Cryopreservation of spermatozoa obtained postmortem from the European common frog Rana temporaria
Svetlana A. Kaurova A , Victor K. Uteshev A , Andrew B. Gapeyev A B , Natalia V. Shishova A , Edith N. Gakhova A , Robert K. Browne C and Ludmila I. Kramarova D EA Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
B Moscow Region State University, Mytishchi, Moscow Region, 141014, Russia.
C Sustainability America, La Isla Road, Sarteneja, Corozal District, Belise.
D Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
E Corresponding author. Email: luda_kramarova@rambler.ru
Reproduction, Fertility and Development 33(9) 588-595 https://doi.org/10.1071/RD20336
Submitted: 18 December 2020 Accepted: 30 March 2021 Published: 10 May 2021
Abstract
Cryopreserved spermatozoa offers a reliable, efficient and cost-effective means to perpetuate the genetic variation of endangered amphibian species in concert with conservation breeding programs. Here we describe successful cryopreservation of testicular spermatozoa of the common frog Rana temporaria, preliminarily stored in the carcasses of decapitated animals at +4°C for 0, 1 and 4 days. The motility, membrane integrity and fertilisation capability of fresh testicular spermatozoa treated with cryoprotective medium supplemented with 15% dimethylformamide (DMF) or 15% dimethylsulfoxide (DMSO) were examined. DMSO had a significantly greater toxic effect on fresh frog spermatozoa than DMF. Low levels of DNA fragmentation were seen in spermatozoa stored in the testis for different times and then treated with DMF (mean (±s.e.m.) 8.2 ± 0.7% and 18.2 ± 1.8% after 0 and 4 days storage respectively). After 1 day of storage in frog carcasses, the quality of spermatozoa cryopreserved with DMF was not significantly different from that of control spermatozoa (0 days of storage). After 4 days of storage, the quality of frozen–thawed spermatozoa was significantly lower in the DMF-treated than control group: 35% of the spermatozoa cryopreserved with DMF retained motility, 25% maintained the ability to fertilise fresh oocytes and 80% of fertilised oocytes survived to hatch.
Keywords: amphibian, cryobanking, sperm cryopreservation.
References
Alvarenga, M. A., Papa, F. O., Landim-Alvarenga, F. C., and Medeiros, A. S. L. (2005). Amides as cryoprotectants for freezing stallion semen. Anim. Reprod. Sci. 89, 105–113.| Amides as cryoprotectants for freezing stallion semen.Crossref | GoogleScholarGoogle Scholar | 16099609PubMed |
Ananjeva, N. B., Uteshev, V. K., Orlov, N. L., and Gakhova, E. N. (2015). Strategies for conservation of endangered amphibian and reptile species. Biol. Bull. 42, 432–439.
| Strategies for conservation of endangered amphibian and reptile species.Crossref | GoogleScholarGoogle Scholar |
Ananjeva, N. B., Uteshev, V. K., Orlov, N. L., Ryabov, S. A., Gakhova, E. N., Kaurova, S. A., Kramarova, L. I., Shishova, N. V., and Browne, R. K. (2017). Comparison of the modern reproductive technologies for amphibians and reptiles. Russ. J. Herpetol. 24, 275–290.
| Comparison of the modern reproductive technologies for amphibians and reptiles.Crossref | GoogleScholarGoogle Scholar |
Beesley, S. G., Costanzo, J. P., and Lee, R. E. (1998). Cryopreservation of spermatozoa from freeze-tolerant and -intolerant anurans. Cryobiology 37, 155–162.
| Cryopreservation of spermatozoa from freeze-tolerant and -intolerant anurans.Crossref | GoogleScholarGoogle Scholar | 9769166PubMed |
Billard, R., Marcel, J., and Matei, D. (1981). Survie in vitro et post mortem des gamètes de truite fario (Salmo trutta fario). Can. J. Zool. 59, 29–33.
| Survie in vitro et post mortem des gamètes de truite fario (Salmo trutta fario).Crossref | GoogleScholarGoogle Scholar |
Browne, R. K., Clulow, J., Mahony, M., and Clark, A. (1998). Successful recovery of motility and fertility of cryopreserved cane toad (Bufo marinus) sperm. Cryobiology 37, 339–345.
| Successful recovery of motility and fertility of cryopreserved cane toad (Bufo marinus) sperm.Crossref | GoogleScholarGoogle Scholar | 9917350PubMed |
Browne, R. K., Clulow, J., and Mahony, M. (2002a). The short-term storage and cryopreservation of spermatozoa from hylid and myobatrachid frogs. Cryo Letters 23, 129–136.
| 12050781PubMed |
Browne, R. K., Clulow, J., and Mahony, M. (2002b). The effect of saccharides on the post-thaw recovery of cane toad (Bufo marinus) spermatozoa. Cryo Letters 23, 121–128.
| 12050780PubMed |
Browne, R. K., Davis, J., Pomering, M., and Clulow, J. (2002c). Storage of cane toad (Bufo marinus) sperm for 6 days at 0 degrees C with subsequent cryopreservation. Reprod. Fertil. Dev. 14, 267–273.
| Storage of cane toad (Bufo marinus) sperm for 6 days at 0 degrees C with subsequent cryopreservation.Crossref | GoogleScholarGoogle Scholar | 12467350PubMed |
Browne, R. K., Li, H., Robinson, H., Uteshev, V. K., Shishova, N. R., McGinnity, D., Nofs, S., Figiel, C. R., Mansour, N., Lloyd, R., Agnew, D., Carleton, C., and Gakhova, E. N. (2011). Reptile and amphibian conservation through gene banking and other reproduction technologies. Russ. J. Herpetol. 18, 165–174.
| Reptile and amphibian conservation through gene banking and other reproduction technologies.Crossref | GoogleScholarGoogle Scholar |
Browne, R. K., Janzen, P., Bagaturov, M. F., and van Houte, D. K. (2018). Amphibian keeper conservation breeding programs. J. Zoo. Res. 2, 29–46.
Browne, R. K., Silla, A. J., Upton, R., Della-Togna, G., Marcec-Greaves, R., Shishova, N. V., Uteshev, V. K., Proano, B., Perez, O. D., Mansour, N., Kaurova, S. A., Gakhova, E. N., Cosson, J., Dyzuba, B., Kramarova, L. I., McGinnity, D., Gonzalez, M., Clulow, J., and Clulow, S. (2019). Sperm collection and storage for the sustainable management of amphibian biodiversity. Theriogenology 133, 187–200.
| Sperm collection and storage for the sustainable management of amphibian biodiversity.Crossref | GoogleScholarGoogle Scholar | 31155034PubMed |
Calatayud, N. E., Chai, N., Gardner, N. R., Curtis, M. J., and Stoops, M. A. (2019). Reproductive techniques for ovarian monitoring and control in amphibians. J. Vis. Exp. 147, 1–27.
| Reproductive techniques for ovarian monitoring and control in amphibians.Crossref | GoogleScholarGoogle Scholar |
Clulow, J., and Clulow, S. (2016). Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: bringing the ARTs up to speed. Reprod. Fertil. Dev. 28, 1116–1132.
| Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: bringing the ARTs up to speed.Crossref | GoogleScholarGoogle Scholar |
Clulow, J., Mahony, M., Browne, R., Pomering, M., and Clark, A. (1999). Applications of assisted reproductive technologies (ART) to endangered anuran amphibians. In ‘Declines and Disappearances of Australian Frogs’. (Ed. A. Campbell.) pp. 219–225. (Environment Australia: Canberra.)
Clulow, J., Pomering, M., Herbert, D., Upton, R., Calatayud, N., Clulow, S., Mahony, M. J., and Trudeau, V. L. (2018). Differential success in obtaining gametes between male and female Australian temperate frogs by hormonal induction: a review. Gen. Comp. Endocrinol. 265, 141–148.
| Differential success in obtaining gametes between male and female Australian temperate frogs by hormonal induction: a review.Crossref | GoogleScholarGoogle Scholar | 29859744PubMed |
Clulow, J., Upton, R., Trudeau, V. L., and Clulow, S. (2019). Amphibian assisted reproductive technologies: moving from technology to application. Adv. Exp. Med. Biol. 1200, 413–463.
| Amphibian assisted reproductive technologies: moving from technology to application.Crossref | GoogleScholarGoogle Scholar | 31471805PubMed |
Collins, A. R., Oscoz, A. A., Brunborg, G., Gaiva, O. I., Giovannelli, L., Kruszewski, M., Smith, C. C., and Steina, R. (2008). The comet assay: topical issues. Mutagenesis 23, 143–151.
| The comet assay: topical issues.Crossref | GoogleScholarGoogle Scholar | 18283046PubMed |
Costanzo, J. P., Mugnano, J. A., and Wehrheim, H. M. (1998). Osmotic and freezing tolerance in spermatozoa of freeze-tolerant and -intolerant frogs. Am. J. Physiol. 275, R713–719.
| Osmotic and freezing tolerance in spermatozoa of freeze-tolerant and -intolerant frogs.Crossref | GoogleScholarGoogle Scholar | 9728067PubMed |
Della Togna, G. (2015). Structural and functional characterization of the Panamanian golden frog (Atelopus zeteki) spermatoza – impact of medium osmolality and cryopreservation on motility and cell viability. Ph.D. Thesis, University of Maryland, College Park.
Della Togna, G., Gratwicke, B., Evans, M., Augustine, L., Chia, H., Bronikowski, E., Murphy, J. B., and Comizzoli, P. (2018). Influence of extracellular environment on the motility and structural properties of spermatozoa collected from hormonally stimulated Panamanian golden frog (Atelopus zeteki). Theriogenology 108, 153–160.
| Influence of extracellular environment on the motility and structural properties of spermatozoa collected from hormonally stimulated Panamanian golden frog (Atelopus zeteki).Crossref | GoogleScholarGoogle Scholar | 29216539PubMed |
Della Togna, G., Howell, L. G., Clulow, J., Langhorne, C. J., Marcec-Greaves, R., and Calatayud, N. E. (2020). Evaluating amphibian biobanking and reproduction for captive breeding programs according to the amphibian conservation action plan objectives. Theriogenology 150, 412–431.
| Evaluating amphibian biobanking and reproduction for captive breeding programs according to the amphibian conservation action plan objectives.Crossref | GoogleScholarGoogle Scholar | 32127175PubMed |
Desnos, H., Bruyère, P., Teixeira, M., Commin, L., Louis, G., Trombotto, S., Moussa, A., David, L., Buff, S., and Baudo, A. (2019). The use of chitooligosaccharidesin cryopreservation: discussion of concept and first answers from DSC thermal analysis. In ‘Cryopreservation. Current Advances and Evaluations’. (Ed. M. Quain.) pp. 1–26. (IntechOpen: London.)
Goncharov, B. F., Shubravy, O. J., Serbinova, I. A., and Uteshev, V. K. (1989). The USSR program for breeding amphibian, including rare and endangered species. Int. Zoo Yb. 28, 10–21.
| The USSR program for breeding amphibian, including rare and endangered species.Crossref | GoogleScholarGoogle Scholar |
Gosálvez, J., Lopez-Fernandes, C., Hermoso, A., Fernandez, J. L., and Kjelland, M. (2014). Sperm DNA fragmentation in zebrafish (Danio rerio) and its impact on fertility and embryo viability – implications for fisheries and aqvaculture. Aquaculture 433, 173–182.
| Sperm DNA fragmentation in zebrafish (Danio rerio) and its impact on fertility and embryo viability – implications for fisheries and aqvaculture.Crossref | GoogleScholarGoogle Scholar |
Hopkins, B. K., and Herr, C. (2008). Cryopreservation of frog (Rana pipiens) sperm collected by non-lethal methods. Reprod. Fertil. Dev. 20, 120.
| Cryopreservation of frog (Rana pipiens) sperm collected by non-lethal methods.Crossref | GoogleScholarGoogle Scholar |
Kaurova, S. A., Chekurova, N. R., Melnikova, E. V., Uteshev, V. K., and Gakhova, E. N. (1996). Cryopreservation of frog Rana temporaria sperm without loss of fertilizing capacity. In ‘Proceedings of the 14th Working Meeting’, 13–15 May 1996, Pushchino. (Eds E. N. Gakhova and V. N. Karnaukhov.) pp. 106–108. (Pushchono Press.)
Kaurova, S. A., Uteshev, V. K., Chekurova, N. R., and Gakhova, E. N. (1997). Cryopreservation of testis of frog Rana temporaria. Infusionsther. Transfusionsmed. 24, 379.
Koshevoy, V. P., Furda, I. V., and Egorov, M. I. (2006). Effect of N,N-dimethylformamide, ethylene glycol and their mixture on cryoresistance of canine spermatozoa. Probl. Cryobiol. Cryomed. 16, 245–253.
Kouba, A. J., and Vance, C. K. (2009). Applied reproductive technologies and genetic resource banking for amphibian conservation. Reprod. Fertil. Dev. 21, 719–737.
| Applied reproductive technologies and genetic resource banking for amphibian conservation.Crossref | GoogleScholarGoogle Scholar | 19567216PubMed |
Kouba, A., Vance, C., Calatayud, N., Rowlison, T., Langhorne, C., and Willard, S. (2012). Assisted reproductive technologies (ART) for amphibians. In ‘Amphibian Husbandry Resource Guide’. (Eds V. A. Poole and S. Grow.) pp. 60–118. (Amphibian Taxon Advisory Group, American Association of Zoos and Aquariums: Silver Springs.)
Kouba, A. J., Lloyd, R. E., Houck, M. L., Silla, A. J., Calatayud, N., Vance, L., Clulow, T. J., Molinia, F., Langhorne, C., Vance, C., Arregui, L., Germano, J., Lermen, D., and Togna, G. D. (2013). Emerging trends for biobanking amphibian genetic resources: the hope, reality and challenges for the next decade. Biol. Conserv. 164, 10–21.
| Emerging trends for biobanking amphibian genetic resources: the hope, reality and challenges for the next decade.Crossref | GoogleScholarGoogle Scholar |
Krzywiński, A. (1981). Freezing of post mortem collected semen from moos and red deer. Acta Theriol. (Warsz.) 26, 424–426.
| Freezing of post mortem collected semen from moos and red deer.Crossref | GoogleScholarGoogle Scholar |
Langhorne, C. J., Calatayud, N. E., Kouba, A. J., Feugang, J. M., Vance, C. K., and Willard, S. T. (2013). Cryoconservation: successful sperm cryopreservation and developmental outcomes using endangered North American amphibians. Cryobiology 67, 405.
| Cryoconservation: successful sperm cryopreservation and developmental outcomes using endangered North American amphibians.Crossref | GoogleScholarGoogle Scholar |
Linnik, T. P., and Martynyuk, I. N. (2010). Approaches to creation of cryoprotective media for cryopreservation of avian sperm. Probl. Cryobiol. Cryomed. 20, 109–122.
Linnik, T. P., Martynyuk, I. N., Gaviley, O. V., and Beletsky, E. M. (2009). Cytotoxic effect of diols, amides and their mixtures on fowl and turkey sperm prior to freezing. Probl. Cryobiol. Cryomed. 19, 383–394.
Lukaszewicz, E. (2001). DMF effects on frozen gander semen. Br. Poult. Sci. 42, 308–314.
| DMF effects on frozen gander semen.Crossref | GoogleScholarGoogle Scholar | 11469548PubMed |
Maksudov, G. Yu., Shishova, N. V., and Katkov, I. I. (2009). In the cycle of life: cryopreservation of post-mortem sperm as a valuable source in restoration of rare and endangered species. In ‘Endangered Species: New Research Edition’. (Eds A. M. Columbus and L. V. Kuznetsov.) pp. 181–240. (Nova Publishers: New York.)
Mansour, N., Lahnsteiner, F., and Patzner, R. A. (2009). Optimization of the cryopreservation of African clawed frog (Xenopus laevis) sperm. Theriogenology 72, 1221–1228.
| Optimization of the cryopreservation of African clawed frog (Xenopus laevis) sperm.Crossref | GoogleScholarGoogle Scholar | 19766299PubMed |
Mansour, N., Lahnsteiner, F., and Patzner, R. A. (2010). Motility and cryopreservation of spermatozoa of European common frog Rana temporaria. Theriogenology 74, 724–732.
| Motility and cryopreservation of spermatozoa of European common frog Rana temporaria.Crossref | GoogleScholarGoogle Scholar | 20537698PubMed |
Michael, S. F., and Jones, C. (2004). Cryopreservation of spermatozoa of the terrestrial Puerto Rican frog, Eleutherodactylus coqui. Cryobiology 48, 90–94.
| Cryopreservation of spermatozoa of the terrestrial Puerto Rican frog, Eleutherodactylus coqui.Crossref | GoogleScholarGoogle Scholar | 14969686PubMed |
Mugnano, J. A., Costanzo, J. P., Beesley, S. G., and Lee, R. E. (1998). Evaluation of glycerol and dimethyl sulfoxide for the cryopreservation of spermatozoa from the wood frog (Rana sylvatica). Cryo Letters 19, 249–254.
Pearl, E., Morrow, S., Noble, A., Lerebours, A., Marko Horb, M., and Guille, M. (2017). An optimized method for cryogenic storage of Xenopus sperm to maximize the effectiveness of research using genetically altered frogs. Theriogenology 92, 149–155.
| An optimized method for cryogenic storage of Xenopus sperm to maximize the effectiveness of research using genetically altered frogs.Crossref | GoogleScholarGoogle Scholar | 28237331PubMed |
Peng, L., Yue, Y. M., and Liu, Y. (2011). Effect of cryopreservation and short-term storage of Chinese giant salamander sperm. Acta Hydrbiol. Sin 35, 325–332.
| Effect of cryopreservation and short-term storage of Chinese giant salamander sperm.Crossref | GoogleScholarGoogle Scholar |
Perry, C. T., Corcini, C. D., Otte, M. V., Soares, S. L., Garcia, J. R. E., Muelbet, J. R. E., and Junior, A. S. V. (2019). Amides as cryoprotectants for the freezing of Brycon orbignyanus sperm. Aquaculture 508, 90–97.
| Amides as cryoprotectants for the freezing of Brycon orbignyanus sperm.Crossref | GoogleScholarGoogle Scholar |
Poo, S., and Hinkson, K. M. (2020). Amphibian conservation using assisted reproductive technologies: Cryopreserved sperm affects offspring morphology, but not behavior, in a toad. Glob. Ecol. Conserv. 21, e00809.
| Amphibian conservation using assisted reproductive technologies: Cryopreserved sperm affects offspring morphology, but not behavior, in a toad.Crossref | GoogleScholarGoogle Scholar |
Rugh, R. (1962). Induced breeding. In ‘Experimental Embryology. Techniques and Procedures’. pp. 91–103. (Burgess Publishing Co.: Minneapolis.)
Sargent, M. G., and Mohun, T. J. (2005). Cryopreservation of sperm of Xenopus laevis and Xenopus tropicalis. Genesis 41, 41–46.
| Cryopreservation of sperm of Xenopus laevis and Xenopus tropicalis.Crossref | GoogleScholarGoogle Scholar | 15645449PubMed |
Sasaki, K., Tatsumi, T., Tsutsui, M., Niinomi, T., Imai, T., Naito, M., Tajima, A., and Nishi, Y. (2010). A method for cryopreserving semen from Yakido roosters using N-methylacetamide as a cryoprotective agent. J. Poult. Sci. 47, 297–301.
| A method for cryopreserving semen from Yakido roosters using N-methylacetamide as a cryoprotective agent.Crossref | GoogleScholarGoogle Scholar |
Shishova, N. R., Uteshev, V. K., Kaurova, S. A., Browne, R. K., and Gakhova, E. N. (2011). Cryopreservation of hormonally induced sperm for the conservation of threatened amphibians with Rana temporaria as a model research species. Theriogenology 75, 220–232.
| Cryopreservation of hormonally induced sperm for the conservation of threatened amphibians with Rana temporaria as a model research species.Crossref | GoogleScholarGoogle Scholar | 21040966PubMed |
Shishova, N. V., Uteshev, V. K., Sirota, N. P., Kuznetsova, E. A., Kaurova, S. A., Browne, R. K., and Gakhova, E. N. (2013). The quality and fertility of sperm collected from European common frog (Rana temporaria) carcasses refrigerated for up to 7 days. Zoo Biol. 32, 400–406.
| The quality and fertility of sperm collected from European common frog (Rana temporaria) carcasses refrigerated for up to 7 days.Crossref | GoogleScholarGoogle Scholar | 23609917PubMed |
Silla, A. J., and Byrne, P. G. (2019). The role of reproductive technologies in amphibian conservation breeding programs. Annu. Rev. Anim. Biosci. 7, 499–519.
| The role of reproductive technologies in amphibian conservation breeding programs.Crossref | GoogleScholarGoogle Scholar | 30359086PubMed |
Silla, A. J., Keogh, L. M., and Byrne, P. G. (2017). Sperm motility activation in the critically endangered Booroolong frog: the effect of medium osmolality and phosphodiesterase inhibitors. Reprod. Fertil. Dev. 29, 2277–2283.
| Sperm motility activation in the critically endangered Booroolong frog: the effect of medium osmolality and phosphodiesterase inhibitors.Crossref | GoogleScholarGoogle Scholar | 28359014PubMed |
Sipko, T. P., Abilov, A. L., and Shishova, N. V. (1994). Cryopreservation of post mortem collected deer sperm. Biofizika zhivoi kletki 6, 28–34.
Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J. C., and Sasaki, Y. F. (2000). The single cell gel comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35, 206–221.
| The single cell gel comet assay: guidelines for in vitro and in vivo genetic toxicology testing.Crossref | GoogleScholarGoogle Scholar | 10737956PubMed |
Upton, R., Clulow, S., Mahony, M. J., and Clulow, J. (2018). Generation of a sexually mature individual of the eastern dwarf tree frog Litoria fallax, from cryopreserved testicular macerates: proof of capacity of cryopreserved sperm derived offspring to complete development. Conserv. Physiol. 6, coy043.
| Generation of a sexually mature individual of the eastern dwarf tree frog Litoria fallax, from cryopreserved testicular macerates: proof of capacity of cryopreserved sperm derived offspring to complete development.Crossref | GoogleScholarGoogle Scholar | 30151196PubMed |
Uteshev, V. K., and Gakhova, E. N. (2005). Gene cryobanks for conservation of endangered amphibian species. Russ. J. Herpetol. 12, 233–234.
Uteshev, V. K., Shishova, N. V., Kaurova, S. A., Manokhin, A. A., and Gakhova, E. N. (2013). Collection and cryopreservation of hormonally induced sperm of pool frog (Pelophylax lessonae). Russ. J. Herpetol. 20, 105–109.
Uteshev, V. K., Kaurova, S. A., Shishova, N. V., Kramarova, L. I., Browne, R. K., and Gakhova, E. N. (2015a). Current reproductive and cryopreservation technologies in herpetology. Russ. J. Herpetol. 22, 143–144.
Uteshev, V. K., Kaurova, S. A., Shishova, N. V., Stolyarov, S. D., Browne, R. K., and Gakhova, E. N. (2015b). In vitro fertilisation with hormonally induced sperm and eggs from sharp ribbed newts Pleurodeles waltl. Russ. J. Herpetol. 22, 35–40.
Uteshev, V. K., Gakhova, E. N., Kramarova, L. I., Shishova, N. V., and Kaurova, S. A. (2019). Cryobanking of amphibian genetic recourses in Russia: past and future. Russ. J. Herpetol. 26, 319–324.
| Cryobanking of amphibian genetic recourses in Russia: past and future.Crossref | GoogleScholarGoogle Scholar |
Zimkus, B. M., Hassapakis, C. L., and Houck, M. L. (2018). Integrating current methods for the preservation of amphibian genetic resources and viable tissues to achieve best practices for species conservation. Amphib. Reptile Conserv. 12, e165.