Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Dexamethasone may inhibit placental growth by blocking glucocorticoid receptors via phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin and reactive oxygen species/AMP-activated protein kinase signalling pathways in human placental JEG-3 cells

Xin Zhan A * , Yiran Xie B * , Liping Sun A , Qi Si A and Hongkai Shang https://orcid.org/0000-0002-0570-4686 A C
+ Author Affiliations
- Author Affiliations

A Department of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

B Reproductive Medicine Center, Taihe Hospital, Hubei Medical University, Shiyan 442000, China.

C Corresponding author. Email: hongkaishang@zju.edu.cn

Reproduction, Fertility and Development 33(12) 700-712 https://doi.org/10.1071/RD21048
Submitted: 22 February 2021  Accepted: 15 June 2021   Published: 17 August 2021

Abstract

This study explored the molecular mechanism underlying the effects of dexamethasone (DEX, 1 µM) on glucose transporters (GLUT) in JEG-3 human placental choriocarcinoma cells. JEG-3 cells were treated with DEX, an expression plasmid encoding human glucocorticoid receptor α (GRα), pcDNA3.1-GRα, GRα short interference (si) RNA, LY294002, xanthine oxidase (XO)/hypoxanthine (HX), rapamycin, insulin-like growth factor (IGF) 1, N-acetylcysteine (NAC) or phosphatidic acid (PA), and cell proliferation, apoptosis, mitochondrial membrane potential (MMP), human chorionic gonadotrophin (hCG) content, human placental lactogen (hPL) content, glucose uptake, reactive oxygen species levels and signalling pathway modulation were evaluated. Treatment of JEG-3 cells with DEX (1 µM), GRα siRNA, LY294002 (50 µM), XO/HX (7.2 µM/36 nM) or rapamycin (80 nM) inhibited cell proliferation, induced apoptosis, significantly decreased MMP and hCG and hPL content and increased ROS levels. In addition, glucose uptake was decreased through downregulation of the mRNA and protein expression of GRα, GLUT1 and GLUT3. Treatment of JEG-3 cells with GRα siRNA, LY294002, XO/HX or rapamycin inhibited phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, glycogen synthase kinase 3 and mammalian target of rapamycin (mTOR) and induced the phosphorylation of AMP-activated protein kinase (AMPK) and tuberous sclerosis complex 2. The effects of GRα overexpression and IGF1 (100 nM), NAC (5 nM) or PA (100 µM) treatment on JEG-3 cells contrasted with those of DEX treatment. DEX blocked glucose uptake by downregulating GRα expression, which reduced GLUT1 and GLUT3 mRNA and protein expression, which, in turn, may have inhibited the PI3K/AKT/mTOR pathway and activated the ROS/AMPK pathway.

Keywords: AMP-activated protein kinase, dexamethasone, glucocorticoid, glucose transport, mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase, placenta, reactive oxygen species (ROS), threatened premature labour.


References

Abbasi, S., Oxford, C., Gerdes, J., Sehdev, H., and Ludmir, J. (2010). Antenatal corticosteroids prior to 24 weeks’ gestation and neonatal outcome of extremely low birth weight infants. Am. J. Perinatol. 27, 61–66.
Antenatal corticosteroids prior to 24 weeks’ gestation and neonatal outcome of extremely low birth weight infants.Crossref | GoogleScholarGoogle Scholar | 19544249PubMed |

Alexander, N., Rosenlöcher, F., Dettenborn, L., Stalder, T., Linke, J., Distler, W., Morgner, J., Miller, R., Kliegel, M., and Kirschbaum, C. (2016). Impact of antenatal glucocorticoid therapy and risk of preterm delivery on intelligence in term-born children. J. Clin. Endocrinol. Metab. 101, 581–589.
Impact of antenatal glucocorticoid therapy and risk of preterm delivery on intelligence in term-born children.Crossref | GoogleScholarGoogle Scholar | 26649618PubMed |

Ates, B., Abraham, L., and Ercal, N. (2008). Antioxidant and free radical scavenging properties of N-acetylcysteine amide (NACA) and comparison with N-acetylcysteine (NAC). Free Radic. Res. 42, 372–377.
Antioxidant and free radical scavenging properties of N-acetylcysteine amide (NACA) and comparison with N-acetylcysteine (NAC).Crossref | GoogleScholarGoogle Scholar | 18404536PubMed |

Braun, T., Husar, A., Challis, J. R., Dudenhausen, J. W., Henrich, W., Plagemann, A., and Sloboda, D. M. (2013). Growth restricting effects of a single course of antenatal betamethasone treatment and the role of human placental lactogen. Placenta 34, 407–415.
Growth restricting effects of a single course of antenatal betamethasone treatment and the role of human placental lactogen.Crossref | GoogleScholarGoogle Scholar | 23465880PubMed |

Braun, T., Meng, W., Shang, H., Li, S., Sloboda, D. M., Ehrlich, L., Lange, K., Xu, H., Henrich, W., and Dudenhausen, J. W. (2015). Early Dexamethasone Treatment Induces Placental Apoptosis in Sheep. Reprod. Sci. 22, 47–59.
Early Dexamethasone Treatment Induces Placental Apoptosis in Sheep.Crossref | GoogleScholarGoogle Scholar | 25063551PubMed |

Cao, H., Lei, Z. M., Bian, L., and Rao, C. V. (1995). Functional nuclear epidermal growth factor receptors in human choriocarcinoma JEG-3 cells and normal human placenta. Endocrinology 136, 3163–3172.
Functional nuclear epidermal growth factor receptors in human choriocarcinoma JEG-3 cells and normal human placenta.Crossref | GoogleScholarGoogle Scholar | 7540549PubMed |

Chan, J., Rabbitt, E. H., Innes, B. A., Bulmer, J. N., Stewart, P. M., Kilby, M. D., and Hewison, M. (2007). Glucocorticoid-induced apoptosis in human decidua: a novel role for 11beta-hydroxysteroid dehydrogenase in late gestation. J. Endocrinol. 195, 7–15.
Glucocorticoid-induced apoptosis in human decidua: a novel role for 11beta-hydroxysteroid dehydrogenase in late gestation.Crossref | GoogleScholarGoogle Scholar | 17911392PubMed |

Chen, J., Rogers, S. C., and Kavdia, M. (2013). Analysis of kinetics of dihydroethidium fluorescence with superoxide using xanthine oxidase and hypoxanthine assay. Ann. Biomed. Eng. 41, 327–337.
Analysis of kinetics of dihydroethidium fluorescence with superoxide using xanthine oxidase and hypoxanthine assay.Crossref | GoogleScholarGoogle Scholar | 22965641PubMed |

Cuffe, J. S., Saif, Z., Perkins, A. V., Moritz, K. M., and Clifton, V. L. (2017). Dexamethasone and sex regulate placental glucocorticoid receptor isoforms in mice. J. Endocrinol. 234, 89–100.
Dexamethasone and sex regulate placental glucocorticoid receptor isoforms in mice.Crossref | GoogleScholarGoogle Scholar | 28490442PubMed |

Evans, P. L., McMillin, S. L., Weyrauch, L. A., and Witczak, C. A. (2019). Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training. Nutrients 11, 2432.
Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training.Crossref | GoogleScholarGoogle Scholar |

Foster, D. A., Salloum, D., Menon, D., and Frias, M. A. (2014). Phospholipase D and the Maintenance of Phosphatidic Acid Levels for Regulation of Mammalian Target of Rapamycin (mTOR). J. Biol. Chem. 289, 22583–22588.
Phospholipase D and the Maintenance of Phosphatidic Acid Levels for Regulation of Mammalian Target of Rapamycin (mTOR).Crossref | GoogleScholarGoogle Scholar | 24990952PubMed |

Gruber, H. E., Hoelscher, G. L., Bethea, S., and Hanley, E. N. (2015). Mitochondrial membrane potential and nuclear and gene expression changes during human disc cell apoptosis: in vitro and in vivo annulus findings. Spine 40, 876–882.
Mitochondrial membrane potential and nuclear and gene expression changes during human disc cell apoptosis: in vitro and in vivo annulus findings.Crossref | GoogleScholarGoogle Scholar | 25909354PubMed |

Hirayama, H., Sawai, K., Hirayama, M., Hirai, T., Kageyama, S., Onoe, S., Minamihashi, A., and Moriyasu, S. (2011). Prepartum maternal plasma glucose concentrations and placental glucose transporter mRNA expression in cows carrying somatic cell clone fetuses. J. Reprod. Dev. 57, 57–61.
Prepartum maternal plasma glucose concentrations and placental glucose transporter mRNA expression in cows carrying somatic cell clone fetuses.Crossref | GoogleScholarGoogle Scholar | 20881352PubMed |

Hong, S. Y., Yu, F. X., Luo, Y., and Hagen, T. (2016). Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein. Cell. Signal. 28, 377–383.
Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein.Crossref | GoogleScholarGoogle Scholar | 26826652PubMed |

Huang, S., Dong, W., Jiao, Z., Liu, J., Li, K., Wang, H., and Xu, D. (2019). Prenatal Dexamethasone Exposure Induced Alterations in Neurobehavior and Hippocampal Glutamatergic System Balance in Female Rat Offspring. Toxicol. Sci. 171, 369–384.
Prenatal Dexamethasone Exposure Induced Alterations in Neurobehavior and Hippocampal Glutamatergic System Balance in Female Rat Offspring.Crossref | GoogleScholarGoogle Scholar |

Illsley, N. P. (2000). Glucose transporters in the human placenta. Placenta 21, 14–22.
Glucose transporters in the human placenta.Crossref | GoogleScholarGoogle Scholar | 10692246PubMed |

Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C.-y., He, X., MacDougald, O. A., You, M., Williams, B. O., and Guan, K.-L. (2006). TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth: Cell. Cell 126, 955–968.
TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth: Cell.Crossref | GoogleScholarGoogle Scholar | 16959574PubMed |

Johnson, R. F., Rennie, N., Murphy, V., Zakar, T., Clifton, V., and Smith, R. (2008). Expression of glucocorticoid receptor messenger ribonucleic acid transcripts in the human placenta at term. J. Clin. Endocrinol. Metab. 93, 4887–4893.
Expression of glucocorticoid receptor messenger ribonucleic acid transcripts in the human placenta at term.Crossref | GoogleScholarGoogle Scholar | 18728163PubMed |

Khan, A. A., Rodriguez, A., Kaakinen, M., Pouta, A., Hartikainen, A. L., and Jarvelin, M. R. (2011). Does in utero exposure to synthetic glucocorticoids influence birthweight, head circumference and birth length? A systematic review of current evidence in humans. Paediatr. Perinat. Epidemiol. 25, 20–36.
Does in utero exposure to synthetic glucocorticoids influence birthweight, head circumference and birth length? A systematic review of current evidence in humans.Crossref | GoogleScholarGoogle Scholar | 21133966PubMed |

Klotz, D. M., Hewitt, S. C., Ciana, P., Raviscioni, M., Lindzey, J. K., Foley, J., Maggi, A., Diaugustine, R. P., and Korach, K. S. (2002). Requirement of estrogen receptor-alpha in insulin-like growth factor-1 (IGF-1)-induced uterine responses and in vivo evidence for IGF-1/estrogen receptor cross-talk. J. Biol. Chem. 277, 8531–8537.
Requirement of estrogen receptor-alpha in insulin-like growth factor-1 (IGF-1)-induced uterine responses and in vivo evidence for IGF-1/estrogen receptor cross-talk.Crossref | GoogleScholarGoogle Scholar | 11751931PubMed |

Krajewski, P., Chudzik, A., Strzałkogłoskowska, B., Górska, M., Kmiecik, M., Więckowska, K., Mesjasz, A., and Sieroszewski, P. (2015). Surfactant administration without intubation in preterm infants with respiratory distress syndrome - our experiences. J. Matern. Fetal Neonatal Med. 28, 1161–1164.
Surfactant administration without intubation in preterm infants with respiratory distress syndrome - our experiences.Crossref | GoogleScholarGoogle Scholar | 25065621PubMed |

Kulkarni, S. R., Kumaran, K., Rao, S. R., Chougule, S. D., Deokar, T. M., Bhalerao, A. J., Solat, V. A., Bhat, D. S., Fall, C. H., and Yajnik, C. S. (2013). Maternal lipids are as important as glucose for fetal growth: findings from the Pune Maternal Nutrition Study. Diabetes Care 36, 2706–2713.
Maternal lipids are as important as glucose for fetal growth: findings from the Pune Maternal Nutrition Study.Crossref | GoogleScholarGoogle Scholar | 23757425PubMed |

Lappas, M., Yee, K., Permezel, M., and Rice, G. E. (2006). Lipopolysaccharide and TNF-α Activate the Nuclear Factor Kappa B Pathway in the Human Placental JEG-3 Cells. Placenta 27, 568–575.
Lipopolysaccharide and TNF-α Activate the Nuclear Factor Kappa B Pathway in the Human Placental JEG-3 Cells.Crossref | GoogleScholarGoogle Scholar | 16122789PubMed |

Manning, B. D., and Cantley, L. C. (2007). AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274.
AKT/PKB signaling: navigating downstream.Crossref | GoogleScholarGoogle Scholar | 17604717PubMed |

Morioka, Y., Nam, J. M., and Ohashi, T. (2017). Nik-related kinase regulates trophoblast proliferation and placental development by modulating AKT phosphorylation. PLoS One 12, e0171503.
Nik-related kinase regulates trophoblast proliferation and placental development by modulating AKT phosphorylation.Crossref | GoogleScholarGoogle Scholar | 28152035PubMed |

Muñoz-Espín, D., Cañamero, M., Maraver, A., Gómez-López, G., Contreras, J., Murillo-Cuesta, S., Rodríguez-Baeza, A., Varela-Nieto, I., Ruberte, J., and Collado, M. (2013). Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118.
Programmed cell senescence during mammalian embryonic development.Crossref | GoogleScholarGoogle Scholar | 24238962PubMed |

Ozmen, A., Unek, G., Kipmen-Korgun, D., Cetinkaya, B., Avcil, Z., and Korgun, E. T. (2015). Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta. Ann. Anat. 198, 34–40.
Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta.Crossref | GoogleScholarGoogle Scholar | 25479925PubMed |

Párrizas, M., Saltiel, A. R., and Leroith, D. (1997). Insulin-like Growth Factor 1 Inhibits Apoptosis Using the Phosphatidylinositol 3′-Kinase and Mitogen-activated Protein Kinase Pathways. J. Biol. Chem. 272, 154–161.
Insulin-like Growth Factor 1 Inhibits Apoptosis Using the Phosphatidylinositol 3′-Kinase and Mitogen-activated Protein Kinase Pathways.Crossref | GoogleScholarGoogle Scholar | 8995241PubMed |

Prendergast, C. H., Parker, K. H., Gray, R., Venkatesan, S., Bannister, P., Castro-Soares, J., Murphy, K. W., Beard, R. W., Regan, L., and Robinson, S. (1999). Glucose production by the human placenta in vivo. Placenta 20, 591–598.
Glucose production by the human placenta in vivo.Crossref | GoogleScholarGoogle Scholar | 10452914PubMed |

Reza-López, S. A., Aguirre-Chacón, E. O., Blanca, S. R., Fabiola, G. S., Chávez-Corral, D. V., and Margarita, L. C. (2018). Folate transporter expression in placenta from pregnancies complicated with birth defects. Birth Defects Res. 110, 1223–1227.
Folate transporter expression in placenta from pregnancies complicated with birth defects.Crossref | GoogleScholarGoogle Scholar | 30063111PubMed |

Sakoda, H., Ogihara, T., Anai, M., Funaki, M., Inukai, K., Katagiri, H., Fukushima, Y., Onishi, Y., Ono, H., and Fujishiro, M. (2000). Dexamethasone-induced insulin resistance in 3T3–L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction. Diabetes 49, 1700–1708.
Dexamethasone-induced insulin resistance in 3T3–L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction.Crossref | GoogleScholarGoogle Scholar | 11016454PubMed |

Shang, H., Meng, W., Sloboda, D. M., Li, S., Ehrlich, L., Plagemann, A., Dudenhausen, J. W., Henrich, W., Newnham, J. P., and Challis, J. R. (2015). Effects of maternal dexamethasone treatment early in pregnancy on glucocorticoid receptors in the ovine placenta. Reprod. Sci. 22, 534–544.
Effects of maternal dexamethasone treatment early in pregnancy on glucocorticoid receptors in the ovine placenta.Crossref | GoogleScholarGoogle Scholar | 25332218PubMed |

Stejskalova, L., Rulcova, A., Vrzal, R., Dvorak, Z., and Pavek, P. (2013). Dexamethasone accelerates degradation of aryl hydrocarbon receptor (AHR) and suppresses CYP1A1 induction in placental JEG-3 cell line. Toxicol. Lett. 223, 183–191.
Dexamethasone accelerates degradation of aryl hydrocarbon receptor (AHR) and suppresses CYP1A1 induction in placental JEG-3 cell line.Crossref | GoogleScholarGoogle Scholar | 24091107PubMed |

Sun, L., Sun, X., Li, Y., and Xing, L. (2015). The role of (18)F-FDG PET/CT imaging in patient with malignant PEComa treated with mTOR inhibitor. Onco Targets Ther 8, 1967–1970.
The role of (18)F-FDG PET/CT imaging in patient with malignant PEComa treated with mTOR inhibitor.Crossref | GoogleScholarGoogle Scholar | 26257526PubMed |

Vrzal, R., Stejskalova, L., Monostory, K., Maurel, P., Bachleda, P., Pavek, P., and Dvorak, Z. (2009). Dexamethasone controls aryl hydrocarbon receptor (AhR)-mediated CYP1A1 and CYP1A2 expression and activity in primary cultures of human hepatocytes. Chem. Biol. Interact. 179, 288–296.
Dexamethasone controls aryl hydrocarbon receptor (AhR)-mediated CYP1A1 and CYP1A2 expression and activity in primary cultures of human hepatocytes.Crossref | GoogleScholarGoogle Scholar | 19022236PubMed |

Wang, B., Palomares, K., Parobchak, N., Cece, J., Rosen, M., Nguyen, A., and Rosen, T. (2013). Glucocorticoid receptor signaling contributes to constitutive activation of the noncanonical NF-κB pathway in term human placenta. Mol. Endocrinol. 27, 203–211.
Glucocorticoid receptor signaling contributes to constitutive activation of the noncanonical NF-κB pathway in term human placenta.Crossref | GoogleScholarGoogle Scholar | 23239753PubMed |

Yang, M., Huang, Y., Chen, J., Chen, Y. L., Ma, J. J., and Shi, P. H. (2014). Activation of AMPK participates hydrogen sulfide-induced cyto-protective effect against dexamethasone in osteoblastic MC3T3–E1 cells. Biochem. Biophys. Res. Commun. 454, 42–47.
Activation of AMPK participates hydrogen sulfide-induced cyto-protective effect against dexamethasone in osteoblastic MC3T3–E1 cells.Crossref | GoogleScholarGoogle Scholar | 25445596PubMed |

Yin, J., Hu, R., Chen, M., Tang, J., Li, F., Yang, Y., and Chen, J. (2002). Effects of berberine on glucose metabolism in vitro. Metabolism 51, 1439–1443.
Effects of berberine on glucose metabolism in vitro.Crossref | GoogleScholarGoogle Scholar | 12404195PubMed |