Gross and microanatomy of the male reproductive duct system of the saltwater crocodile Crocodylus porosus
Brett Nixon A B E , Amanda L. Anderson A B , Elizabeth G. Bromfield A B , Jacinta H. Martin A B , Tessa Lord A B , Shenae L. Cafe A B , Shaun D. Roman A B C , David A. Skerrett-Byrne A B , Andrew L. Eamens A B , Geoffry N. De Iuliis A B and Stephen D. Johnston DA Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
B Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW 2305, Australia.
C Priority Research Centre for Drug Development, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
D School of Agriculture and Food Sciences, The University of Queensland, Gatton, Qld 4343, Australia.
E Corresponding author. Email: brett.nixon@newcastle.edu.au
Reproduction, Fertility and Development 33(9) 540-554 https://doi.org/10.1071/RD20303
Submitted: 19 November 2020 Accepted: 20 January 2021 Published: 22 March 2021
Abstract
Information on the morphology and histology of the male reproductive system of the Crocodylia species is necessary to determine the role of these tissues in the production of functional spermatozoa. Accordingly, in this study we examined the gross morphology and microanatomy of the testis and the male excurrent duct system through which spermatozoa pass before ejaculation. The data demonstrate that the reproductive system in male saltwater crocodiles comprises paired testes, which convey spermatozoa distally via the rete testis into an excurrent duct system comprising ductuli efferentes, ductuli epididymides, ductus epididymidis and ductus deferens. The epithelium delineating the male tract was dominated by non-ciliated and ciliated cells structured into a simple columnar lining of the ductuli efferentes and ductuli epididymides, through to the high pseudostratified columnar epithelium of the ductus epididymidis and ductus deferens. The morphology and histochemical staining of these ducts suggest their involvement in seminal fluid production and/or its modification, which likely contributes to the nourishment, protection and/or storage of crocodile spermatozoa. As a reflection of their common Archosaurs ancestry, the overall structural characteristics we describe for the crocodile male excurrent duct system share closer similarities to those of the Aves than other clades within the Reptilia class or Mammalia.
Keywords: crocodile, efferent ducts, epididymis, histology, spermatozoa, testis.
References
Ahrenfeldt, R. M. (1953). Two British anatomical studies on American reptiles 1650–1750. I. Hans Sloane: Comparative anatomy of the American crocodile. Herpetologica 9, 79–86.Aire, T. A. (1979). The epididymal region of the Japanese quail (Coturnix coturnix japonica). Acta Anat. (Basel) 103, 305–312.
| The epididymal region of the Japanese quail (Coturnix coturnix japonica).Crossref | GoogleScholarGoogle Scholar | 433566PubMed |
Aire, T. A. (1980). The ductuli efferentes of the epididymal region of birds. J. Anat. 130, 707–723.
| 7429963PubMed |
Aire, T. A. (1982a). The rete testis of birds. J. Anat. 135, 97–110.
| 7130060PubMed |
Aire, T. A. (1982b). Surface morphology of the ducts of the epididymal region of the drake (Anas platyrhynchos) as revealed by scanning and transmission electron microscopy. J. Anat. 135, 513–520.
| 7153170PubMed |
Aire, T. A., and Soley, J. T. (2000). The surface features of the epithelial lining of the ducts of the epididymis of the ostrich (Struthio camelus). Anat. Histol. Embryol. 29, 119–126.
| The surface features of the epithelial lining of the ducts of the epididymis of the ostrich (Struthio camelus).Crossref | GoogleScholarGoogle Scholar | 10932389PubMed |
Amavet, P., Rosso, E., Markariani, R., and Pina, C. I. (2008). Microsatellite DNA markers applied to detection of multiple paternity in Caiman latirostris in Santa Fe, Argentina. J. Exp. Zool. A. Ecol. Genet. Physiol. 309A, 637–642.
| Microsatellite DNA markers applied to detection of multiple paternity in Caiman latirostris in Santa Fe, Argentina.Crossref | GoogleScholarGoogle Scholar |
Bedford, J. M. (2015). The epididymis re-visited: a personal view. Asian J. Androl. 17, 693–698.
| 25851661PubMed |
Bian, X., Zhang, L., Yang, L., Yang, P., Ullah, S., Zhang, Q., and Chen, Q. (2013). Ultrastructure of epididymal epithelium and its interaction with the sperm in the soft-shelled turtle Pelodiscus sinensis. Micron 54–55, 65–74.
| Ultrastructure of epididymal epithelium and its interaction with the sperm in the soft-shelled turtle Pelodiscus sinensis.Crossref | GoogleScholarGoogle Scholar | 24041582PubMed |
Breton, S., and Brown, D. (2013). Regulation of luminal acidification by the V-ATPase. Physiology (Bethesda) 28, 318–329.
| Regulation of luminal acidification by the V-ATPase.Crossref | GoogleScholarGoogle Scholar | 23997191PubMed |
Clulow, J., and Jones, R. C. (1982). Production, transport, maturation, storage and survival of spermatozoa in the male Japanese quail, Coturnix coturnix. J. Reprod. Fertil. 64, 259–266.
| Production, transport, maturation, storage and survival of spermatozoa in the male Japanese quail, Coturnix coturnix.Crossref | GoogleScholarGoogle Scholar | 7069651PubMed |
Da Silva, N., Shum, W. W., and Breton, S. (2007). Regulation of vacuolar proton pumping ATPase-dependent luminal acidification in the epididymis. Asian J. Androl. 9, 476–482.
| Regulation of vacuolar proton pumping ATPase-dependent luminal acidification in the epididymis.Crossref | GoogleScholarGoogle Scholar | 17589784PubMed |
Davenport, M. (1995). Evidence of possible sperm storage in the caiman, Paleosuchus palpebrosus. Herpetol. Rev. 26, 14–15.
Davis, L. M., Glenn, T. C., Elsey, R. M., Dessauer, H. C., and Sawyer, R. H. (2001). Multiple paternity and mating patterns in the American alligator, Alligator mississippiensis. Mol. Ecol. 10, 1011–1024.
| Multiple paternity and mating patterns in the American alligator, Alligator mississippiensis.Crossref | GoogleScholarGoogle Scholar | 11348507PubMed |
Elfgen, V., Mietens, A., Mewe, M., Hau, T., and Middendorff, R. (2018). Contractility of the epididymal duct: function, regulation and potential drug effects. Reproduction 156, R125–R141.
| 30304934PubMed |
Fox, W. (1952). Seasonal variation in the male reproductive system of Pacific coast garter snakes. J. Morphol. 90, 481–553.
| Seasonal variation in the male reproductive system of Pacific coast garter snakes.Crossref | GoogleScholarGoogle Scholar |
Fox, H. (1977). The urogenital system of reptiles. In ‘Biology of the Reptilia’. Vol. 6. (Eds C. Gans and T.S. Parsons).
Getty, R. (1975). ‘The anatomy of the domestic animals.’ (W.B. Saunders Co: Philadelphia)
Gribbins, K. M., Touzinsky, K. F., Siegel, D. S., Venable, K. J., Hester, G. L., and Elsey, R. M. (2011). Ultrastructure of the spermatozoon of the American Alligator, Alligator mississippiensis (Reptilia: Alligatoridae). J. Morphol. 272, 1281–1289.
| Ultrastructure of the spermatozoon of the American Alligator, Alligator mississippiensis (Reptilia: Alligatoridae).Crossref | GoogleScholarGoogle Scholar | 21688296PubMed |
Guerrero, S. M., Calderon, M. L., de Perez, G. R., and Ramirez Pinilla, M. P. (2004). Morphology of the male reproductive duct system of Caiman crocodilus (Crocodylia, Alligatoridae). Ann. Anat. 186, 235–245.
| Morphology of the male reproductive duct system of Caiman crocodilus (Crocodylia, Alligatoridae).Crossref | GoogleScholarGoogle Scholar | 15255300PubMed |
Hansen, L. A., Clulow, J., and Jones, R. C. (1999). The role of Na+-H+ exchange in fluid and solute transport in the rat efferent ducts. Exp. Physiol. 84, 521–527.
| 10362850PubMed |
Hess, R. A., and Hermo, L. (2018). Rete Testis: Structure, Cell Biology and Site for Stem Cell Transplantation. In ‘Encyclopedia of Reproduction (Second Edition)’. Vol. 1. (Ed. M. K. Skinner).
Holmes, H. J., and Gist, D. H. (2004). Excurrent duct system of the male turtle Chrysemys picta. J. Morphol. 261, 312–322.
| Excurrent duct system of the male turtle Chrysemys picta.Crossref | GoogleScholarGoogle Scholar | 15281059PubMed |
Howarth, B. (1983). Fertilizing ability of cock spermatozoa from the testis epididymis and vas deferens following intramagnal insemination. Biol. Reprod. 28, 586–590.
| Fertilizing ability of cock spermatozoa from the testis epididymis and vas deferens following intramagnal insemination.Crossref | GoogleScholarGoogle Scholar | 6850035PubMed |
Johnston, S. D., Lever, J., McLeod, R., Oishi, M., and Collins, S. (2014a). Development of breeding techniques in the crocodile industry. Reproductive anatomy, semen collection, semen preservation and preliminary observations of artificial insemination. Rural Industries Research and Development Corporation, Canberra.
Johnston, S. D., Lever, J., McLeod, R., Oishi, M., Qualischefski, E., Omanga, C., Leitner, M., Price, R., Barker, L., Kamaue, K., Gaughan, J., and D’Occhio, M. (2014b). Semen collection and seminal characteristics of the Australian saltwater crocodile (Crocodylus porosus). Aquaculture 422–423, 25–35.
| Semen collection and seminal characteristics of the Australian saltwater crocodile (Crocodylus porosus).Crossref | GoogleScholarGoogle Scholar |
Jones, R. C. (1999). To store or mature spermatozoa? The primary role of the epididymis. Int. J. Androl. 22, 57–67.
| To store or mature spermatozoa? The primary role of the epididymis.Crossref | GoogleScholarGoogle Scholar | 10194636PubMed |
Katen, A. L., Sipila, P., Mitchell, L. A., Stanger, S. J., Nixon, B., and Roman, S. D. (2017). Epididymal CYP2E1 plays a critical role in acrylamide-induced DNA damage in spermatozoa and paternally mediated embryonic resorptions. Biol. Reprod. 96, 921–935.
| Epididymal CYP2E1 plays a critical role in acrylamide-induced DNA damage in spermatozoa and paternally mediated embryonic resorptions.Crossref | GoogleScholarGoogle Scholar | 28379345PubMed |
Kelly, D. A. (2013). Penile anatomy and hypotheses of erectile function in the American alligator (Alligator mississippiensis): muscular eversion and elastic retraction. Anat. Rec. (Hoboken) 296, 488–494.
| Penile anatomy and hypotheses of erectile function in the American alligator (Alligator mississippiensis): muscular eversion and elastic retraction.Crossref | GoogleScholarGoogle Scholar | 23408539PubMed |
Kuchling, G., Skolek-Winnisch, R., and Bamberg, E. (1981). Histochemical and biochemical investigation on the annual cycle of testis, epididymis, and plasma testosterone of the tortoise, Testudo hermanni hermanni Gmelin. Gen. Comp. Endocrinol. 44, 194–201.
| Histochemical and biochemical investigation on the annual cycle of testis, epididymis, and plasma testosterone of the tortoise, Testudo hermanni hermanni Gmelin.Crossref | GoogleScholarGoogle Scholar | 6941910PubMed |
Lake, P. E. (1971). The male in reproduction. In ‘Physiology and Biochemistry of the Domestic Fowl 3’. (Eds D. J. Ball and B. M. Freeman).
Lance, V. A. (1989). Reproductive cycle of the American alligator. Am. Zool. 29, 999–1018.
| Reproductive cycle of the American alligator.Crossref | GoogleScholarGoogle Scholar |
Moore, B. C., Hamlin, H. J., Botteri, N. L., Lawler, A. N., Mathavan, K. K., and Guillette, L. J. (2010). Posthatching development of Alligator mississippiensis ovary and testis. J. Morphol. 271, 580–595.
| 20013789PubMed |
Moore, B. C., Groenewald, H. B., and Myburgh, J. G. (2020). Histological Investigation of the Nile Crocodile (Crocodylus niloticus) Phallic Glans. South Am. J. Herpetol. 16, 1–9.
| Histological Investigation of the Nile Crocodile (Crocodylus niloticus) Phallic Glans.Crossref | GoogleScholarGoogle Scholar |
Munro, S. S. (1938). Functional changes in fowl sperm during their passage through the excurrent ducts of the male. J. Exp. Zool. 79, 71–92.
| Functional changes in fowl sperm during their passage through the excurrent ducts of the male.Crossref | GoogleScholarGoogle Scholar |
Nixon, B., Ewen, K. A., Krivanek, K. M., Clulow, J., Kidd, G., Ecroyd, H., and Jones, R. C. (2014). Post-testicular sperm maturation and identification of an epididymal protein in the Japanese quail (Coturnix coturnix japonica). Reproduction 147, 265–277.
| Post-testicular sperm maturation and identification of an epididymal protein in the Japanese quail (Coturnix coturnix japonica).Crossref | GoogleScholarGoogle Scholar | 24298048PubMed |
Nixon, B., Cafe, S. L., Eamens, A. L., De Iuliis, G. N., Bromfield, E. G., Martin, J. H., Skerrett-Byrne, D. A., and Dun, M. D. (2020). Molecular insights into the divergence and diversity of post-testicular maturation strategies. Mol. Cell. Endocrinol. 517, 110955.
| Molecular insights into the divergence and diversity of post-testicular maturation strategies.Crossref | GoogleScholarGoogle Scholar | 32783903PubMed |
Nixon, B., Anderson, A. L., Bromfield, E. G., Martin, J. H., Cafe, S. L., Skerrett-Byrne, D. A., Dun, M. D., Eamens, A. L., De Iuliis, G. N., and Johnston, S. D. (2021). Post-testicular sperm maturation in the saltwater crocodile Crocodylus porosus: assessing the temporal acquisition of sperm motility. Reprod. Fertil. Dev. , .
| Post-testicular sperm maturation in the saltwater crocodile Crocodylus porosus: assessing the temporal acquisition of sperm motility.Crossref | GoogleScholarGoogle Scholar | 33631095PubMed |
Pagliarini Cabral, S. R., Zieri, R., Franco-Belussi, L., De Souza Santos, L. R., Saranz Zago, C. E., Taboga, S. R., and Oliveira, C. D. (2011). Morphological changes of the epididymis and description of the excurrent ducts of Phrynops geoffroanus (Testudines: Chelidae) during the reproductive cycle. Anat. Rec. (Hoboken) 294, 145–155.
| Morphological changes of the epididymis and description of the excurrent ducts of Phrynops geoffroanus (Testudines: Chelidae) during the reproductive cycle.Crossref | GoogleScholarGoogle Scholar | 21157925PubMed |
Pelletier, G., Li, S., Luu-The, V., Tremblay, Y., Belanger, A., and Labrie, F. (2001). Immunoelectron microscopic localization of three key steroidogenic enzymes (cytochrome P450(scc), 3 beta-hydroxysteroid dehydrogenase and cytochrome P450(c17)) in rat adrenal cortex and gonads. J. Endocrinol. 171, 373–383.
| Immunoelectron microscopic localization of three key steroidogenic enzymes (cytochrome P450(scc), 3 beta-hydroxysteroid dehydrogenase and cytochrome P450(c17)) in rat adrenal cortex and gonads.Crossref | GoogleScholarGoogle Scholar | 11691658PubMed |
Tingari, M. D. (1971). On the structure of the epididymal region and ductus deferens of the domestic fowl (Gallus domesticus). J. Anat. 109, 423–435.
| 4949288PubMed |
Tingari, M. D. (1972). The fine structure of the epithelial lining of the ex-current duct system of the testis of the domestic fowl (Gallus domesticus). Q. J. Exp. Physiol. Cogn. Med. Sci. 57, 271–295.
| The fine structure of the epithelial lining of the ex-current duct system of the testis of the domestic fowl (Gallus domesticus).Crossref | GoogleScholarGoogle Scholar | 4483132PubMed |
Tingari, M. D. (1973). Observations on the fine structure of spermatozoa in the testis and excurrent ducts of the male fowl, Gallus domesticus. J. Reprod. Fertil. 34, 255–265.
| Observations on the fine structure of spermatozoa in the testis and excurrent ducts of the male fowl, Gallus domesticus.Crossref | GoogleScholarGoogle Scholar | 4741694PubMed |
Tung, P. S., and Fritz, I. B. (1985). Immunolocalization of clusterin in the ram testis, rete testis, and excurrent ducts. Biol. Reprod. 33, 177–186.
| Immunolocalization of clusterin in the ram testis, rete testis, and excurrent ducts.Crossref | GoogleScholarGoogle Scholar | 3904851PubMed |
Volsoe, H. (1944). Structure and seasonal variation of the male reproductive organs of Vipera verus. Spolia Zool Mus hauniensis 5, 7–157.
Wenz, J. R., and Hess, R. A. (1998). Characterization of stage-specific tyrosinated alpha-tubulin immunoperoxidase staining patterns in Sertoli cells of rat seminiferous tubules by light microscopic image analysis. Tissue Cell 30, 492–501.
| Characterization of stage-specific tyrosinated alpha-tubulin immunoperoxidase staining patterns in Sertoli cells of rat seminiferous tubules by light microscopic image analysis.Crossref | GoogleScholarGoogle Scholar | 9839471PubMed |
Zhou, W., De Iuliis, G. N., Turner, A. P., Reid, A. T., Anderson, A. L., McCluskey, A., McLaughlin, E. A., and Nixon, B. (2017). Developmental expression of the dynamin family of mechanoenzymes in the mouse epididymis. Biol. Reprod. 96, 159–173.
| 28395327PubMed |
Zhou, W., De Iuliis, G. N., Dun, M. D., and Nixon, B. (2018). Characteristics of the epididymal luminal environment responsible for sperm maturation and storage. Front. Endocrinol. 9, 59.
| Characteristics of the epididymal luminal environment responsible for sperm maturation and storage.Crossref | GoogleScholarGoogle Scholar |