Physiological implications of COVID-19 in reproduction: angiotensin-converting enzyme 2 a key player
G. Taru Sharma A F , Vikash Chandra A , Pratheesh Mankuzhy B , Yasotha Thirupathi A , Dilip Kumar Swain C , Harikrishna Pillai D , Shailesh Kumar Patel E , Mamta Pathak E and SaiKumar Guttula EA Department of Physiology, Indian Council of Agricultural Research (ICAR) – Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttarpradesh, India.
B Department of Physiology, Kerala Veterinary and Animal Sciences University, Lakkidi, Pookode, Kerala, India.
C Department of Physiology, UP Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, Uttarpradesh, India.
D Animal Husbandry Department, Government of Kerala, Kerala, India.
E Department of Pathology, Indian Council of Agricultural Research (ICAR) – Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttarpradesh, India.
F Corresponding author. Email: gts553@gmail.com
Reproduction, Fertility and Development 33(6) 381-391 https://doi.org/10.1071/RD20274
Submitted: 16 October 2020 Accepted: 19 January 2021 Published: 18 March 2021
Journal Compilation © CSIRO 2021 Open Access CC BY
Abstract
The COVID-19 outbreak, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), was first identified in China, and it has quickly become a global threat to public health due to its rapid rate of transmission and fatalities. Angiotensin-converting enzyme 2 (ACE2) has been identified as a receptor that mediates the entry of SARS-CoV-2 into human cells, as in the case of severe acute respiratory syndrome coronavirus (SARS-CoV). Several studies have reported that ACE2 expression is higher in Leydig, Sertoli and seminiferous ductal cells of males, as well as in ovarian follicle cells of females, suggesting possible potential pathogenicity of the coronavirus in the reproductive system. Higher ACE2 expression in the human placenta and reports of vertical transmission of SARS-CoV-2 among clinical cases have increased the relevance of further studies in this area. This review focuses on the interaction between SARS-CoV-2 and the ACE2 receptor and speculates on the mechanistic interplay in association with male and female reproductive physiology. In addition, based on the available literature, we discuss the alleged sex differences in terms of the infectivity of SARS-CoV-2, which is claimed greater among males, and further explore the physiological role of ACE2 and 17β-oestradiol for the same.
Keywords: COVID-19, SARS-CoV-2, ACE2 receptors, reproductive physiology, gender bias.
References
Asselta, R., Paraboschi, E. M., Mantovani, A., and Duga, S. (2020). ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY) 12, 10087–10098.| ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy.Crossref | GoogleScholarGoogle Scholar | 32501810PubMed |
Atanassova, N., Kancheva, L., and Somlev, B. (1998). Bradykinin stimulates prepubertal rat germ cell proliferation in vitro. Immunopharmacology 40, 173–178.
| Bradykinin stimulates prepubertal rat germ cell proliferation in vitro.Crossref | GoogleScholarGoogle Scholar | 9858060PubMed |
Baena, E., Shao, Z., Linn, D. E., Glass, K., Hamblen, M. J., Fujiwara, Y., Kim, J., Nguyen, M., Zhang, X., Godinho, F. J., Bronson, R. T., Mucci, L. A., Loda, M., Yuan, G. C., Orkin, S. H., and Li, Z. (2013). ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev. 27, 683–698.
| ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients.Crossref | GoogleScholarGoogle Scholar | 23512661PubMed |
Bende, M., and Gredmark, T. (1999). Nasal stuffiness during pregnancy. Laryngoscope 109, 1108–1110.
| Nasal stuffiness during pregnancy.Crossref | GoogleScholarGoogle Scholar | 10401850PubMed |
Bertakis, K. D., Azari, R., Helms, L. J., Callahan, E. J., and Robbins, J. A. (2000). Gender differences in the utilization of health care services. J. Fam. Pract. 49, 147–152.
| 10718692PubMed |
Brainard, J., Pond, K., Hooper, L., Edmunds, K., and Hunter, P. (2016). Presence and Persistence of Ebola or Marburg Virus in Patients and Survivors: A Rapid Systematic Review. PLoS Negl. Trop. Dis. 10, e0004475.
| Presence and Persistence of Ebola or Marburg Virus in Patients and Survivors: A Rapid Systematic Review.Crossref | GoogleScholarGoogle Scholar | 27926934PubMed |
Brosnihan, K. B., Senanayake, P. S., Li, P., and Ferrario, C. M. (1999). Bi-directional actions of estrogen on the renin-angiotensin system. Braz J Med Biol Res 32, 373–381.
| Bi-directional actions of estrogen on the renin-angiotensin system.Crossref | GoogleScholarGoogle Scholar | 10347798PubMed |
Brosnihan, K. B., Neves, L. A., Joyner, J., Averill, D. B., Chappell, M. C., Sarao, R., Penninger, J., and Ferrario, C. M. (2003). Enhanced renal immunocytochemical expression of ANG-(1–7) and ACE2 during pregnancy. Hypertension (Dallas, Tex.: 1979 42, 749–753.
| Enhanced renal immunocytochemical expression of ANG-(1–7) and ACE2 during pregnancy.Crossref | GoogleScholarGoogle Scholar |
Brosnihan, K. B., Hodgin, J. B., Smithies, O., Maeda, N., and Gallagher, P. (2008). Tissue-specific regulation of ACE/ACE2 and AT1/AT2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-alpha knock-out mice. Exp. Physiol. 93, 658–664.
| Tissue-specific regulation of ACE/ACE2 and AT1/AT2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-alpha knock-out mice.Crossref | GoogleScholarGoogle Scholar | 18192335PubMed |
Burrell, L. M., Johnston, C. I., Tikellis, C., and Cooper, M. E. (2004). ACE2, a new regulator of the renin-angiotensin system. Trends in endocrinology and metabolism. Trends Endocrinol. Metab. 15, 166–169.
| ACE2, a new regulator of the renin-angiotensin system. Trends in endocrinology and metabolism.Crossref | GoogleScholarGoogle Scholar | 15109615PubMed |
Cavallo, I. K., Dela Cruz, C., Oliveira, M. L., Del Puerto, H. L., Dias, J. A., Lobach, V. N., Casalechi, M., Camargos, M. G., Reis, A. M., Santos, R. A., and Reis, F. M. (2017). Angiotensin-(1–7) in human follicular fluid correlates with oocyte maturation. Hum. Reprod. 32, 1318–1324.
| Angiotensin-(1–7) in human follicular fluid correlates with oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 28402544PubMed |
Çayan, S., Uğuz, M., Saylam, B., and Akbay, E. (2020). Effect of serum total testosterone and its relationship with other laboratory parameters on the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2 infected male patients: a cohort study. Aging Male , 1–11.
| Effect of serum total testosterone and its relationship with other laboratory parameters on the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2 infected male patients: a cohort study.Crossref | GoogleScholarGoogle Scholar | 32883151PubMed |
Chamekh, M., and Casimir, G. (2020). Understanding gender-bias in critically ill patients with COVID-19. Front. Med. 7, 564117.
| Understanding gender-bias in critically ill patients with COVID-19.Crossref | GoogleScholarGoogle Scholar |
Channappanavar, R., Fett, C., Mack, M., Ten Eyck, P. P., Meyerholz, D. K., and Perlman, S. (2017). Sex-Based Differences in Susceptibility to Severe Acute Respiratfory Syndrome Coronavirus Infection. Journal of immunology (Baltimore, Md.: 1950) 198, 4046–4053.
| Sex-Based Differences in Susceptibility to Severe Acute Respiratfory Syndrome Coronavirus Infection.Crossref | GoogleScholarGoogle Scholar |
Chen, Y. W., Lee, M. S., Lucht, A., Chou, F. P., Huag, W., Havighurst, T. C., Kim, K., Wang, J. K., Antalis, T. M., Johnson, M. D., and Lin, C. Y. (2010). TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells. Am. J. Pathol. 176, 2986–2996.
| TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells.Crossref | GoogleScholarGoogle Scholar | 20382709PubMed |
Chen, Y., Peng, H., Wang, L., Zhao, Y., Zeng, L., Gao, H., and Liu, Y. (2020a). Infants Born to Mothers With a New Coronavirus (COVID-19). Front Pediatr. 8, 104.
| Infants Born to Mothers With a New Coronavirus (COVID-19).Crossref | GoogleScholarGoogle Scholar | 32266184PubMed |
Chen, H., Guo, J., Wang, C., Luo, F., Yu, X., Zhang, W., Li, J., Zhao, D., Xu, D., Gong, Q., Liao, J., Yang, H., Hou, W., and Zhang, Y. (2020b). Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 395, 809–815.
| Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records.Crossref | GoogleScholarGoogle Scholar | 32151335PubMed |
Cheng, Z., Zhou, J., To, K. K., Chu, H., Li, C., Wang, D., Yang, D., Zheng, S., Hao, K., Bossé, Y., Obeidat, M., Brandsma, C. A., Song, Y. Q., Chen, Y., Zheng, B. J., Li, L., and Yuen, K. Y. (2015). Identification of TMPRSS2 as a Susceptibility Gene for Severe 2009 Pandemic A(H1N1) Influenza and A(H7N9) Influenza. J. Infect. Dis. 212, 1214–1221.
| Identification of TMPRSS2 as a Susceptibility Gene for Severe 2009 Pandemic A(H1N1) Influenza and A(H7N9) Influenza.Crossref | GoogleScholarGoogle Scholar | 25904605PubMed |
Cheuk, B. L., Ko, W. H., and Wong, P. Y. (2002). COX-dependent and -independent pathways in bradykinin-induced anion secretion in rat epididymis. J. Cell. Physiol. 191, 217–226.
| COX-dependent and -independent pathways in bradykinin-induced anion secretion in rat epididymis.Crossref | GoogleScholarGoogle Scholar | 12064465PubMed |
Ciaglia, E., Vecchione, C., and Puca, A. A. (2020). COVID-19 Infection and Circulating ACE2 Levels: Protective Role in Women and Children. Front Pediatr. 8, 206.
| COVID-19 Infection and Circulating ACE2 Levels: Protective Role in Women and Children.Crossref | GoogleScholarGoogle Scholar | 32391299PubMed |
Dalpiaz, P. L., Lamas, A. Z., Caliman, I. F., Ribeiro, R. F., Abreu, G. R., Moyses, M. R., Andrade, T. U., Gouvea, S. A., Alves, M. F., Carmona, A. K., and Bissoli, N. S. (2015). Sex Hormones Promote Opposite Effects on ACE and ACE2 Activity, Hypertrophy and Cardiac Contractility in Spontaneously Hypertensive Rats. PLoS One 10, e0127515.
| Sex Hormones Promote Opposite Effects on ACE and ACE2 Activity, Hypertrophy and Cardiac Contractility in Spontaneously Hypertensive Rats.Crossref | GoogleScholarGoogle Scholar | 26010093PubMed |
Danza, Á., Ruiz-Irastorza, G., and Khamashta, M. (2016). Pregnancy in systemic autoimmune diseases: Myths, certainties and doubts. Med. Clin. (Barc.) 147, 306–312.
| Pregnancy in systemic autoimmune diseases: Myths, certainties and doubts.Crossref | GoogleScholarGoogle Scholar | 27143525PubMed |
Deguchi, E., Tani, T., Watanabe, H., Yamada, S., and Kondoh, G. (2007). Dipeptidase-inactivated tACE action in vivo: selective inhibition of sperm-zona pellucida binding in the mouse. Biol. Reprod. 77, 794–802.
| Dipeptidase-inactivated tACE action in vivo: selective inhibition of sperm-zona pellucida binding in the mouse.Crossref | GoogleScholarGoogle Scholar | 17634445PubMed |
Dijkman, R., Jebbink, M. F., Deijs, M., Milewska, A., Pyrc, K., Buelow, E., van der Bijl, A., and van der Hoek, L. (2012). Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63. J. Gen. Virol. 93, 1924–1929.
| Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63.Crossref | GoogleScholarGoogle Scholar | 22718567PubMed |
Ding, Y., He, L., Zhang, Q., Huang, Z., Che, X., Hou, J., Wang, H., Shen, H., Qiu, L., Li, Z., Geng, J., Cai, J., Han, H., Li, X., Kang, W., Weng, D., Liang, P., and Jiang, S. (2004). Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J. Pathol. 203, 622–630.
| Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways.Crossref | GoogleScholarGoogle Scholar | 15141376PubMed |
Domińska, K. (2020). Involvement of ACE2/Ang-(1–7)/MAS1 Axis in the Regulation of Ovarian Function in Mammals. Int. J Mol. Sci. 21, 4572.
| Involvement of ACE2/Ang-(1–7)/MAS1 Axis in the Regulation of Ovarian Function in Mammals.Crossref | GoogleScholarGoogle Scholar |
Dong, L., Tian, J., He, S., Zhu, C., Wang, J., Liu, C., and Yang, J. (2020). Possible Vertical Transmission of SARS-CoV-2 From an Infected Mother to Her Newborn. JAMA 323, 1846–1848.
| Possible Vertical Transmission of SARS-CoV-2 From an Infected Mother to Her Newborn.Crossref | GoogleScholarGoogle Scholar | 32215581PubMed |
Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., Donovan, M., Woolf, B., Robison, K., Jeyaseelan, R., Breitbart, R. E., and Acton, S. (2000). A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 87, E1–E9.
| A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9.Crossref | GoogleScholarGoogle Scholar | 10969042PubMed |
Douglas, G. C., O’Bryan, M. K., Hedger, M. P., Lee, D. K., Yarski, M. A., Smith, A. I., and Lew, R. A. (2004). The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology 145, 4703–4711.
| The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis.Crossref | GoogleScholarGoogle Scholar | 15231706PubMed |
Fan, C., Li, K., Ding, Y., Lu, W. L., and Wang, J. (2021). ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Infection in COVID-19 Patients. Front. Med. 7, 563893.
| ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Infection in COVID-19 Patients.Crossref | GoogleScholarGoogle Scholar |
Ferrazzi, E., Frigerio, L., Savasi, V., Vergani, P., Prefumo, F., Barresi, S., Bianchi, S., Ciriello, E., Facchinetti, F., Gervasi, M. T., Iurlaro, E., Kustermann, A., Mangili, G., Mosca, F., Patanè, L., Spazzini, D., Spinillo, A., Trojano, G., Vignali, M., Villa, A., and Cetin, I. (2020). Vaginal delivery in SARS-CoV-2-infected pregnant women in Northern Italy: a retrospective analysis. BJOG , .
| Vaginal delivery in SARS-CoV-2-infected pregnant women in Northern Italy: a retrospective analysis.Crossref | GoogleScholarGoogle Scholar | 32339382PubMed |
Fischer, W. A., and Wohl, D. A. (2016). Confronting Ebola as a Sexually Transmitted Infection. Clin Infect Dis 62, 1272–1276.
| Confronting Ebola as a Sexually Transmitted Infection.Crossref | GoogleScholarGoogle Scholar | 26936667PubMed |
Fuchs, S., Frenzel, K., Hubert, C., Lyng, R., Muller, L., Michaud, A., Xiao, H. D., Adams, J. W., Capecchi, M. R., Corvol, P., Shur, B. D., and Bernstein, K. E. (2005). Male fertility is dependent on dipeptidase activity of testis ACE. Nat. Med. 11, 1140–1142.
| Male fertility is dependent on dipeptidase activity of testis ACE.Crossref | GoogleScholarGoogle Scholar | 16270063PubMed |
Gianzo, M., Urizar-Arenaza, I., Muñoa-Hoyos, I., Larreategui, Z., Garrido, N., Casis, L., Irazusta, J., and Subirán, N. (2018). Human sperm testicular angiotensin-converting enzyme helps determine human embryo quality. Asian journal of andrology 20, 498–504.
| Human sperm testicular angiotensin-converting enzyme helps determine human embryo quality.Crossref | GoogleScholarGoogle Scholar | 29873314PubMed |
Global Health 50/50 (2020) COVID-19 Sex-Disaggregated Data Tracker. https://globalhealth5050.org/the-sex-gender-and-covid-19-project/the-data-tracker/
Groß, R., Conzelmann, C., Müller, J. A., Stenger, S., Steinhart, K., Kirchhoff, F., and Münch, J. (2020). Detection of SARS-CoV-2 in human breastmilk. Lancet 395, 1757–1758.
| Detection of SARS-CoV-2 in human breastmilk.Crossref | GoogleScholarGoogle Scholar | 32446324PubMed |
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., and Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271–280.e8.
| SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.Crossref | GoogleScholarGoogle Scholar | 32142651PubMed |
Honorato-Sampaio, K., Pereira, V. M., Santos, R. A., and Reis, A. M. (2012). Evidence that angiotensin-(1–7) is an intermediate of gonadotrophin-induced oocyte maturation in the rat preovulatory follicle. Exp. Physiol. 97, 642–650.
| Evidence that angiotensin-(1–7) is an intermediate of gonadotrophin-induced oocyte maturation in the rat preovulatory follicle.Crossref | GoogleScholarGoogle Scholar | 22247282PubMed |
Islam, M. M., Poly, T. N., Walther, B. A., Yang, H. C., Wang, C. W., Hsieh, W. S., Atique, S., Salmani, H., Alsinglawi, B., Lin, M. C., Jian, W. S., and Jack Li, Y. C. (2020). Clinical Characteristics and Neonatal Outcomes of Pregnant Patients With COVID-19: A Systematic Review. Front. Med. 7, 573468.
| Clinical Characteristics and Neonatal Outcomes of Pregnant Patients With COVID-19: A Systematic Review.Crossref | GoogleScholarGoogle Scholar |
Iyer, S. P., Ensor, J., Anand, K., Hwu, P., Subbiah, V., Flowers, C., and Channappanavar, R. (2020). Higher mortality in men from COVID19 infection-understanding the factors that drive the differences between the biological sexes. medRxiv , .
| Higher mortality in men from COVID19 infection-understanding the factors that drive the differences between the biological sexes.Crossref | GoogleScholarGoogle Scholar |
Jaillon, S., Berthenet, K., and Garlanda, C. (2019). Sexual Dimorphism in Innate Immunity. Clin. Rev. Allergy Immunol. 56, 308–321.
| Sexual Dimorphism in Innate Immunity.Crossref | GoogleScholarGoogle Scholar | 28963611PubMed |
Jin, J. M., Bai, P., He, W., Wu, F., Liu, X. F., Han, D. M., Liu, S., and Yang, J. K. (2020). Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Front. Public Health 8, 152.
| Gender Differences in Patients With COVID-19: Focus on Severity and Mortality.Crossref | GoogleScholarGoogle Scholar | 32411652PubMed |
Jing, Y., Run-Qian, L., Hao-Ran, W., Hao-Ran, C., Ya-Bin, L., Yang, G., and Fei, C. (2020). Potential influence of COVID-19/ACE2 on the female reproductive system. Mol. Hum. Reprod. 26, 367–373.
| Potential influence of COVID-19/ACE2 on the female reproductive system.Crossref | GoogleScholarGoogle Scholar | 32365180PubMed |
Johnson, H. D., Sholcosky, D., Gabello, K., Ragni, R., and Ogonosky, N. (2003). Sex differences in public restroom handwashing behavior associated with visual behavior prompts. Percept. Mot. Skills 97, 805–810.
| Sex differences in public restroom handwashing behavior associated with visual behavior prompts.Crossref | GoogleScholarGoogle Scholar | 14738345PubMed |
Karlberg, J., Chong, D. S., and Lai, W. Y. (2004). Do men have a higher case fatality rate of severe acute respiratory syndrome than women do? Am. J. Epidemiol. 159, 229–231.
| Do men have a higher case fatality rate of severe acute respiratory syndrome than women do?Crossref | GoogleScholarGoogle Scholar | 14742282PubMed |
Klein, S. L., and Flanagan, K. L. (2016). Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638.
| Sex differences in immune responses.Crossref | GoogleScholarGoogle Scholar | 27546235PubMed |
Kron, K. J., Murison, A., Zhou, S., Huang, V., Yamaguchi, T. N., Shiah, Y. J., Fraser, M., van der Kwast, T., Boutros, P. C., Bristow, R. G., and Lupien, M. (2017). TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer. Nat. Genet. 49, 1336–1345.
| TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer.Crossref | GoogleScholarGoogle Scholar | 28783165PubMed |
Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., Huan, Y., Yang, P., Zhang, Y., Deng, W., Bao, L., Zhang, B., Liu, G., Wang, Z., Chappell, M., Liu, Y., Zheng, D., Leibbrandt, A., Wada, T., Slutsky, A. S., et al. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 11, 875–879.
| A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury.Crossref | GoogleScholarGoogle Scholar | 16007097PubMed |
Langford, K. G., Zhou, Y., Russell, L. D., Wilcox, J. N., and Bernstein, K. E. (1993). Regulated expression of testis angiotensin-converting enzyme during spermatogenesis in mice. Biol Reprod 48, 1210–1218.
| Regulated expression of testis angiotensin-converting enzyme during spermatogenesis in mice.Crossref | GoogleScholarGoogle Scholar | 8391328PubMed |
Leal, M. C., Pinheiro, S. V., Ferreira, A. J., Santos, R. A., Bordoni, L. S., Alenina, N., Bader, M., and França, L. R. (2009). The role of angiotensin-(1–7) receptor Mas in spermatogenesis in mice and rats. J. Anat. 214, 736–743.
| The role of angiotensin-(1–7) receptor Mas in spermatogenesis in mice and rats.Crossref | GoogleScholarGoogle Scholar | 19438767PubMed |
Li, D., Jin, M., Bao, P., Zhao, W., and Zhang, S. (2020a). Clinical Characteristics and Results of Semen Tests Among Men With Coronavirus Disease 2019. JAMA Netw Open 3, e208292.
| Clinical Characteristics and Results of Semen Tests Among Men With Coronavirus Disease 2019.Crossref | GoogleScholarGoogle Scholar | 32990740PubMed |
Li, N., Han, L., Peng, M., Lv, Y., Ouyang, Y., Liu, K., Yue, L., Li, Q., Sun, G., Chen, L., and Yang, L. (2020b). Maternal and neonatal outcomes of pregnant women with COVID-19 pneumonia: a case-control study. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America , 2035–2041.
| Maternal and neonatal outcomes of pregnant women with COVID-19 pneumonia: a case-control study.Crossref | GoogleScholarGoogle Scholar |
Li, M., Chen, L., Zhang, J., Xiong, C., and Li, X. (2020c). The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. PloS One 15, e0230295.
| The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study.Crossref | GoogleScholarGoogle Scholar | 33370368PubMed |
Liu, W., Wang, J., Li, W., Zhou, Z., Liu, S., and Rong, Z. (2020). Clinical characteristics of 19 neonates born to mothers with COVID-19. Front. Med. 14, 193–198.
| Clinical characteristics of 19 neonates born to mothers with COVID-19.Crossref | GoogleScholarGoogle Scholar | 32285380PubMed |
LoMauro, A., and Aliverti, A. (2015). Respiratory physiology of pregnancy. Breathe 11, 297–301.
| Respiratory physiology of pregnancy.Crossref | GoogleScholarGoogle Scholar | 27066123PubMed |
Ma, L., Xie, W., Li, D., Shi, L., Mao, Y., Xiong, Y., Zhang, Y., and Zhang, M. 2020. Effect of SARS-CoV-2 infection upon male gonadal function: A single center-based study. MedRxiv
Mead, P. S., Hills, S. L., and Brooks, J. T. (2018). Zika virus as a sexually transmitted pathogen. Curr. Opin. Infect. Dis. 31, 39–44.
| Zika virus as a sexually transmitted pathogen.Crossref | GoogleScholarGoogle Scholar | 29176348PubMed |
Muallem, G., Wagage, S., Sun, Y., DeLong, J. H., Valenzuela, A., Christian, D. A., Harms Pritchard, G., Fang, Q., Buza, E. L., Jain, D., Elloso, M. M., López, C. B., and Hunter, C. A. (2017). IL-27 Limits Type 2 Immunopathology Following Parainfluenza Virus Infection. PLoS Pathog. 13, e1006173.
| IL-27 Limits Type 2 Immunopathology Following Parainfluenza Virus Infection.Crossref | GoogleScholarGoogle Scholar | 28129374PubMed |
Nelson, D. M., Main, E., Crafford, W., and Ahumada, G. G. (1983). Peripartum heart failure due to primary pulmonary hypertension. Obstet. Gynecol. 62, 58s–63s.
| 6877714PubMed |
Neves, L. A., Stovall, K., Joyner, J., Valdés, G., Gallagher, P. E., Ferrario, C. M., Merrill, D. C., and Brosnihan, K. B. (2008). ACE2 and ANG-(1–7) in the rat uterus during early and late gestation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R151–R161.
| ACE2 and ANG-(1–7) in the rat uterus during early and late gestation.Crossref | GoogleScholarGoogle Scholar | 17977916PubMed |
Paoli, D., Pallotti, F., Colangelo, S., Basilico, F., Mazzuti, L., Turriziani, O., Antonelli, G., Lenzi, A., and Lombardo, F. (2020). Study of SARS-CoV-2 in semen and urine samples of a volunteer with positive naso-pharyngeal swab. J. Endocrinol. Invest. 43, 1819–1822.
| Study of SARS-CoV-2 in semen and urine samples of a volunteer with positive naso-pharyngeal swab.Crossref | GoogleScholarGoogle Scholar | 32329026PubMed |
Patel, S. K., Velkoska, E., and Burrell, L. M. (2013). Emerging markers in cardiovascular disease: where does angiotensin-converting enzyme 2 fit in? Clin. Exp. Pharmacol. Physiol. 40, 551–559.
| Emerging markers in cardiovascular disease: where does angiotensin-converting enzyme 2 fit in?Crossref | GoogleScholarGoogle Scholar | 23432153PubMed |
Peredo, H. A., and Celuch, S. M. (2001). Bradykinin and electrical stimulation increase prostaglandin production in the rat vas deferens. Prostaglandins Leukot. Essent. Fatty Acids 65, 9–14.
| Bradykinin and electrical stimulation increase prostaglandin production in the rat vas deferens.Crossref | GoogleScholarGoogle Scholar | 11487302PubMed |
Pereira, V. M., Reis, F. M., Santos, R. A., Cassali, G. D., Santos, S. H., Honorato-Sampaio, K., and dos Reis, A. M. (2009). Gonadotropin stimulation increases the expression of angiotensin-(1–7) and MAS receptor in the rat ovary. Reprod. Sci. 16, 1165–1174.
| Gonadotropin stimulation increases the expression of angiotensin-(1–7) and MAS receptor in the rat ovary.Crossref | GoogleScholarGoogle Scholar | 19703990PubMed |
Pierucci-Alves, F., and Schultz, B. D. (2008). Bradykinin-stimulated cyclooxygenase activity stimulates vas deferens epithelial anion secretion in vitro in swine and humans. Biol. Reprod. 79, 501–509.
| Bradykinin-stimulated cyclooxygenase activity stimulates vas deferens epithelial anion secretion in vitro in swine and humans.Crossref | GoogleScholarGoogle Scholar | 18480467PubMed |
Pozzilli, P., and Lenzi, A. (2020). Commentary: Testosterone, a key hormone in the context of COVID-19 pandemic. Metabolism 108, 154252.
| Commentary: Testosterone, a key hormone in the context of COVID-19 pandemic.Crossref | GoogleScholarGoogle Scholar | 32353355PubMed |
Pringle, K. G., Tadros, M. A., Callister, R. J., and Lumbers, E. R. (2011). The expression and localization of the human placental prorenin/renin-angiotensin system throughout pregnancy: roles in trophoblast invasion and angiogenesis? Placenta 32, 956–962.
| The expression and localization of the human placental prorenin/renin-angiotensin system throughout pregnancy: roles in trophoblast invasion and angiogenesis?Crossref | GoogleScholarGoogle Scholar | 22018415PubMed |
Reis, A. B., Araújo, F. C., Pereira, V. M., Dos Reis, A. M., Santos, R. A., and Reis, F. M. (2010). Angiotensin (1–7) and its receptor Mas are expressed in the human testis: implications for male infertility. J. Mol. Histol. 41, 75–80.
| Angiotensin (1–7) and its receptor Mas are expressed in the human testis: implications for male infertility.Crossref | GoogleScholarGoogle Scholar | 20361351PubMed |
Reis, F. M., Bouissou, D. R., Pereira, V. M., Camargos, A. F., dos Reis, A. M., and Santos, R. A. (2011). Angiotensin-, its receptor Mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary. Fertil. Steril. 95, 176–181.
| Angiotensin-, its receptor Mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary.Crossref | GoogleScholarGoogle Scholar | 20674894PubMed |
Rice, G. I., Thomas, D. A., Grant, P. J., Turner, A. J., and Hooper, N. M. (2004). Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem. J. 383, 45–51.
| Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism.Crossref | GoogleScholarGoogle Scholar | 15283675PubMed |
Robinson, D. P., Huber, S. A., Moussawi, M., Roberts, B., Teuscher, C., Watkins, R., Arnold, A. P., and Klein, S. L. (2011). Sex chromosome complement contributes to sex differences in coxsackievirus B3 but not influenza A virus pathogenesis. Biol. Sex Differ. 2, 8.
| Sex chromosome complement contributes to sex differences in coxsackievirus B3 but not influenza A virus pathogenesis.Crossref | GoogleScholarGoogle Scholar | 21806829PubMed |
Robinson, D. P., Hall, O. J., Nilles, T. L., Bream, J. H., and Klein, S. L. (2014). 17β-estradiol protects females against influenza by recruiting neutrophils and increasing virus-specific CD8 T cell responses in the lungs. J. Virol. 88, 4711–4720.
| 17β-estradiol protects females against influenza by recruiting neutrophils and increasing virus-specific CD8 T cell responses in the lungs.Crossref | GoogleScholarGoogle Scholar | 24522912PubMed |
Robinson, J. L., Kocabaş, P., Wang, H., Cholley, P. E., Cook, D., Nilsson, A., Anton, M., Ferreira, R., Domenzain, I., Billa, V., Limeta, A., Hedin, A., Gustafsson, J., Kerkhoven, E. J., Svensson, L. T., Palsson, B. O., Mardinoglu, A., Hansson, L., Uhlén, M., and Nielsen, J. (2020). An atlas of human metabolism. Science signaling 13, eaaz1482.
| An atlas of human metabolism.Crossref | GoogleScholarGoogle Scholar | 32209698PubMed |
Schurz, H., Salie, M., Tromp, G., Hoal, E. G., Kinnear, C. J., and Möller, M. (2019). The X chromosome and sex-specific effects in infectious disease susceptibility. Hum. Genomics 13, 2.
| The X chromosome and sex-specific effects in infectious disease susceptibility.Crossref | GoogleScholarGoogle Scholar | 30621780PubMed |
Shek, C. C., Ng, P. C., Fung, G. P., Cheng, F. W., Chan, P. K., Peiris, M. J., Lee, K. H., Wong, S. F., Cheung, H. M., Li, A. M., Hon, E. K., Yeung, C. K., Chow, C. B., Tam, J. S., Chiu, M. C., and Fok, T. F. (2003). Infants born to mothers with severe acute respiratory syndrome. Pediatrics 112, e254.
| Infants born to mothers with severe acute respiratory syndrome.Crossref | GoogleScholarGoogle Scholar | 14523207PubMed |
Shen, Q., Xiao, X., Aierken, A., Yue, W., Wu, X., Liao, M., and Hua, J. (2020). The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection. J. Cell. Mol. Med. 24, 9472–9477.
| The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS-CoV-2 infection.Crossref | GoogleScholarGoogle Scholar | 32594644PubMed |
Shi, L., Wang, Y., Wang, Y., Duan, G., and Yang, H. (2020). Dyspnea rather than fever is a risk factor for predicting mortality in patients with COVID-19. J Infect. 81, 647–679.
| Dyspnea rather than fever is a risk factor for predicting mortality in patients with COVID-19.Crossref | GoogleScholarGoogle Scholar | 32417316PubMed |
Shibahara, H., Kamata, M., Hu, J., Nakagawa, H., Obara, H., Kondoh, N., Shima, H., and Sato, I. (2001). Activity of testis angiotensin converting enzyme (ACE) in ejaculated human spermatozoa. Int. J. Androl. 24, 295–299.
| Activity of testis angiotensin converting enzyme (ACE) in ejaculated human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 11554987PubMed |
Sigurðardóttir, O. G., Kolbjørnsen, O., and Lutz, H. (2001). Orchitis in a cat associated with coronavirus infection. J. Comp. Pathol. 124, 219–222.
| Orchitis in a cat associated with coronavirus infection.Crossref | GoogleScholarGoogle Scholar |
Somlev, B., and Subev, M. (1998). Effect of kininase II inhibitors on bradykinin-stimulated bovine sperm motility. Theriogenology 50, 651–657.
| Effect of kininase II inhibitors on bradykinin-stimulated bovine sperm motility.Crossref | GoogleScholarGoogle Scholar | 10732155PubMed |
Stelzig, K. E., Canepa-Escaro, F., Schiliro, M., Berdnikovs, S., Prakash, Y. S., and Chiarella, S. E. (2020). Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 318, L1280–L1281.
| Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells.Crossref | GoogleScholarGoogle Scholar | 32432918PubMed |
Sullivan, J. C., Bhatia, K., Yamamoto, T., and Elmarakby, A. A. (2010). Angiotensin (1–7) receptor antagonism equalizes angiotensin II-induced hypertension in male and female spontaneously hypertensive rats. Hypertension (Dallas, Tex.: 1979) 56, 658–666.
| Angiotensin (1–7) receptor antagonism equalizes angiotensin II-induced hypertension in male and female spontaneously hypertensive rats.Crossref | GoogleScholarGoogle Scholar |
Sullivan, J. C., Rodriguez-Miguelez, P., Zimmerman, M. A., and Harris, R. A. (2015). Differences in angiotensin (1–7) between men and women. Am. J Physiol. Heart Circ. Physiol. 308, H1171–H1176.
| Differences in angiotensin (1–7) between men and women.Crossref | GoogleScholarGoogle Scholar | 25659489PubMed |
Thimon, V., Belghazi, M., Dacheux, J. L., and Gatti, J. L. (2006). Analysis of furin ectodomain shedding in epididymal fluid of mammals: demonstration that shedding of furin occurs in vivo. Reproduction 132, 899–908.
| Analysis of furin ectodomain shedding in epididymal fluid of mammals: demonstration that shedding of furin occurs in vivo.Crossref | GoogleScholarGoogle Scholar | 17127750PubMed |
Toppozada, H., Michaels, L., Toppozada, M., El-Ghazzawi, I., Talaat, M., and Elwany, S. (1982). The human respiratory nasal mucosa in pregnancy. An electron microscopic and histochemical study. J. Laryngol. Otol. 96, 613–626.
| The human respiratory nasal mucosa in pregnancy. An electron microscopic and histochemical study.Crossref | GoogleScholarGoogle Scholar | 7086277PubMed |
UNICEF (2020). Breastfeeding during the COVID-19 pandemic. https://www.unicef.org/eap/breastfeeding-during-covid-19
Valdés, G., Neves, L. A., Anton, L., Corthorn, J., Chacón, C., Germain, A. M., Merrill, D. C., Ferrario, C. M., Sarao, R., Penninger, J., and Brosnihan, K. B. (2006). Distribution of angiotensin-(1–7) and ACE2 in human placentas of normal and pathological pregnancies. Placenta 27, 200–207.
| Distribution of angiotensin-(1–7) and ACE2 in human placentas of normal and pathological pregnancies.Crossref | GoogleScholarGoogle Scholar | 16338465PubMed |
Vaz-Silva, J., Carneiro, M. M., Ferreira, M. C., Pinheiro, S. V., Silva, D. A., Silva-Filho, A. L., Witz, C. A., Reis, A. M., Santos, R. A., and Reis, F. M. (2009). The vasoactive peptide angiotensin-, its receptor Mas and the angiotensin-converting enzyme type 2 are expressed in the human endometrium. Reprod. Sci. 16, 247–256.
| The vasoactive peptide angiotensin-, its receptor Mas and the angiotensin-converting enzyme type 2 are expressed in the human endometrium.Crossref | GoogleScholarGoogle Scholar | 19164480PubMed |
Vaz-Silva, J., Tavares, R. L., Ferreira, M. C., Honorato-Sampaio, K., Cavallo, I. K., Santos, R. A., dos Reis, A. M., and Reis, F. M. (2012). Tissue specific localization of angiotensin-(1–7) and its receptor Mas in the uterus of ovariectomized rats. J. Mol. Histol. 43, 597–602.
| Tissue specific localization of angiotensin-(1–7) and its receptor Mas in the uterus of ovariectomized rats.Crossref | GoogleScholarGoogle Scholar | 22684246PubMed |
Vickers, C., Hales, P., Kaushik, V., Dick, L., Gavin, J., Tang, J., Godbout, K., Parsons, T., Baronas, E., Hsieh, F., Acton, S., Patane, M., Nichols, A., and Tummino, P. (2002). Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J. Biol. Chem. 277, 14838–14843.
| Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase.Crossref | GoogleScholarGoogle Scholar | 11815627PubMed |
Vivanti, A. J., Vauloup-Fellous, C., Prevot, S., Zupan, V., Suffee, C., Do Cao, J., Benachi, A., and De Luca, D. (2020). Transplacental transmission of SARS-CoV-2 infection. Nat. Commun. 11, 3572.
| Transplacental transmission of SARS-CoV-2 infection.Crossref | GoogleScholarGoogle Scholar | 32665677PubMed |
Wang, Z., and Xu, X. (2020). scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells 9, 920.
| scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells.Crossref | GoogleScholarGoogle Scholar |
Wu, Z., and McGoogan, J. M. (2020). Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 323, 1239–1242.
| Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention.Crossref | GoogleScholarGoogle Scholar | 32091533PubMed |
Wu, Y. T., Liu, C., Dong, L., Zhang, C. J., Chen, Y., and Liu, J. (2020) Viral Shedding of COVID-19 in Pregnant Women [cited 25 May 2020]. Available at SSRN: https://ssrn.com/abstract=3562059 or
Xu, J., Qi, L., Chi, X., Yang, J., Wei, X., Gong, E., Peh, S., and Gu, J. (2006). Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol. Reprod. 74, 410–416.
| Orchitis: a complication of severe acute respiratory syndrome (SARS).Crossref | GoogleScholarGoogle Scholar | 16237152PubMed |
Yee, J., Kim, W., Han, J. M., Yoon, H. Y., Lee, N., Lee, K. E., and Gwak, H. S. (2020). Clinical manifestations and perinatal outcomes of pregnant women with COVID-19: a systematic review and meta-analysis. Sci. Rep. 10, 18126.
| Clinical manifestations and perinatal outcomes of pregnant women with COVID-19: a systematic review and meta-analysis.Crossref | GoogleScholarGoogle Scholar | 33093582PubMed |
Yoshimura, Y. (1997). The ovarian renin-angiotensin system in reproductive physiology. Front. Neuroendocrinol. 18, 247–291.
| The ovarian renin-angiotensin system in reproductive physiology.Crossref | GoogleScholarGoogle Scholar | 9237079PubMed |
Zeng, H., Xu, C., Fan, J., Tang, Y., Deng, Q., Zhang, W., and Long, X. (2020). Antibodies in Infants Born to Mothers With COVID-19 Pneumonia. JAMA 323, 1848–1849.
| Antibodies in Infants Born to Mothers With COVID-19 Pneumonia.Crossref | GoogleScholarGoogle Scholar | 32215589PubMed |
Zhao, X., Jiang, Y., Zhao, Y., Xi, H., Liu, C., Qu, F., and Feng, X. (2020). Analysis of the susceptibility to COVID-19 in pregnancy and recommendations on potential drug screening. Eur J Clin Microbiol Infect Dis 39, 1209–1220.
| Analysis of the susceptibility to COVID-19 in pregnancy and recommendations on potential drug screening.Crossref | GoogleScholarGoogle Scholar | 32328850PubMed |
Zhou, M., Dai, W., Cui, Y., and Li, Y. (2020). Estrogen downregulates gp130 expression in HUVECs by regulating ADAM10 and ADAM17 via the estrogen receptor. Biochem. Biophys. Res. Commun. 523, 753–758.
| Estrogen downregulates gp130 expression in HUVECs by regulating ADAM10 and ADAM17 via the estrogen receptor.Crossref | GoogleScholarGoogle Scholar | 31952790PubMed |
Zhu, H., Wang, L., Fang, C., Peng, S., Zhang, L., Chang, G., Xia, S., and Zhou, W. (2020). Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl. Pediatr. 9, 51–60.
| Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia.Crossref | GoogleScholarGoogle Scholar | 32154135PubMed |