regions in Mexico.] Árido Ciencia 3, 21–41. [In Spanish]

Diario Oficial de la Federación (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010, protección ambiental-especies nativas de México de flora y fauna silvestres-categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-lista de especies en riesgo. [Official Mexican Norm NOM-059-SEMARNAT-2010, environmental protection – native species of Mexico of wild flora and fauna – risk categories and specifications for their inclusion, exclusion or change – list of species at risk.] (DOF: México City, México) Available at https://www.dof.gob.mx/normasOficiales/4254/semarnat/semarnat.htm [In Spanish]

Díaz-Castellanos A, Meave JA, Vega-Ramos F, Pineda-García F, Bonfil C, Paz H (2022) The above–belowground functional space of tropical dry forest communities responds to local hydric habitats. Biotropica 54, 1003–1014.
The above–belowground functional space of tropical dry forest communities responds to local hydric habitats.Crossref | GoogleScholarGoogle Scholar |

Donoghue MJ, Moore BR (2003) Toward an integrative historical biogeography. Integrative and Comparative Biology 43, 261–270.
Toward an integrative historical biogeography.Crossref | GoogleScholarGoogle Scholar |

Ebach MC, Michaux B (2020) ‘Biotectonics.’ (Springer Nature Switzerland AG)

Endler JA (1982) Problems in distinguishing historical from ecological factors in biogeography. American Zoologist 22, 441–452.
Problems in distinguishing historical from ecological factors in biogeography.Crossref | GoogleScholarGoogle Scholar |

Escalante T, Szumik C, Morrone JJ (2009) Areas of endemism of Mexican mammals: reanalysis applying the optimality criterion. Biological Journal of the Linnean Society 98, 468–478.
Areas of endemism of Mexican mammals: reanalysis applying the optimality criterion.Crossref | GoogleScholarGoogle Scholar |

Escalante T, Varela-Anaya AM, Noguera-Urbano EA, Elguea-Manrique LM, Ochoa-Ochoa LM, Gutiérrez-Velázquez AL, Reyes-Castillo P, Hernández HM, Gómez-Hinostrosa C, Navarro-Sigüenza AG, Téllez-Valdés O, Rodríguez-Soto C (2020) Evaluation of five taxa as surrogates for conservation prioritization in the Transmexican Volcanic Belt, Mexico. Journal for Nature Conservation 54, 125800
Evaluation of five taxa as surrogates for conservation prioritization in the Transmexican Volcanic Belt, Mexico.Crossref | GoogleScholarGoogle Scholar |

Escalante T, Rodríguez-Tapia G, Morrone JJ (2021) Toward a biogeographic regionalization of the Nearctic region: area nomenclature and digital map. Zootaxa 5027, 351–375.
Toward a biogeographic regionalization of the Nearctic region: area nomenclature and digital map.Crossref | GoogleScholarGoogle Scholar |

Escalante-Pliego P, Navarro-Sigüenza AG, Peterson AT (1993) A geographic, ecological, and historical analysis of land bird diversity. In ‘Biological diversity of Mexico: origins and distribution’. (Eds TP Ramamoorthy, R Bye, A Lot, J Fa) pp. 281–307. (Oxford University Press: New York, NY, USA)

Espinosa D, Ocegueda S, Aguilar C, Flores O, Llorente-Bousquets J (2008) El conocimiento biogeográfico de las especies y su regionalización natural [The biogeographical knowledge of the species and their natural regionalisation]. In ‘Capital natural de Mexico, Vol. I Conocimiento actual de la biodiversidad’ [‘Natural Capital of Mexico, Vol. I Current knowledge of biodiversity’]. (Eds J Soberón, G Halfter, J Llorente-Bousquets) pp. 33–65. (CONABIO: México City, México) [In Spanish]

Estrada-Márquez AS, Villaseñor JL, Escalante T (2020) Areas of endemism of Magnoliophyta in the state of Morelos, Mexico. Botanical Sciences 98, 377–392.
Areas of endemism of Magnoliophyta in the state of Morelos, Mexico.Crossref | GoogleScholarGoogle Scholar |

Ferrusquía-Villafranca I (1993) Geology of Mexico: a synopsis. In ‘Biological diversity of Mexico: origins and distribution’. (Eds TP Ramamoorthy, R Bye, A Lot, J Fa) pp. 3–108. (Oxford University Press: New York, NY, USA)

García E (2004) ‘Modificaciones al sistema de clasificación climática de Köppen.’ [‘Modifications to the Köppen classification system.’] (Instituto de Geografía-UNAM: México City, México) [In Spanish]

Gei M, Rozendaal DMA, Poorter L, Bongers F, Sprent JI, Garner MD, Aide TM, Andrade JL, Balvanera P, Becknell JM, Brancalion PHS, Cabral GAL, César RG, Chazdon RL, Cole RJ, Colletta GD, de Jong B, Denslow JS, Dent DH, DeWalt SJ, Dupuy JM, Durán SM, do Espírito Santo MM, Fernandes GW, Nunes YRF, Finegan B, Moser VG, Hall JS, Hernández-Stefanoni JL, Junqueira AB, Kennard D, Lebrija-Trejos E, Letcher SG, Lohbeck M, Marín-Spiotta E, Martínez-Ramos M, Meave JA, Menge DNL, Mora F, Muñoz R, Muscarella R, Ochoa-Gaona S, Orihuela-Belmonte E, Ostertag R, Peña-Claros M, Pérez-García EA, Piotto D, Reich PB, Reyes-García C, Rodríguez-Velázquez J, Romero-Pérez IE, Sanaphre-Villanueva L, Sanchez-Azofeifa A, Schwartz NB, de Almeida AS, Almeida-Cortez JS, Silver W, de Souza Moreno V, Sullivan BW, Swenson NG, Uriarte M, van Breugel M, van der Wal H, Veloso MdDM, Vester HFM, Vieira ICG, Zimmerman JK, Powers JS (2018) Legume abundance along successional and rainfall gradients in Neotropical forests. Nature Ecology & Evolution 2, 1104–1111.
Legume abundance along successional and rainfall gradients in Neotropical forests.Crossref | GoogleScholarGoogle Scholar |

Gernandt DS, Pérez de la Rosa JA (2014) Biodiversidad de Pinophyta (coníferas) en México. [Biodiversity of Pinophyta (conifers) in Mexico.] Revista Mexicana de Biodiversidad 85, S126–S133.
Biodiversidad de Pinophyta (coníferas) en México. [Biodiversity of Pinophyta (conifers) in Mexico.]Crossref | GoogleScholarGoogle Scholar | [In Spanish]

Giraudo AR, Arzamendia V (2018) Descriptive bioregionalisation and conservation biogeography: what is the true bioregional representativeness of protected areas? Australian Systematic Botany 30, 403–413.
Descriptive bioregionalisation and conservation biogeography: what is the true bioregional representativeness of protected areas?Crossref | GoogleScholarGoogle Scholar |

Gomes-da-Silva J, Amorim AM, Forzza RC (2017) Distribution of the xeric clade species of Pitcairnioideae (Bromeliaceae) in South America: a perspective based on areas of endemism. Journal of Biogeography 44, 1994–2006.
Distribution of the xeric clade species of Pitcairnioideae (Bromeliaceae) in South America: a perspective based on areas of endemism.Crossref | GoogleScholarGoogle Scholar |

González-Elizondo MS, González-Elizondo M, López-Enríquez IL, Tena-Flores JA, González-Gallegos JG, Ruacho-González L, Melgoza-Castillo A, Villarreal-Quintanilla JÁ, Estrada-Castillón AE (2017) Diagnóstico del conocimiento taxonómico y florístico de las plantas vasculares del norte de México. [Diagnosis of taxonomic and floristic knowledge of vascular plants of northern Mexico.] Botanical Sciences 95, 760–779.
Diagnóstico del conocimiento taxonómico y florístico de las plantas vasculares del norte de México. [Diagnosis of taxonomic and floristic knowledge of vascular plants of northern Mexico.]Crossref | GoogleScholarGoogle Scholar | [In Spanish]

González-Gallegos JG (2014) Revision of Salvia subg. Calosphace sect. Membranaceae (Lamiaceae). [Review of Salvia subg. Calosphace sect. Membranaceae (Lamiaceae).] Telopea 16, 43–81.
Revision of Salvia subg. Calosphace sect. Membranaceae (Lamiaceae). [Review of Salvia subg. Calosphace sect. Membranaceae (Lamiaceae).]Crossref | GoogleScholarGoogle Scholar | [In Spanish]

Halffter G (1987) Biogeography of the montane entomofauna of Mexico and Central America. Annual Review of Entomology 32, 95–114.
Biogeography of the montane entomofauna of Mexico and Central America.Crossref | GoogleScholarGoogle Scholar |

Hermogenes De Mendonça L, Ebach MC (2020) A review of transition zones in biogeographical classification. Biological Journal of the Linnean Society 131, 717–736.
A review of transition zones in biogeographical classification.Crossref | GoogleScholarGoogle Scholar |

Irl SDH, Harter DEV, Steinbauer MJ, Gallego-Puyol D, Fernández-Palacios JM, Jentsch A, Beierkuhnlein C (2015) Climate vs. topography: spatial patterns of plant species diversity and endemism on a high-elevation island. Journal of Ecology 103, 1621–1633.
Climate vs. topography: spatial patterns of plant species diversity and endemism on a high-elevation island.Crossref | GoogleScholarGoogle Scholar |

Irwin HS, Barneby RC (1979) New names in Senna P. Mill, and Chamaecrista Moench (Leguminosae Caesalpinoideae) precursory to the Chihuahuan Desert Flora. Phytologia 44, 499–501. ISSN 0031-9430.

Irwin HS, Barneby RC (1982) ‘The American Cassiinaea Synoptical Revision of Leguminosae tribe Cassiae subtribe Cassiinae in the New World.’ (Memoirs of the New York Botanical Garden: New York, NY, USA)

Jetz W, Rahbek C, Colwell RK (2004) The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecology Letters 7, 1180–1191.
The coincidence of rarity and richness and the potential signature of history in centres of endemism.Crossref | GoogleScholarGoogle Scholar |

Jiménez-Ramírez J, Martínez-Gordillo M, Valencia-Ávalos S, Cruz-Durán R, Contreras-Jiménez JL, Moreno-Gutiérrez E, Calónico-Soto J (2003) Estudio florístico del municipio Eduardo Neri, Guerrero. Anales del Instituto de Biología. Serie Botánica 74, 79–142. [In Spanish]

Kohlmann B, Wilkinson J (2003) Fronteras biogeográficas: coincidencia entre factores climáticos, topográficos, geológicos e históricos. In ‘Una perspectiva latinoamericana de la biogeografía’. (Eds JJ Morrone, J Llorente Bousquets) pp. 221–226. (Las Prensas de Ciencias, Facultad de Ciencias, UNAM: México City, México)

Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences 104, 5925–5930.
Global patterns and determinants of vascular plant diversity.Crossref | GoogleScholarGoogle Scholar |

Lewis GP (1998) ‘Caesalpinia. A revision of the Poincianella-Erythrostemon Group.’ (Royal Botanical Gardens, Kew: London, UK)

Lewis GP (2016) New insights into the systematics and biology of Brazilian Leguminosae (Fabaceae). International Journal of Plant Sciences 177, 1–2.
New insights into the systematics and biology of Brazilian Leguminosae (Fabaceae).Crossref | GoogleScholarGoogle Scholar |

Linder HP (2001) On areas of endemism, with an example from the African Restionaceae. Systematic Biology 50, 892–912.
On areas of endemism, with an example from the African Restionaceae.Crossref | GoogleScholarGoogle Scholar |

Massicotte P, Proulx R, Cabana G, Rodríguez MA (2015) Testing the influence of environmental heterogeneity on fish species richness in two biogeographic provinces. PeerJ 3, e760
Testing the influence of environmental heterogeneity on fish species richness in two biogeographic provinces.Crossref | GoogleScholarGoogle Scholar |

Mastretta-Yanes A, Moreno-Letelier A, Piñero D, Jorgensen TH, Emerson BC (2015) Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. Journal of Biogeography 42, 1586–1600.
Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt.Crossref | GoogleScholarGoogle Scholar |

Méndez-Larios I, Ortiz E, Villaseñor JL (2004) Las Magnoliophyta endémicas de la porción xerofítica de la provincia florística del Valle de Tehuacán–Cuicatlán, México. [The endemic Magnoliophyta of the xerophytic portion of the floristic province of the Tehuacan–Cuicatlan Valley, Mexico.] Anales del Instituto de Biología, Serie Botánica 75, 87–104. [In Spanish]

Méndez-Larios I, Villaseñor JL, Lira R, Morrone JJ, Dávila P, Ortiz E (2005) Toward the identification of a core zone in the Tehuacan–Cuicatlan Biosphere Reserve, México, based on parsimony analysis of endemicity of flowering plant species. Interciencia 30, 267–274.

Mercado-Gómez JD, Escalante T (2019) Areas of endemism of the Neotropical species of Capparaceae. Biological Journal of the Linnean Society 126, 507–520.
Areas of endemism of the Neotropical species of Capparaceae.Crossref | GoogleScholarGoogle Scholar |

Miguel-Talonia C, Téllez-Valdés O, Murguía-Romero M (2014) Las cactáceas del Valle de Tehuacán–Cuicatlán, México: estimación de la calidad del muestreo. [The cacti of the Tehuacan–Cuicatlan Valley, Mexico: estimation of the quality of the sampling.] Revista Mexicana de Biodiversidad 85, 436–444.
Las cactáceas del Valle de Tehuacán–Cuicatlán, México: estimación de la calidad del muestreo. [The cacti of the Tehuacan–Cuicatlan Valley, Mexico: estimation of the quality of the sampling.]Crossref | GoogleScholarGoogle Scholar | [In Spanish]

Miranda F (1943) Estudios sobre la vegetación de México. IV. Algunas características de la flora y de la vegetación de la zona de Acatlán, Puebla. Anales del Instituto de Biología 14, 407–421.

Montiel-Canales G, Goyenechea Mayer Goyenechea I (2022) Amphibian areas of endemism. A conservation priority in the threatened Mexican cloud forest. Vertebrate Zoology 72, 235–244.
Amphibian areas of endemism. A conservation priority in the threatened Mexican cloud forest.Crossref | GoogleScholarGoogle Scholar |

Morrone JJ (1994) On the identification of areas of endemism. Systematic Biology 43, 438–441.
On the identification of areas of endemism.Crossref | GoogleScholarGoogle Scholar |

Morrone J (2001) Biogeografía de América Latina y el Caribe. M&T-Manuales & Tesis SEA, vol. 3. [Biogeography of Latin America and the Caribbean. M&T Manuals & Theses SEA, vol. 3.] (ORCYT-UNESCO & SEA: Zaragoza, Spain) Available at http://sea-entomologia.org/PDF/MTSEA03-1p.pdf [In Spanish]

Morrone JJ (2007) Hacia una biogeografía evolutiva. [Towards an evolutionary biogeography.] Revista Chilena de Historia Natural 80, 509–520.
Hacia una biogeografía evolutiva. [Towards an evolutionary biogeography.]Crossref | GoogleScholarGoogle Scholar | [In Spanish]

Morrone JJ (2014) Biogeographical regionalisation of the Neotropical region. Zootaxa 3782, 1–110.
Biogeographical regionalisation of the Neotropical region.Crossref | GoogleScholarGoogle Scholar |

Morrone JJ (2017) Biogeographic regionalization of the Sierra Madre del Sur province, Mexico. Revista Mexicana de Biodiversidad 88, 710–714.
Biogeographic regionalization of the Sierra Madre del Sur province, Mexico.Crossref | GoogleScholarGoogle Scholar |

Morrone JJ, Márquez J (2001) Halffter’s Mexican Transition Zone, beetle generalized tracks, and geographical homology. Journal of Biogeography 28, 635–650.
Halffter’s Mexican Transition Zone, beetle generalized tracks, and geographical homology.Crossref | GoogleScholarGoogle Scholar |

Morrone JJ, Organista DE, Zúñiga CA, Bousquets JL (1999) Preliminary classification of the Mexican Biogeographic Provinces: a parsimony analysis of endemicity based on plant, insect and bird taxa. The Southwestern Naturalist 44, 507–514.
Preliminary classification of the Mexican Biogeographic Provinces: a parsimony analysis of endemicity based on plant, insect and bird taxa.Crossref | GoogleScholarGoogle Scholar |

Morrone JJ, Escalante T, Rodríguez-Tapia G (2017) Mexican biogeographic provinces: map and shapefiles. Zootaxa 4277, 277–279.
Mexican biogeographic provinces: map and shapefiles.Crossref | GoogleScholarGoogle Scholar |

Munguía-Lino G, Escalante T, Morrone JJ, Rodríguez A (2016) Areas of endemism of the North American species of Tigridieae (Iridaceae). Australian Systematic Botany 29, 142–156.
Areas of endemism of the North American species of Tigridieae (Iridaceae).Crossref | GoogleScholarGoogle Scholar |

Nic Lughadha E, Baillie J, Barthlott W, Brummitt NA, Cheek MR, Farjon A, Govaerts R, Hardwick KA, Hilton-Taylor C, Meagher TR, Moat J, Mutke J, Paton AJ, Pleasants LJ, Savolainen V, Schatz GE, Smith P, Turner I, Wyse-Jackson P, Crane PR (2005) Measuring the fate of plant diversity: towards a foundation for future monitoring and opportunities for urgent action. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 360, 359–372.
Measuring the fate of plant diversity: towards a foundation for future monitoring and opportunities for urgent action.Crossref | GoogleScholarGoogle Scholar |

Noroozi J, Talebi A, Doostmohammadi M, Rumpf SB, Linder HP, Schneeweiss GM (2018) Hotspots within a global biodiversity hotspot-areas of endemism are associated with high mountain ranges. Scientific Reports 8, 10345
Hotspots within a global biodiversity hotspot-areas of endemism are associated with high mountain ranges.Crossref | GoogleScholarGoogle Scholar |

Noroozi J, Zare G, Sherafati M, Mahmoodi M, Moser D, Asgarpour Z, Schneeweiss GM (2019) Patterns of endemism in Turkey, the meeting point of three global biodiversity hotspots, based on three diverse families of vascular plants. Frontiers in Ecology and Evolution 7, 159
Patterns of endemism in Turkey, the meeting point of three global biodiversity hotspots, based on three diverse families of vascular plants.Crossref | GoogleScholarGoogle Scholar |

Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933–938.
Terrestrial ecoregions of the world: a new map of life on earth.Crossref | GoogleScholarGoogle Scholar |

Platnick NI (1991) On areas of endemism. Australian Systematic Botany 4, 11–12.

Rapoport EH (1975) ‘Aerografía. Estrategias geográficas de las especies.’ [‘Areography. Geographical strategies of the species.’] (Fondo de Cultura Económica: México City, México) [In Spanish]

Ricklefs RE (1977) Environmental heterogeneity and plant species diversity: a hypothesis. The American Naturalist 111, 376–381.
Environmental heterogeneity and plant species diversity: a hypothesis.Crossref | GoogleScholarGoogle Scholar |

Rico-Arce ML (2007) ‘A checklist and synopsis of American species of Acacia (Leguminosae:Mimosoideae).’ (CONABIO: México City, México)

Rodríguez A, Castro-Castro A, Vargas-Amado G, Vargas-Ponce O, Zamora-Tavares P, González-Gallegos J, Carrillo-Reyes P, Anguiano-Constante M, Carrasco-Ortiz M, García-Martínez M, Gutiérrez-Rodríguez B, Aragón-Parada J, Valdes-Ibarra C, Munguía-Lino G (2018) Richness, geographic distribution patterns, and areas of endemism of selected angiosperm groups in Mexico. Journal of Systematics and Evolution 56, 537–549.
Richness, geographic distribution patterns, and areas of endemism of selected angiosperm groups in Mexico.Crossref | GoogleScholarGoogle Scholar |

Rodríguez-Jiménez C, Fernández-Nava R, Arreguín-Sánchez ML, Rodríguez-Jiménez A (2005) Plantas vasculares endémicas de la cuenca del río Balsas, México. [Endemic vascular plants of the Balsas River Basin, Mexico.] Polibotánica 20, 73–99. [In Spanish]

Rudd VE (1981) Ormosia (Leguminosae) in México, including a new species from Oaxaca. Botanical Sciences 41, 153–159.
Ormosia (Leguminosae) in México, including a new species from Oaxaca.Crossref | GoogleScholarGoogle Scholar |

Ruggiero A, Ezcurra C (2003) Regiones y transiciones biogeográficas: complementariedad de los análisis en biogeografía histórica y ecológica. [Regions and biogeographic transitions: complementarity of analyses in historical and ecological biogeography.] In ‘Una perspectiva latinoamericana de la biogeografía’ [‘A Latin American perspective of biogeography’]. (Eds JJ Morrone, J Llorente Bousquets) pp. 141–154. (Las Prensas de Ciencias, Facultad de Ciencias, UNAM: México City, México) [In Spanish]

Rzedowski J (1991) Diversidad y orígenes de la flora fanerogámica de México. [Diversity and origins of the phanerogamic flora of Mexico.] Acta Botánica Mexicana 14, 3–21.
Diversidad y orígenes de la flora fanerogámica de México. [Diversity and origins of the phanerogamic flora of Mexico.]Crossref | GoogleScholarGoogle Scholar | [In Spanish]

Rzedowski J (2006) ‘Vegetación de México’ [‘The vegetation of Mexico’], 1st edn. (CONABIO: México City, México) [In Spanish]

Rzedowski J (2015) ‘Catálogo preliminar de las especies de árboles silvestres de la Sierra Madre Oriental. Flora del Bajío y regiones adyacentes. Fascículo complementario.’ [‘Preliminary catalogue of the species of wild trees of the Sierra Madre Oriental. Flora of the Bajío and adjacent regions. Supplementary fascicle.’] (Instituto de Ecología AC: México) [In Spanish]

Sáenz-Ceja JE, Pérez-Salicrup DR (2021) Avocado cover expansion in the Monarch Butterfly Biosphere Reserve, central Mexico. Conservation 1, 299–310.
Avocado cover expansion in the Monarch Butterfly Biosphere Reserve, central Mexico.Crossref | GoogleScholarGoogle Scholar |

Sáenz-Ceja JE, Arenas-Navarro M, Torres-Miranda A (2022) Prioritizing conservation areas and vulnerability analyses of the genus Pinus L. (Pinaceae) in Mexico. Journal for Nature Conservation 67, 126171
Prioritizing conservation areas and vulnerability analyses of the genus Pinus L. (Pinaceae) in Mexico.Crossref | GoogleScholarGoogle Scholar |

Santos CMD, Amorim DS (2007) Why biogeographical hypotheses need a well supported phylogenetic framework: a conceptual evaluation. Papéis Avulsos de Zoología 47, 63–72.
Why biogeographical hypotheses need a well supported phylogenetic framework: a conceptual evaluation.Crossref | GoogleScholarGoogle Scholar |

Sosa V, De-Nova JA (2012) Endemic angiosperm lineages in Mexico: hotspots for conservation. Acta Botánica Mexicana 100, 293–315.

Sosa V, Loera I (2017) Influence of current climate, historical climate stability and topography on species richness and endemism in Mesoamerican geophyte plants. PeerJ 5, e3932
Influence of current climate, historical climate stability and topography on species richness and endemism in Mesoamerican geophyte plants.Crossref | GoogleScholarGoogle Scholar |

Sosa V, Cameron KM, Angulo DF, Hernández-Hernández T (2016) Life form evolution in epidendroid orchids: ecological consequences of the shift from epiphytism to terrestrial habit in Hexalectris. Taxon 65, 235–248.
Life form evolution in epidendroid orchids: ecological consequences of the shift from epiphytism to terrestrial habit in Hexalectris.Crossref | GoogleScholarGoogle Scholar |

Sosa V, De-Nova JA, Vásquez-Cruz M (2018) Evolutionary history of the flora of Mexico: dry forests cradles and museums of endemism. Journal of Systematics and Evolution 56, 523–536.
Evolutionary history of the flora of Mexico: dry forests cradles and museums of endemism.Crossref | GoogleScholarGoogle Scholar |

Sotuyo S, Delgado-Salinas A, Chase MW, Lewis GP, Oyama K (2007) Cryptic speciation in the Caesalpinia hintonii complex (Leguminosae: Caesalpinioideae) in a seasonally dry Mexican forest. Annals of Botany 100, 1307–1314.
Cryptic speciation in the Caesalpinia hintonii complex (Leguminosae: Caesalpinioideae) in a seasonally dry Mexican forest.Crossref | GoogleScholarGoogle Scholar |

Sotuyo S, Delgado-Salinas A, Lewis GP, Chase MW, Ferrari L, Oyama K (2010) Filogeografía del complejo Caesalpinia hintonii: (Leguminosae: Caesalpinioideae: Poincianella). [Phylogeography of the Caesalpinia hintonii complex: (Leguminosae: Caesalpinioideae: Poincianella).] Revista Mexicana de Biodiversidad 81, 883–894.
Filogeografía del complejo Caesalpinia hintonii: (Leguminosae: Caesalpinioideae: Poincianella). [Phylogeography of the Caesalpinia hintonii complex: (Leguminosae: Caesalpinioideae: Poincianella).]Crossref | GoogleScholarGoogle Scholar | [In Spanish]

Sousa M (2005) Heteroflorum: un nuevo género del grupo Peltophorum (Leguminosae: Caesalpinioideae: Cesalpinieae), endémico para México. [Heteroflorum: a new genus of the Peltophorum group (Leguminosae: Caesalpinioideae: Cesalpinieae), endemic to Mexico.] Novon 15, 213–218. [In Spanish]

Sousa M (2010) Centros de endemismo: las leguminosas. [Centres of endemism: legumes.] In ‘Diversidad, amenazas y áreas prioritarias para la conservación de las selvas secas del Pacífico de México’ [‘Diversity, threats and priority areas for the conservation of the dry forests of the Pacific of Mexico’]. (Eds G Ceballos, L Martínez, A García, E Espinoza, J Bezaury, R Dirzo) pp. 77–91 (Fondo de Cultura Económica: México City, México) [In Spanish]

Sousa M, Delgado A (1993) Mexican Leguminosae: phytogeography, endemism, and origins. In ‘Biological diversity of México: origins and distribution’. (Eds TP Ramammorthy, R Bye, A Lot, J Fa) pp. 459–511. (Oxford University Press: New York, NY, USA)

Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17, 866–880.
Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales.Crossref | GoogleScholarGoogle Scholar |

Szumik CA, Goloboff PA (2004) Areas of endemism: an improved optimality criterion. Systematic Biology 53, 968–977.
Areas of endemism: an improved optimality criterion.Crossref | GoogleScholarGoogle Scholar |

Szumik CA, Cuezzo F, Goloboff PA, Chalup AE (2002) An optimality criterion to determine areas of endemism. Systematic Biology 51, 806–816.
An optimality criterion to determine areas of endemism.Crossref | GoogleScholarGoogle Scholar |

Szumik C, Casagranda D, Roig-Juñent S (2006) ‘Manual de NDM/VNDM: Programas para la identificación de áreas de endemismo.’ [‘NDM/VNDM Manual: Programs for the identification of areas of endemism.’] (Instituto Argentino de Estudios Filogenéticos: Tucumán, Argentina) [In Spanish]

Szumik C, Aagesen L, Casagranda D, Arzamendia V, Baldo D, Claps LE, Cuezzo F, Díaz Gómez JM, Di Giacomo A, Giraudo A, Goloboff P, Gramajo C, Kopuchian C, Kretzschmar S, Lizarralde M, Molina A, Mollerach M, Navarro F, Nomdedeu S, Panizza A, Pereyra VV, Sandoval M, Scrocchi G, Zuloaga FO (2012) Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds, and insects from Argentina. Cladistics 28, 317–329.
Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds, and insects from Argentina.Crossref | GoogleScholarGoogle Scholar |

Tellez O, Mattana E, Diazgranados M, Kühn N, Castillo-Lorenzo E, Lira R, Montes-Leyva L, Rodriguez I, Flores Ortiz CM, Way M, Dávila P, Ulian T (2020) Native trees of Mexico: diversity, distribution, uses and conservation. PeerJ 8, e9898
Native trees of Mexico: diversity, distribution, uses and conservation.Crossref | GoogleScholarGoogle Scholar |

Téllez-Valdés O (1995) Flora, Vegetación y Fitogeografía de Nayarit. [Flora, vegetation and phytogeography of Nayarit.] MSc thesis, Universidad Nacional Autónoma de México, Ciudad de México, México. [In Spanish]

Torres-Miranda A, Luna-Vega I, Oyama K (2011) Conservation biogeography of red oaks (Quercus, Section Lobatae) in México and Central America. American Journal of Botany 98, 290–305.
Conservation biogeography of red oaks (Quercus, Section Lobatae) in México and Central America.Crossref | GoogleScholarGoogle Scholar |

Torres-Miranda A, Luna-Vega I, Oyama K (2013) New approaches to the biogeography and areas of endemism of red oaks (Quercus L., Section Lobatae). Systematic Biology 62, 555–573.
New approaches to the biogeography and areas of endemism of red oaks (Quercus L., Section Lobatae).Crossref | GoogleScholarGoogle Scholar |

Tuomisto H (2007) Interpreting the biogeography of South America. Journal of Biogeography 34, 1294–1295.
Interpreting the biogeography of South America.Crossref | GoogleScholarGoogle Scholar |

Valencia-A S (2004) Diversidad del género Quercus (Fagaceae) en México. [Diversity of the genus Quercus (Fagaceae) in Mexico.] Botanical Sciences 75, 33–53.
Diversidad del género Quercus (Fagaceae) en México. [Diversity of the genus Quercus (Fagaceae) in Mexico.]Crossref | GoogleScholarGoogle Scholar | [In Spanish]

Villaseñor JL (2016) Catálogo de las plantas vasculares nativas de México. [Catalogue of native vascular plants of Mexico.] Revista Mexicana de Biodiversidad 87, 559–902.
Catálogo de las plantas vasculares nativas de México. [Catalogue of native vascular plants of Mexico.]Crossref | GoogleScholarGoogle Scholar | [In Spanish]

Villaseñor JL (2018) Diversidad y distribución de la familia Asteraceae en México. [Diversity and distribution of the Asteraceae family in Mexico.] Botanical Sciences 96, 332–358.
Diversidad y distribución de la familia Asteraceae en México. [Diversity and distribution of the Asteraceae family in Mexico.]Crossref | GoogleScholarGoogle Scholar | [In Spanish]

Villaseñor JL, Ortiz E, Juárez V (2004) Asteráceas. [Asteraceae.] In ‘Biodiversity of Oaxaca’ [‘Biodiversidad de Oaxaca’]. (Eds AJ García-Mendoza, MJ Ordóñez, M Briones-Salas) pp. 177–192. (Instituto de Biología, Universidad Nacional Autónoma de México-Fondo Oaxaqueño para la Conservación de la Naturaleza-World Wildlife Fundation: México City, México) [In Spanish]