Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Post-testicular sperm maturation in the saltwater crocodile Crocodylus porosus: assessing the temporal acquisition of sperm motility

Brett Nixon https://orcid.org/0000-0003-2745-8188 A B F , Amanda L. Anderson A B , Elizabeth G. Bromfield A B , Jacinta H. Martin A B , Shenae L. Cafe A B , David A. Skerrett-Byrne A B , Matthew D. Dun C D , Andrew L. Eamens A B , Geoffry N. De Iuliis A B and Stephen D. Johnston https://orcid.org/0000-0002-0290-5458 E
+ Author Affiliations
- Author Affiliations

A Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.

B Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW 2305, Australia.

C Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.

D Priority Research Centre for Cancer Research Innovation and Translation, Hunter Medical Research Institute, Lambton, NSW 2305, Australia.

E School of Agriculture and Food Sciences, The University of Queensland, Gatton, Qld 4343, Australia.

F Corresponding author. Email: brett.nixon@newcastle.edu.au

Reproduction, Fertility and Development 33(9) 530-539 https://doi.org/10.1071/RD20204
Submitted: 10 August 2020  Accepted: 26 November 2020   Published: 26 February 2021

Abstract

Conservation efforts to secure the long-term survival of crocodilian species would benefit from the establishment of a frozen sperm bank in concert with artificial breeding technologies to maintain genetic diversity among captive assurance populations. Working towards this goal, our research has focused on the saltwater crocodile Crocodylus porosus as a tractable model for understanding crocodilian sperm physiology. In extending our systematic characterisation of saltwater crocodile spermatozoa, in this study we examined the development of motility during sperm transport through the excurrent duct system of the male crocodile. The results show that approximately 20% of crocodile testicular spermatozoa are immediately motile but experience a gradient of increasing motility (percentage motile and rate of movement) as they transit the male reproductive tract (epididymis). Moreover, we confirmed that, as in ejaculated crocodile spermatozoa, increased intracellular cAMP levels promoted a significant and sustained enhancement of sperm motility regardless of whether the cells were isolated from the testis or epididymis. Along with the development of artificial reproductive technologies, this research paves the way for the opportunistic recovery, storage and potential utilisation of post-mortem spermatozoa from genetically valuable animals.

Graphical Abstract Image

Keywords: crocodile, epididymis, spermatozoa, sperm capacitation, sperm maturation, sperm motility.


References

Aitken, R. J., and Nixon, B. (2013). Sperm capacitation: a distant landscape glimpsed but unexplored. Mol. Hum. Reprod. 19, 785–793.
Sperm capacitation: a distant landscape glimpsed but unexplored.Crossref | GoogleScholarGoogle Scholar | 24071444PubMed |

Aitken, R. J., Nixon, B., Lin, M., Koppers, A. J., Lee, Y. H., and Baker, M. A. (2007). Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J. Androl. 9, 554–564.
Proteomic changes in mammalian spermatozoa during epididymal maturation.Crossref | GoogleScholarGoogle Scholar | 17589795PubMed |

Amavet, P., Rosso, E., Markariani, R., and Pina, C. I. (2008). Microsatellite DNA markers applied to detection of multiple paternity in Caiman latirostris in Santa Fe, Argentina. J. Exp. Zool. A Ecol. Genet. Physiol. 309A, 637–642.
Microsatellite DNA markers applied to detection of multiple paternity in Caiman latirostris in Santa Fe, Argentina.Crossref | GoogleScholarGoogle Scholar |

Asquith, K. L., Baleato, R. M., McLaughlin, E. A., Nixon, B., and Aitken, R. J. (2004). Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J. Cell Sci. 117, 3645–3657.
Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition.Crossref | GoogleScholarGoogle Scholar | 15252132PubMed |

Barth, A. D. (1995). Evaluation of frozen bovine semen by the veterinary practitioner. In ‘Proceedings of Bovine Short Course’. pp. 105–110. (American College of Theriogenologists and Society for Theriogenology: Hastings, USA.)

Bedford, J. M. (2014). Singular features of fertilization and their impact on the male reproductive system in eutherian mammals. Reproduction 147, R43–R52.
Singular features of fertilization and their impact on the male reproductive system in eutherian mammals.Crossref | GoogleScholarGoogle Scholar | 24194570PubMed |

Bedford, J. M. (2015). The epididymis re-visited: a personal view. Asian J. Androl. 17, 693–698.
| 25851661PubMed |

Biggers, J. D., Whitten, W. K., and Whittingham, D. G. (1971). The culture of mouse embryos in vitro. In ‘Methods in Mammalian Embryology’. (Ed. J. C. Daniel. Jr.) pp. 86–116. (W. H. Freeman and Company, San Francisco.)

Bjørndahl, L., Søderlund, I., and Kvist, U. (2003). Evaluation of the one-step eosin–nigrosin staining technique for human sperm vitality assessment. Hum. Reprod. 18, 813–816.
Evaluation of the one-step eosin–nigrosin staining technique for human sperm vitality assessment.Crossref | GoogleScholarGoogle Scholar | 12660276PubMed |

Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Machler, M., and Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400.
glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling.Crossref | GoogleScholarGoogle Scholar |

Cafe, S. L., Anderson, A. L., and Nixon, B. (2020). In vitro induction and detection of acrosomal exocytosis in human spermatozoa. Bio Protoc. 10, e3689.
In vitro induction and detection of acrosomal exocytosis in human spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Campbell, L., Cafe, S. L., Upton, R., Doody, J. S., Nixon, B., Clulow, J., and Clulow, S. (2020). A model protocol for the cryopreservation and recovery of motile lizard sperm using the phosphodiesterase inhibitor caffeine. Conserv Physiol. 8, coaa044.
A model protocol for the cryopreservation and recovery of motile lizard sperm using the phosphodiesterase inhibitor caffeine.Crossref | GoogleScholarGoogle Scholar | 32607239PubMed |

Clulow, J., and Jones, R. C. (1982). Production, transport, maturation, storage and survival of spermatozoa in the male Japanese quail, Coturnix coturnix. J. Reprod. Fertil. 64, 259–266.
Production, transport, maturation, storage and survival of spermatozoa in the male Japanese quail, Coturnix coturnix.Crossref | GoogleScholarGoogle Scholar | 7069651PubMed |

Davenport, M. (1995). Evidence of possible sperm storage in the caiman, Paleosuchus palpebrosus. Herpetol. Rev. 26, 14–15.

Davis, L. M., Glenn, T. C., Elsey, R. M., Dessauer, H. C., and Sawyer, R. H. (2001). Multiple paternity and mating patterns in the American alligator, Alligator mississippiensis. Mol. Ecol. 10, 1011–1024.
Multiple paternity and mating patterns in the American alligator, Alligator mississippiensis.Crossref | GoogleScholarGoogle Scholar | 11348507PubMed |

Depeiges, A., and Dacheux, J. L. (1985). Acquisition of sperm motility and its maintenance during storage in the lizard, Lacerta vivipara. J. Reprod. Fertil. 74, 23–27.
Acquisition of sperm motility and its maintenance during storage in the lizard, Lacerta vivipara.Crossref | GoogleScholarGoogle Scholar | 4020769PubMed |

Esponda, P., and Bedford, J. M. (1987). Post-testicular change in the reptile sperm surface with particular reference to the snake, Natrix fasciata. J. Exp. Zool. 241, 123–132.
Post-testicular change in the reptile sperm surface with particular reference to the snake, Natrix fasciata.Crossref | GoogleScholarGoogle Scholar | 2435838PubMed |

Grigg, G., and Gans, C. (1993). Morphology and physiology of the Crocodylia. In ‘Fauna of Australia’. Vol. 2A Amphibia and Reptilia. Chapter 40, pp. 326–336. (Australian Government Publishing Service: Canberra.)

Grigg, G., and Kirshner, D. (2015). ‘Biology and Evolution of Crocodylians.’ (CSIRO Publishing: Melbourne.)

Guerrero, S. M., Calderon, M. L., de Perez, G. R., and Ramirez Pinilla, M. P. (2004). Morphology of the male reproductive duct system of Caiman crocodilus (Crocodylia, Alligatoridae). Ann. Anat. 186, 235–245.
Morphology of the male reproductive duct system of Caiman crocodilus (Crocodylia, Alligatoridae).Crossref | GoogleScholarGoogle Scholar | 15255300PubMed |

Hale, M. D., Cloy-McCoy, J. A., Doheny, B. M., and Parrott, B. B. (2018). Reproductive Biology of Crocodilians. In ‘Encyclopedia of Reproduction’, 2nd ed, Vol. 6. (Ed. M. K. Skinner.) pp. 646–653. (Academic Press: Cambridge, Massachusetts.)

Howarth, B. (1983). Fertilizing ability of cock spermatozoa from the testis epididymis and vas deferens following intramagnal insemination. Biol. Reprod. 28, 586–590.
Fertilizing ability of cock spermatozoa from the testis epididymis and vas deferens following intramagnal insemination.Crossref | GoogleScholarGoogle Scholar | 6850035PubMed |

International Union for Conservation of Nature (IUCN) (2020). The IUCN Red List of Threatened Species. Version 2020–2. https://www.iucnredlist.org/search?query=Crocodilians&searchType=species [verified 6 October 2020].

Johnston, S. D., Lever, J., McLeod, R., Oishi, M., and Collins, S. (2014a). Development of breeding techniques in the crocodile industry. Reproductive anatomy, semen collection, semen preservation and preliminary observations of artificial insemination. Rural Industries Research and Development Corporation, Canberra.

Johnston, S. D., Lever, J., McLeod, R., Oishi, M., Qualischefski, E., Omanga, C., Leitner, M., Price, R., Barker, L., Kamaue, K., Gaughan, J., and D’Occhio, M. (2014b). Semen collection and seminal characteristics of the Australian saltwater crocodile (Crocodylus porosus). Aquaculture 422–423, 25–35.
Semen collection and seminal characteristics of the Australian saltwater crocodile (Crocodylus porosus).Crossref | GoogleScholarGoogle Scholar |

Johnston, S. D., Lever, J., McLeod, R., Qualischefski, E., Brabazon, S., Walton, S., and Collins, S. N. (2014c). Extension, osmotic tolerance and cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa. Aquaculture 426–427, 213–221.
Extension, osmotic tolerance and cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Johnston, S. D., Lopez-Fernandez, C., Arroyo, F., Fernandez, J. L., and Gosalvez, J. (2017a). The assessment of sperm DNA fragmentation in the saltwater crocodile (Crocodylus porosus). Reprod. Fertil. Dev. 29, 630–636.
The assessment of sperm DNA fragmentation in the saltwater crocodile (Crocodylus porosus).Crossref | GoogleScholarGoogle Scholar | 26462595PubMed |

Johnston, S. D., Qualischefski, E., Cooper, J., McLeod, R., Lever, J., Nixon, B., Anderson, A. L., Hobbs, R., Gosalvez, J., Lopez-Fernandez, C., and Keeley, T. (2017b). Cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa. Reprod. Fertil. Dev. 29, 2235–2244.
Cryopreservation of saltwater crocodile (Crocodylus porosus) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 28356183PubMed |

Johnston, S. D., Lever, J., McLeod, R., Qualischefski, E., Madrigal-Valverde, M., and Nixon, B. (2021). Assisted breeding technology in the saltwater crocodile Crocodylus porosus: a review and look to the future. Reprod. Fertil. Dev , .
Assisted breeding technology in the saltwater crocodile Crocodylus porosus: a review and look to the future.Crossref | GoogleScholarGoogle Scholar | 33581743PubMed |

Jones, R. C. (1999). To store or mature spermatozoa? The primary role of the epididymis. Int. J. Androl. 22, 57–67.
To store or mature spermatozoa? The primary role of the epididymis.Crossref | GoogleScholarGoogle Scholar | 10194636PubMed |

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Crossref | GoogleScholarGoogle Scholar | 5432063PubMed |

Mitchell, L. A., Nixon, B., and Aitken, R. J. (2007). Analysis of chaperone proteins associated with human spermatozoa during capacitation. Mol. Hum. Reprod. 13, 605–613.
Analysis of chaperone proteins associated with human spermatozoa during capacitation.Crossref | GoogleScholarGoogle Scholar | 17595329PubMed |

Munro, S. S. (1938). Functional changes in fowl sperm during their passage through the excurrent ducts of the male. J. Exp. Zool. 79, 71–92.
Functional changes in fowl sperm during their passage through the excurrent ducts of the male.Crossref | GoogleScholarGoogle Scholar |

Nixon, B., Ewen, K. A., Krivanek, K. M., Clulow, J., Kidd, G., Ecroyd, H., and Jones, R. C. (2014). Post-testicular sperm maturation and identification of an epididymal protein in the Japanese quail (Coturnix coturnix japonica). Reproduction 147, 265–277.
Post-testicular sperm maturation and identification of an epididymal protein in the Japanese quail (Coturnix coturnix japonica).Crossref | GoogleScholarGoogle Scholar | 24298048PubMed |

Nixon, B., Anderson, A. L., Smith, N. D., McLeod, R., and Johnston, S. D. (2016). The Australian saltwater crocodile (Crocodylus porosus) provides evidence that the capacitation of spermatozoa may extend beyond the mammalian lineage. Proc. Biol. Sci. 283, 20160495.
The Australian saltwater crocodile (Crocodylus porosus) provides evidence that the capacitation of spermatozoa may extend beyond the mammalian lineage.Crossref | GoogleScholarGoogle Scholar | 27147099PubMed |

Nixon, B., De Iuliis, G. N., Hart, H. M., Zhou, W., Mathe, A., Bernstein, I. R., Anderson, A. L., Stanger, S. J., Skerrett-Byrne, D. A., Jamaluddin, M. F. B., Almazi, J. G., Bromfield, E. G., Larsen, M. R., and Dun, M. D. (2019a). Proteomic profiling of mouse epididymosomes reveals their contributions to post-testicular sperm maturation. Mol. Cell. Proteomics 18, S91–S108.
Proteomic profiling of mouse epididymosomes reveals their contributions to post-testicular sperm maturation.Crossref | GoogleScholarGoogle Scholar | 30213844PubMed |

Nixon, B., Johnston, S. D., Skerrett-Byrne, D. A., Anderson, A. L., Stanger, S. J., Bromfield, E. G., Martin, J. H., Hansbro, P. M., and Dun, M. D. (2019b). Modification of crocodile spermatozoa refutes the tenet that post-testicular sperm maturation is restricted to mammals. Mol. Cell. Proteomics 18, S58–S76.
Modification of crocodile spermatozoa refutes the tenet that post-testicular sperm maturation is restricted to mammals.Crossref | GoogleScholarGoogle Scholar |

Nixon, B., Cafe, S. L., Eamens, A. L., De Iuliis, G. N., Bromfield, E. G., Martin, J. H., Skerrett-Byrne, D. A., and Dun, M. D. (2020). Molecular insights into the divergence and diversity of post-testicular maturation strategies. Mol. Cell. Endocrinol. 517, 110955.
Molecular insights into the divergence and diversity of post-testicular maturation strategies.Crossref | GoogleScholarGoogle Scholar | 32783903PubMed |

Nixon, B., Anderson, A. L., Bromfield, E. G., Martin, J. H., Lord, T., Cafe, S. L., Roman, S. D., Skerrett-Byrne, D. A., Eamens, A. L., De Iuliis, G. N., and Johnston, S. D. (2021). Gross and microanatomy of the male reproductive duct system of the saltwater crocodile Crocodylus porosus. Reprod. Fertil. Dev , .
Gross and microanatomy of the male reproductive duct system of the saltwater crocodile Crocodylus porosus.Crossref | GoogleScholarGoogle Scholar | 33581743PubMed |

Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl Acad. Sci. USA 76, 4350–4354.
Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Crossref | GoogleScholarGoogle Scholar | 388439PubMed |

Wells, R. W., and Wellington, C. R. (1985). A classification of the Amphibia and Reptilia of Australia. Aust. J. Herpetol. Supplemental Series 1, 1–61.

Zhou, W., De Iuliis, G. N., Dun, M. D., and Nixon, B. (2018). Characteristics of the epididymal luminal environment responsible for sperm maturation and storage. Front. Endocrinol. 9, 59.
Characteristics of the epididymal luminal environment responsible for sperm maturation and storage.Crossref | GoogleScholarGoogle Scholar |