Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Plasma and acrosomal membrane lipid content of saltwater crocodile spermatozoa

R. R. Miller Jr A , F. Beranek A B , A. L. Anderson C , S. D. Johnston https://orcid.org/0000-0002-0290-5458 D E * and B. Nixon https://orcid.org/0000-0003-2745-8188 C *
+ Author Affiliations
- Author Affiliations

A Department of Biology, Hillsdale College, 33 E. College Street, Hillsdale, MI 49242, USA.

B Controls Group, Limbach Company, 926 Featherstone Street, Pontiac, MI 48342, USA.

C Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.

D School of Agriculture and Food Sciences, The University of Queensland, Gatton, Qld 4343, Australia.

E Corresponding author. Email: s.johnston1@uq.edu.au

Reproduction, Fertility and Development 33(9) 596-604 https://doi.org/10.1071/RD21007
Submitted: 12 January 2021  Accepted: 01 April 2021   Published: 4 May 2021

Abstract

This study describes the chemical lipid composition of the sperm plasma and acrosomal membranes of the saltwater crocodile Crocodylus porosus with the aim of providing new insights into sperm physiology, particularly that associated with their preservation ex vivo. The specific fatty acid composition of the sperm plasma and acrosomal membranes is documented. The mean (± s.d.) ratio of unsaturated to saturated membrane fatty acids within the plasma membrane was 2.57 ± 0.50, and was determined to be higher than a similar analysis of the lipids found in the acrosomal membrane (0.70 ± 0.10). The saltwater crocodile sperm plasma membrane also contained remarkably high levels of cholesterol (mean (± s.d.) 40.7 ± 4.5 nmol per 106 sperm cells) compared with the spermatozoa of other amniote species that have so far been documented. We suggest that this high cholesterol content could be conferring stability to the crocodile sperm membrane, allowing it to tolerate extreme osmotic fluxes and rapid changes in temperature. Our descriptive analysis now provides those interested in reptile and comparative sperm physiology an improved baseline database for interpreting biochemical changes associated with preservation pathology (e.g. cold shock and cryoinjury), epididymal sperm maturation and capacitation/acrosome reaction.

Graphical Abstract Image

Keywords: cholesterol, fatty acids, plasma membranes acrosomal membranes, saltwater crocodile.


References

Agrawal, P., Magaree, S. F., and Hammersted, R. H. (1988). Isolation and characterization of the plasma membrane of rat cauda epididymal spermatozoa. J. Androl. 9, 178–189.
Isolation and characterization of the plasma membrane of rat cauda epididymal spermatozoa.Crossref | GoogleScholarGoogle Scholar | 3403361PubMed |

Ahluwalia, B., and Holeman, R. T. (1969). Fatty acid composition of lipids of boar, rabbit, and human sperm. J. Reprod. Fertil. 18, 431–437.
Fatty acid composition of lipids of boar, rabbit, and human sperm.Crossref | GoogleScholarGoogle Scholar | 5788216PubMed |

Ansah, G. A., and Buckland, R. B. (1982). Genetic variation in fowl semen cholesterol and phospholipid levels and the relationship of these lipids with fertility of frozen–thawed and fresh semen. Poult. Sci. 61, 623–637.
Genetic variation in fowl semen cholesterol and phospholipid levels and the relationship of these lipids with fertility of frozen–thawed and fresh semen.Crossref | GoogleScholarGoogle Scholar |

Awano, M., Kawaguchi, A., and Mohr, H. (1993). Lipid composition of hamster epididymal spermatozoa. J. Reprod. Fertil. 99, 375–383.
Lipid composition of hamster epididymal spermatozoa.Crossref | GoogleScholarGoogle Scholar | 8107019PubMed |

Bailey, J. L., Bilodeau, J., and Cormier, N. (2000). Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. J. Androl. 21, 1–7.
| 10670514PubMed |

Bernabò, N., Sanchez, M. R., Valbonetti, L., Greco, L., Capacchietti, G., Mattioli, M., and Barboni, B. (2018). Membrane dynamics of spermatozoa during capacitation: New insight in germ cells signalling. In ‘Germ Cell’. (Ed. R. G. Ahmed) pp. 73–100. (IntechOpen: London.)

Blesbois, E., Grasseau, I., and Seigneurin, F. (2005). Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation. Reproduction 129, 371–378.
Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation.Crossref | GoogleScholarGoogle Scholar | 15749963PubMed |

Biggers, J. D., Whitten, W. K., and Whittingham, D. G. (1971). The culture of mouse embryos in vitro. In ‘Methods in Mammalian Embryology’. (Ed. J. C. Daniel Jr.) pp. 86–116. (Freeman: San Francisco.)

Boj, M., Chavigne, F., and Chera, J. (2015). Aquaporin biology of spermatogenesis and sperm physiology in mammals and teleosts. Biol. Bull. 229, 93–108.
Aquaporin biology of spermatogenesis and sperm physiology in mammals and teleosts.Crossref | GoogleScholarGoogle Scholar | 26338872PubMed |

Canvin, A. T., and Buhr, M. M. (1989). Effect of temperature on the fluidity of boar sperm membranes. J. Reprod. Fertil. 85, 533–540.
Effect of temperature on the fluidity of boar sperm membranes.Crossref | GoogleScholarGoogle Scholar | 2703993PubMed |

Comizzoli, P., Songsasen, N., Hagedorn, M., and Wildt, D. E. (2012). Comparative cryobiology traits and requirements for gametes and gonadal tissues collected from wildlife species. Theriogenology 78, 1666–1681.
Comparative cryobiology traits and requirements for gametes and gonadal tissues collected from wildlife species.Crossref | GoogleScholarGoogle Scholar | 22704386PubMed |

Coskun, U., and Simmons, K. (2010). Membrane rafting: from apical sorting to phase segregation. FEBS Lett. 584, 1685–1693.
Membrane rafting: from apical sorting to phase segregation.Crossref | GoogleScholarGoogle Scholar | 20036659PubMed |

Czarny, N. A., and Rodger, J. C. (2010). The spermatozoa of the dasyurid marsupial, Sminthopsis crassicaudata, are highly susceptible to cold shock. Reprod. Fertil. Dev. 22, 580–585.
The spermatozoa of the dasyurid marsupial, Sminthopsis crassicaudata, are highly susceptible to cold shock.Crossref | GoogleScholarGoogle Scholar | 20188031PubMed |

Darin-Bennett, A., Poulos, A., and White, I. G. (1974). The phospholipids and phospholipid-bound fatty acids and aldehydes of dog and fowl spermatozoa. J. Reprod. Fertil. 41, 471–474.
The phospholipids and phospholipid-bound fatty acids and aldehydes of dog and fowl spermatozoa.Crossref | GoogleScholarGoogle Scholar | 4452987PubMed |

Darin-Bennett, A., Poulos, A., and White, I. G. (1976). The fatty acid composition of the major phosphoglycerides of ram and human spermatozoa. Andrologia 8, 37–45.
The fatty acid composition of the major phosphoglycerides of ram and human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 952418PubMed |

Darin-Bennett, A., White, I. G., and Hoskins, D. D. (1977). Phospholipids and phospholipid-bound fatty acids and aldehydes of spermatozoa and seminal plasma of rhesus monkeys. J. Reprod. Fertil. 49, 119–122.
Phospholipids and phospholipid-bound fatty acids and aldehydes of spermatozoa and seminal plasma of rhesus monkeys.Crossref | GoogleScholarGoogle Scholar | 401884PubMed |

De Leeuw, F. E., Chen, H.-C., Colenbrander, B., and Verkleij, A. J. (1990). Cold-induced ultrastructural changes in bull and boar plasma membranes. Cryobiology 27, 171–183.
Cold-induced ultrastructural changes in bull and boar plasma membranes.Crossref | GoogleScholarGoogle Scholar | 2331890PubMed |

Dittmer, J. C., and Wells, M. A. (1969). Quantitative and qualitative analysis of lipids. In ‘Methods of Enzymology’, Vol. 14. (Ed. J. M. Lowenstein.) pp. 484–530. (Academic Press: New York.)

Engel, K. M., Schiller, J., Muller, K., Dannenberger, D., and Jakop, U. (2017). The phospholipid composition of kangaroo spermatozoa verified by mass spectrometric lipid analysis. Lipids 52, 857–869.
The phospholipid composition of kangaroo spermatozoa verified by mass spectrometric lipid analysis.Crossref | GoogleScholarGoogle Scholar | 28801719PubMed |

Ezzati, M., Shanehbandi, D., Hamdi, K., Rahbar, S., and Pashaisl, M. (2020). Influence of cryopreservation on structure and function of mammalian spermatozoa. Cell Tissue Bank. 21, 1–15.
Influence of cryopreservation on structure and function of mammalian spermatozoa.Crossref | GoogleScholarGoogle Scholar | 31797118PubMed |

Flesch, F. M., and Gadella, B. M. (2000). Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim. Biophys. Acta 1469, 197–235.
Dynamics of the mammalian sperm plasma membrane in the process of fertilization.Crossref | GoogleScholarGoogle Scholar | 11063883PubMed |

Folch, J., Lees, M., and Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509.
A simple method for the isolation and purification of total lipids from animal tissues.Crossref | GoogleScholarGoogle Scholar | 13428781PubMed |

Geer, B. W., Miller, R. R., and Heinstra, P. W. H. (1991). Genetic and dietary control of alcohol in Drosophila: role in cell damage. In ‘Liver Pathology and Alcohol. Drug and Alcohol Abuse Reviews, Vol. 2’. (Ed. R. R. Watson.) pp. 325–373. (Humana Press: Totowa.)

Gillis, G., Peterson, R., Russell, L., Hook, L., and Freund, M. (1978). Isolation and characterization of membrane vesicles from human and boar spermatozoa: methods using nitrogen cavitation and ionophore induced vesiculation. Prep. Biochem. 8, 363–378.
Isolation and characterization of membrane vesicles from human and boar spermatozoa: methods using nitrogen cavitation and ionophore induced vesiculation.Crossref | GoogleScholarGoogle Scholar | 714884PubMed |

Giraud, M. N., Motta, C., Boucher, D., and Grizard, G. (2000). Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa. Hum. Reprod. 15, 2160–2164.
Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 11006192PubMed |

Hammerstedt, R. H., Graham, J. K., and Nolan, J. O. (1990). Cryopreservation of mammalian sperm: what we ask them to survive. J. Androl. 11, 73–88.
| 2179184PubMed |

Ingólfsson, H. I., Melo, M. N., van Eerden, F. J., Arnarez, C., Lopez, C. A., Wassenaar, T. A., Periole, X., de Vries, A. H., Tielemann, D. P., and Marrink, S. J. (2014). Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559.
Lipid organization of the plasma membrane.Crossref | GoogleScholarGoogle Scholar | 25229711PubMed |

Jain, Y. C., and Anand, S. R. (1976). Fatty acids and fatty aldehydes of buffalo seminal plasma and sperm lipids. J. Reprod. Fertil. 47, 255–267.
Fatty acids and fatty aldehydes of buffalo seminal plasma and sperm lipids.Crossref | GoogleScholarGoogle Scholar | 957324PubMed |

Johnston, S. D., Lever, J., McLeod, R., Oishi, M., Qualischefski, E., Omanga, C., Leitner, M., Price, R., Barker, L., Kamau, K., Gaughan, J., and D’Occhio, M. (2014a). Semen collection and seminal characteristics of the Australian saltwater crocodile (Crocodylus porosus). Aquaculture 422–423, 25–35.
Semen collection and seminal characteristics of the Australian saltwater crocodile (Crocodylus porosus).Crossref | GoogleScholarGoogle Scholar |

Johnston, S. D., Lever, J., McLeod, R., Qualischefski, E., Brabazon, S., Walton, S., and Collins, S. (2014b). Extension, osmotic tolerance, and cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa. Aquaculture 426–427, 213–221.
Extension, osmotic tolerance, and cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Johnston, S. D., Qualischefski, E., Cooper, J., McLeod, R., Lever, J., Nixon, B., Anderson, A. L., Hobbs, R., Gosálvez, J., López-Fernández, C., and Keeley, T. (2017). Cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa. Reprod. Fertil. Dev. 29, 2235–2244.
Cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 28356183PubMed |

Jones, R. (2002). Plasma membrane composition and organization during maturation of spermatozoa in the epididymis. In ‘The Epididymis: From Molecules to Clinical Practice’. (Eds B. Robaire and B. T. Hinton.) pp. 405–416. (Kluwer Academic/Plenum Publishers: New York.)

Komarek, R. J., Picket, B. W., Gibson, E. W., and Lenz, R. N. (1965). Composition of lipids in stallion semen. J. Reprod. Fertil. 10, 337–342.
Composition of lipids in stallion semen.Crossref | GoogleScholarGoogle Scholar | 5851436PubMed |

Ladha, S. (1998). Lipid heterogeneity and membrane fluidity in a highly polarized cell, the mammalian spermatozoon. J. Membr. Biol. 165, 1–10.
Lipid heterogeneity and membrane fluidity in a highly polarized cell, the mammalian spermatozoon.Crossref | GoogleScholarGoogle Scholar | 9705977PubMed |

Ladha, S. (2000). The lipid organization of the cell membrane. Grasas Aceites 51, 56–65.
The lipid organization of the cell membrane.Crossref | GoogleScholarGoogle Scholar |

Lenzi, A., Picardo, M., Gandini, L., and Dondero, F. (1996). Lipids of the sperm membrane: From polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Hum. Reprod. Update 2, 246–256.
Lipids of the sperm membrane: From polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy.Crossref | GoogleScholarGoogle Scholar | 9079417PubMed |

Lin, D. S., Conner, W. E., Wolff, D. P., and Neuringer, D. L. (1993). Unique lipids of primate spermatozoa: Desmosterol and docosahexaenoic acid. J. Lipid Res. 34, 491–499.
Unique lipids of primate spermatozoa: Desmosterol and docosahexaenoic acid.Crossref | GoogleScholarGoogle Scholar | 8468532PubMed |

Lucio, C. F., Brito, M. M., Angrimani, D. S. R., Belaz, K. R. A., Morais, D., Zampieri, D., Losano, J. D. A., Assumpção, M. E. O. A., Nichi, M., Eberlin, M. N., and Vannuchhi, C. I. (2017). Lipid composition of the canine sperm plasma membrane as markers of sperm motility. Reprod. Dom. Anim. 52, 208–213.

Mandal, R., Badyaker, D., and Chakrabarty, J. (2014). Role of membrane lipid fatty acids in sperm cryopreservation. Adv. Androl. 2014, 190542.
Role of membrane lipid fatty acids in sperm cryopreservation.Crossref | GoogleScholarGoogle Scholar |

Martínez, P., and Morros, A. (1996). Membrane lipid dynamics during human sperm capacitation. Front. Biosci. 1, d103–d117.
Membrane lipid dynamics during human sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 9159218PubMed |

McClean, R., MacCallum, C., Blyde, D., Holt, W. V., and Johnston, S. D. (2006). Ultrastructure, osmotic tolerance, glycerol toxicity and cryopreservation of caput and cauda epididymidal kangaroo spermatozoa. Reprod. Fertil. Dev. 18, 469–476.
Ultrastructure, osmotic tolerance, glycerol toxicity and cryopreservation of caput and cauda epididymidal kangaroo spermatozoa.Crossref | GoogleScholarGoogle Scholar | 16737640PubMed |

McClean, R. V., Holt, W. V., and Johnston, S. D. (2007). Ultrastructural observations of cryoinjury in kangaroo spermatozoa. Cryobiology 54, 271–280.
Ultrastructural observations of cryoinjury in kangaroo spermatozoa.Crossref | GoogleScholarGoogle Scholar | 17462621PubMed |

Melville, D. F., Johnston, S. D., and Miller, R. R. (2012). Flying-fox (Pteropus spp.) sperm membrane fatty acid composition, its relationship to cold shock injury and implications for cryopreservation success. Cryobiology 65, 224–229.
Flying-fox (Pteropus spp.) sperm membrane fatty acid composition, its relationship to cold shock injury and implications for cryopreservation success.Crossref | GoogleScholarGoogle Scholar | 22771758PubMed |

Mengerink, K. J., and Vacquire, V. D. (2004). Isolation of sea urchin sperm plasma membranes. In ‘Germ Cell Protocols, Vol. 1, Sperm and Oocyte Analysis’. (Ed. H. Schatten.) pp. 141–150. (Humana Press: Totowa.)

Metcalfe, L. D., Schmitz, A. A., and Pelka, J. R. (1966). Rapid preparation of fatty acids esters from lipids for gas chromatographic analysis. Anal. Chem. 38, 514–515.
Rapid preparation of fatty acids esters from lipids for gas chromatographic analysis.Crossref | GoogleScholarGoogle Scholar |

Miller, R. R., Jr (2004). Alcohol-induced membrane lipid peroxidation. In ‘Nutrition and Alcohol: Linking Nutrient Interactions and Dietary Intake’. (Eds R. R. Watson and V. R. Preedy.) pp. 339–364. (CRC Press:Boca Raton.)

Miller, R. R., Jr (2013). Ethanol-induced lipid peroxidation and apoptosis. In ‘Alcohol, Nutrition, and Health Consequences’. (Eds R. R. Watson, V. R. Preedy, and S. Zibabi.) pp. 35 – 62. (Humana Press: New York.)

Miller, R. R., Jr, and Heinstra, P. W. H. (1992). Metabolic flux and the role of lipids in alcohol tolerance in Drosophila. In ‘Nutrition and Alcohol.’ (Eds R. R. Watson and B. Watzl.) pp. 205–242. (CRC Press: Boca Raton.)

Miller, R. R., Sheffer, C. J., Cornett, C. L., McClean, R., MacCallum, C., and Johnston, S. D. (2004). Sperm membrane fatty acid composition in the eastern grey kangaroo (Macropus giganteus), koala (Phascolarctos cinereus), and common wombat (Vombatus ursinus) and its relationship to cold shock injury and cryopreservation success. Cryobiology 49, 137–148.
Sperm membrane fatty acid composition in the eastern grey kangaroo (Macropus giganteus), koala (Phascolarctos cinereus), and common wombat (Vombatus ursinus) and its relationship to cold shock injury and cryopreservation success.Crossref | GoogleScholarGoogle Scholar | 15351685PubMed |

Miller, R. R., Cornett, C. L., Waterhouse, K. E., and Farstad, W. (2005). Comparative aspects of sperm membrane fatty acid composition in silver (Vulpes vulpes) and blue (Alopex lagopus) foxes, and their relationship to cell cryopreservation. Cryobiology 51, 66–75.
Comparative aspects of sperm membrane fatty acid composition in silver (Vulpes vulpes) and blue (Alopex lagopus) foxes, and their relationship to cell cryopreservation.Crossref | GoogleScholarGoogle Scholar | 16040024PubMed |

Miller, R. R., Jr, Owen, M., Scanlan, C., VanEgmond, K., Wessel, T. K., and Zawatsky, C. N. (2019). Arachidonic acid, docosahexaenoic acid, and ethanol. In ‘Omega Fatty Acids in Neurological Health’. (Eds R. R. Watson and V. R. Preedy.) pp. 63–79. (Elsevier, Academic Press: Burlington.)

Nixon, B., Anderson, A. L., Smith, N. D., McLeod, R., and Johnston, S. D. (2016). The Australian saltwater crocodile (Crocodylus porosus) provides evidence that the capacitation of spermatozoa may extend beyond the mammalian lineage. Proc. Biol. Sci. 283, 20160495.
The Australian saltwater crocodile (Crocodylus porosus) provides evidence that the capacitation of spermatozoa may extend beyond the mammalian lineage.Crossref | GoogleScholarGoogle Scholar | 27147099PubMed |

Nixon, B., Johnston, S. D., Skerrett-Byrne, D. A., Anderson, A. L., Stanger, S. J., Bromfield, E. G., Martin, J. H., Hansbro, P. M., and Dun, M. D. (2019). Modification of crocodile spermatozoa refutes the tenet that post-testicular sperm maturation is restricted to mammals. Mol. Cell. Proteomics 18, S58–S76.
Modification of crocodile spermatozoa refutes the tenet that post-testicular sperm maturation is restricted to mammals.Crossref | GoogleScholarGoogle Scholar | 30072580PubMed |

Nixon, B., Anderson, A. L., Bromfield, E. G., Martin, J. H., Cafe, S. L., Skerrett-Byrne, D. A., Dun, M. D., Eamens, A. L., De Iuliis, G. N., and Johnston, S. D. (2021). Post-testicular sperm maturation in the saltwater crocodile (Crocodylus porosus): assessing the temporal acquisition of sperm motility. Reprod. Fertil. Dev , .
Post-testicular sperm maturation in the saltwater crocodile (Crocodylus porosus): assessing the temporal acquisition of sperm motility.Crossref | GoogleScholarGoogle Scholar | 33743842PubMed |

Parks, J. E., and Graham, J. K. (1992). Effects of cryopreservation procedures on sperm membranes. Theriogenology 38, 209–222.
Effects of cryopreservation procedures on sperm membranes.Crossref | GoogleScholarGoogle Scholar | 16727131PubMed |

Parks, J. E., and Lynch, D. V. (1992). Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology 29, 255–266.
Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes.Crossref | GoogleScholarGoogle Scholar | 1582232PubMed |

Parks, J. E., Arion, J. W., and Foote, R. H. (1987). Lipids of plasma membrane and outer acrosomal membrane of bovine spermatozoa. Biol. Reprod. 37, 1249–1258.
Lipids of plasma membrane and outer acrosomal membrane of bovine spermatozoa.Crossref | GoogleScholarGoogle Scholar | 2832008PubMed |

Pastor-Soler, N. M., Fisher, J. S., Sharpe, R., Hill, E., Van Hoek, A., Brown, D., and Breton, S. (2010). Aquaporin 9 expression in the developing rat epididymis is modulated by steroid hormones. Reproduction 139, 613–621.
Aquaporin 9 expression in the developing rat epididymis is modulated by steroid hormones.Crossref | GoogleScholarGoogle Scholar | 19948840PubMed |

Poulos, A., and White, I. G. (1973). Phospholipids of human spermatozoa and seminal plasma. J. Reprod. Fertil. 35, 265–272.
Phospholipids of human spermatozoa and seminal plasma.Crossref | GoogleScholarGoogle Scholar | 4356503PubMed |

Poulos, A., Darin-Bennett, A., and White, I. G. (1973). The phospholipid-bound fatty acid and aldehydes of mammalian spermatozoa. Comp. Biochem. Physiol. B 46, 541–549.
The phospholipid-bound fatty acid and aldehydes of mammalian spermatozoa.Crossref | GoogleScholarGoogle Scholar | 4754770PubMed |

Samadian, F., Towhidi, A., Rezayazdi, K., and Bahreini, M. (2010). Effects of dietary n-3 fatty acids on characteristics and ovine sperm. Animal 4, 2017–2022.
| 22445376PubMed |

Sun, G. Y., and Sun, A. Y. (1985). Ethanol and membrane lipids. Alcohol. Clin. Exp. Res. 9, 164–180.
Ethanol and membrane lipids.Crossref | GoogleScholarGoogle Scholar | 2988363PubMed |

Swain, J. E., and Miller, R. R. (2000). A post cryogenic comparison of membrane fatty acids of elephant spermatozoa. Zoo Biol. 19, 461–473.
A post cryogenic comparison of membrane fatty acids of elephant spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Tapia, J. A., Macias-Garcia, B., Miro-Moran, A., Ortega-Ferrusola, C., Salido, G. M., Pena, F. J., and Aparicio, I. M. (2012). The membrane of the mammalian spermatozoa: Much more than an inert envelope. Reprod. Domest. Anim. 47, 65–75.
The membrane of the mammalian spermatozoa: Much more than an inert envelope.Crossref | GoogleScholarGoogle Scholar | 22681300PubMed |

Verkman, A. S., and Mitra, A. C. (2000). Structure and function of aquaporin water channels. Am. J. Physiol. Renal Physiol. 278, F13–F28.
Structure and function of aquaporin water channels.Crossref | GoogleScholarGoogle Scholar | 10644652PubMed |

Wassall, S. R., and Stillwell, W. (2009). Polyunsaturated fatty acid cholesterol interactions: domain formation in membranes. Biochim. Biophys. Acta 1788, 24–32.
Polyunsaturated fatty acid cholesterol interactions: domain formation in membranes.Crossref | GoogleScholarGoogle Scholar | 19014904PubMed |

Waterhouse, K. E., Hofmo, P. O., Tverdal, A., and Miller, R. R. (2006). Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm. Reproduction 131, 887–894.
Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm.Crossref | GoogleScholarGoogle Scholar | 16672353PubMed |

White, I. G. (1993). Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review. Reprod. Fertil. Dev. 5, 639–658.
Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review.Crossref | GoogleScholarGoogle Scholar | 9627725PubMed |

Zalata, A. A., Christophe, A. B., Depuydt, C. E., Schoonjans, F., and Comhaire, F. H. (1998). The fatty acid composition of phospholipids of sperm from infertile patients. Mol. Hum. Reprod. 4, 111–118.
The fatty acid composition of phospholipids of sperm from infertile patients.Crossref | GoogleScholarGoogle Scholar | 9542967PubMed |