Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Evaluation of hepatic and renal effects in rat dams and their offspring after exposure to paracetamol during gestation and lactation

Andréa Morgato de Mello Miyasaki A B * , Camila Rigobello B * , Rodrigo Moreno Klein B , Jefferson Crespigio C , Karina Keller Flaiban D , Ana Paula Bracarense D , Bárbara Cristina Mazzucatto E , Décio Sabbatini Barbosa B and Estefânia Gastaldello Moreira https://orcid.org/0000-0003-4716-6131 B F G
+ Author Affiliations
- Author Affiliations

A Department of Pediatrics and Pediatrics Surgery, Universidade Estadual de Londrina, 86051-980, Londrina, PR, Brazil.

B Graduate Program in Health Sciences, Universidade Estadual de Londrina, 86051-980, Londrina, PR, Brazil.

C Department of Pathology, Universidade Estadual de Londrina, 86057-970, Londrina, PR, Brazil.

D Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, 86057-970, Londrina, PR, Brazil.

E Department of Veterinary Medicine, State University of Maringá, 87507-190, Umuarama, PR, Brazil.

F Department of Physiological Sciences, Universidade Estadual de Londrina, 86057-970, Londrina, PR, Brazil.

G Corresponding author. Email: egmoreira@uel.br

Reproduction, Fertility and Development 32(18) 1301-1310 https://doi.org/10.1071/RD20142
Submitted: 31 May 2020  Accepted: 21 October 2020   Published: 15 December 2020

Abstract

Paracetamol (PAR) is the analgesic and antipyretic of choice for pregnant and nursing women. PAR may reach the fetus and/or neonate through the placenta and/or milk and effect development. This study evaluated possible hepatic and renal effects in rat dams and their offspring exposed to PAR using a human-relevant route of administration and doses from Gestational Day 6 to Postnatal Day (PND) 21. Dams were gavaged daily with PAR (35 or 350 mg kg−1) or water (CON). Dams and pups were killed on PND21 and 22 respectively, and blood was collected for biochemical analysis (aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea and creatinine). The kidneys and liver were isolated and processed for histopathological assessment and evaluation of oxidative stress markers. Compared with the CON groups, pups exposed to 350 mg kg−1 PAR had increased renal reduced glutathione (GSH), whereas dams exposed to both doses of PAR increased serum AST. PAR administration did not affect parameters of general toxicity or renal and hepatic oxidative stress. In conclusion, maternal exposure to human-relevant doses of PAR by gavage was not associated with hepatic or renal toxicity in the pups or dams, but PAR was not devoid of effects. Exposure to PAR increased renal GSH in pups, which could suggest an adaptive antioxidant response, and affected maternal serum AST activity.

Graphical Abstract Image

Keywords: acetaminophen, hepatic injury, in utero, pregnancy, renal injury.


References

Aleixo, J. F., Pereira, M. R. F., Montagnini, B. G., Pereira, M. J. D., Forcato, S., Moreira, E. G., Ceravolo, G. S., Vieira, M. L., Kiss, A. C. I., and Gerardin, D. C. C. (2020). Effect of paracetamol treatment on maternal care and reproductive outcomes in female rat offspring. Reprod. Fertil. Dev. , .
Effect of paracetamol treatment on maternal care and reproductive outcomes in female rat offspring.Crossref | GoogleScholarGoogle Scholar |

Anderson, M. E. (1985). Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 113, 548–555.
Determination of glutathione and glutathione disulfide in biological samples.Crossref | GoogleScholarGoogle Scholar | 4088074PubMed |

Axelstad, M., Christiansen, S., Boberg, J., Scholze, M., Jacobsen, P. R., Isling, L. K., Kortenkamp, A., and Hass, U. (2014). Mixtures of endocrine-disrupting contaminants induce adverse developmental effects in preweaning rats. Reproduction 147, 489–501.
Mixtures of endocrine-disrupting contaminants induce adverse developmental effects in preweaning rats.Crossref | GoogleScholarGoogle Scholar | 24298046PubMed |

Bertolini, A., Ferrari, A., Ottani, A., Guerzoni, S., Tacchi, R., and Leone, S. (2006). Paracetamol: new vistas of an old drug. CNS Drug Rev. 12, 250–275.
Paracetamol: new vistas of an old drug.Crossref | GoogleScholarGoogle Scholar | 17227290PubMed |

Bessems, J. G. M., and Vermeulen, N. P. E. (2001). Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit. Rev. Toxicol. 31, 55–138.
Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches.Crossref | GoogleScholarGoogle Scholar |

Borghi, S. M., Fattori, V., Ruiz-Miyazawa, K. W., Bertozzi, M. M., Lourenco-Gonzalez, Y., Tatakihara, R. I., Bussmann, A. J. C., Mazzuco, T. L., Casagrande, R., and Verri, W. A. (2018). Pyrrolidine dithiocarbamate inhibits mouse acute kidney injury induced by diclofenac by targeting oxidative damage, cytokines and NF-κB activity. Life Sci. 208, 221–231.
Pyrrolidine dithiocarbamate inhibits mouse acute kidney injury induced by diclofenac by targeting oxidative damage, cytokines and NF-κB activity.Crossref | GoogleScholarGoogle Scholar | 30036488PubMed |

Brodie, B. B., and Axelrod, J. (1948). The fate of acetanilide in man. J. Pharmacol. Exp. Ther. 94, 29–38.
| 18885611PubMed |

Brune, K., Renner, B., and Tiegs, G. (2015). Acetaminophen/paracetamol: a history of errors, failures and false decisions. Eur. J. Pain 19, 953–965.
Acetaminophen/paracetamol: a history of errors, failures and false decisions.Crossref | GoogleScholarGoogle Scholar | 25429980PubMed |

Burry, A., and Hopkins, J. (1977). Phenacetin and analgesic nephropathy. Med. J. Aust. 1, 879–882.
Phenacetin and analgesic nephropathy.Crossref | GoogleScholarGoogle Scholar | 887016PubMed |

Conings, S., Tseke, F., Van Den Broeck, A., Qi, B., Paulus, J., Amant, F., Annaert, P., and Van Calsteren, K. (2019). Transplacental transport of paracetamol and its Phase II metabolites using the ex vivo placenta perfusion model. Toxicol. Appl. Pharmacol. 370, 14–23.
Transplacental transport of paracetamol and its Phase II metabolites using the ex vivo placenta perfusion model.Crossref | GoogleScholarGoogle Scholar | 30849458PubMed |

Dean, A., Van Den Driesche, S., Wang, Y., McKinnell, C., Macpherson, S., Eddie, S. L., Kinnell, H., Hurtado-Gonzalez, P., Chambers, T. J., Stevenson, K., Wolfinger, E., Hrabalkova, L., Calarrao, A., Al Bayne, R., Hagen, C. P., Mitchell, R. T., Anderson, R. A., and Sharpe, R. M. (2016). Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences. Sci. Rep. 6, 19789.
Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences.Crossref | GoogleScholarGoogle Scholar | 26813099PubMed |

Du, K., Ramachandran, A., and Jaeschke, H. (2016). Oxidative stress during acetaminophen hepatotoxicity: sources, pathophysiological role and therapeutic potential. Redox Biol. 10, 148–156.
Oxidative stress during acetaminophen hepatotoxicity: sources, pathophysiological role and therapeutic potential.Crossref | GoogleScholarGoogle Scholar | 27744120PubMed |

Eakins, R., Walsh, J., Randle, L., Jenkins, R. E., Schuppe-Koistinen, I., Rowe, C., Starkey Lewis, P., Vasieva, O., Prats, N., Brillant, N., Auli, M., Bayliss, M., Webb, S., Rees, J. A., Kitteringham, N. R., Goldring, C. E., and Park, B. K. (2015). Adaptation to acetaminophen exposure elicits major changes in expression and distribution of the hepatic proteome. Sci. Rep. 5, 16423.
Adaptation to acetaminophen exposure elicits major changes in expression and distribution of the hepatic proteome.Crossref | GoogleScholarGoogle Scholar | 26607827PubMed |

Eguia, L., and Materson, B. J. (1997). Acetaminophen-related acute renal failure without fulminant liver failure. Pharmacotherapy 17, 363–370.
| 9085330PubMed |

Fattori, V., Borghi, S. M., Guazelli, C. F. S., Giroldo, A. C., Crespigio, J., Bussmann, A. J. C., Coelho-Silva, L., Ludwig, N. G., Mazzuco, T. L., Casagrande, R., and Verri, W. A. (2017). Vinpocetine reduces diclofenac-induced acute kidney injury through inhibition of oxidative stress, apoptosis, cytokine production, and NF-κB activation in mice. Pharmacol. Res. 120, 10–22.
Vinpocetine reduces diclofenac-induced acute kidney injury through inhibition of oxidative stress, apoptosis, cytokine production, and NF-κB activation in mice.Crossref | GoogleScholarGoogle Scholar | 28315429PubMed |

Frazier, K. S. (2017). Species differences in renal development and associated developmental nephrotoxicity. Birth Defects Res. 109, 1243–1256.
Species differences in renal development and associated developmental nephrotoxicity.Crossref | GoogleScholarGoogle Scholar | 28766875PubMed |

Giannini, E. G. (2005). Liver enzyme alteration: a guide for clinicians. CMAJ 172, 367–379.
Liver enzyme alteration: a guide for clinicians.Crossref | GoogleScholarGoogle Scholar | 15684121PubMed |

Hanasand, M., Omdal, R., Norheim, K. B., Gøransson, L. G., Brede, C., and Jonsson, G. (2012). Improved detection of advanced oxidation protein products in plasma. Clin. Chim. Acta 413, 901–906.
Improved detection of advanced oxidation protein products in plasma.Crossref | GoogleScholarGoogle Scholar | 22336637PubMed |

Jaeschke, H., and Ramachandran, A. (2018). Oxidant stress and lipid peroxidation in acetaminophen hepatotoxicity. React. Oxyg. Species (Apex) 5, 145–158.
| 29682614PubMed |

Jaeschke, H., Duan, L., Akakpo, J. Y., Farhood, A., and Ramachandran, A. (2018). The role of apoptosis in acetaminophen hepatotoxicity. Food Chem. Toxicol. 118, 709–718.
The role of apoptosis in acetaminophen hepatotoxicity.Crossref | GoogleScholarGoogle Scholar | 29920288PubMed |

Klein, R. M., Rigobello, C., Vidigal, C. B., Moura, K. F., Barbosa, D. S., Gerardin, D. C. C., Ceravolo, G. S., and Moreira, E. G. (2020). Gestational exposure to paracetamol in rats induces neurofunctional alterations in the progeny. Neurotoxicol. Teratol. 77, 106838.
Gestational exposure to paracetamol in rats induces neurofunctional alterations in the progeny.Crossref | GoogleScholarGoogle Scholar | 31644948PubMed |

Kristensen, D. M., Hass, U., Lesn, L., Lottrup, G., Jacobsen, P. R., Desdoits-Lethimonier, C., Boberg, J., Petersen, J. H., Toppari, J., Jensen, T. K., Brunak, S., Skakkebæk, N. E., Nellemann, C., Main, K. M., Jgou, B., and Leffers, H. (2011). Intrauterine exposure to mild analgesics is a risk factor for development of male reproductive disorders in human and rat. Hum. Reprod. 26, 235–244.
Intrauterine exposure to mild analgesics is a risk factor for development of male reproductive disorders in human and rat.Crossref | GoogleScholarGoogle Scholar | 21059752PubMed |

Lorz, C., Justo, P., Sanz, A., Subirá, D., Egido, J., and Ortiz, A. (2004). Paracetamol-induced renal tubular injury: a role for ER stress. J. Am. Soc. Nephrol. 15, 380–389.
Paracetamol-induced renal tubular injury: a role for ER stress.Crossref | GoogleScholarGoogle Scholar | 14747384PubMed |

Mazer, M., and Perrone, J. (2008). Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations, and management. J. Med. Toxicol. 4, 2–6.
Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations, and management.Crossref | GoogleScholarGoogle Scholar | 18338302PubMed |

McGill, M. R., Williams, C. D., Xie, Y., Ramachandram, A., and Jaeschke, H. (2012). Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol. Appl. Pharmacol. 264, 387–394.
Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity.Crossref | GoogleScholarGoogle Scholar | 22980195PubMed |

McGovern, A. J., Vitkovitsky, I. V., Jones, D. L., and Mullins, M. E. (2015). Can AST/ALT ratio indicate recovery after acute paracetamol poisoning? Clin. Toxicol. (Phila.) 53, 164–167.
Can AST/ALT ratio indicate recovery after acute paracetamol poisoning?Crossref | GoogleScholarGoogle Scholar | 25652258PubMed |

Mour, G., Feinfeld, D. A., Caraccio, T., and McGuigan, M. (2005). Acute renal dysfunction in acetaminophen poisoning. Ren. Fail. 27, 381–383.
Acute renal dysfunction in acetaminophen poisoning.Crossref | GoogleScholarGoogle Scholar | 16060123PubMed |

Murray, R. M. (1972). Analgesic nephropathy: removal of phenacetin from proprietary analgesics. BMJ 4, 131–132.
Analgesic nephropathy: removal of phenacetin from proprietary analgesics.Crossref | GoogleScholarGoogle Scholar | 5078444PubMed |

Nielsen, E., Ostergaard, G., and Larsen, J. (2008). ‘Toxicological Risk Assessment of Chemicals: A Practical Guide.’ (Informa Healthcare USA: New York.)

Nóbrega, D. F., Sehaber, V. F., Madureira, R., and Bracarense, A. P. F. R. L. (2019). Canine cutaneous haemangiosarcoma: biomarkers and survival. J. Comp. Pathol. 166, 87–96.
Canine cutaneous haemangiosarcoma: biomarkers and survival.Crossref | GoogleScholarGoogle Scholar | 30691610PubMed |

Notarianni, L. J., Oldham, H. G., and Bennett, P. N. (1987). Passage of paracetamol into breast milk and its subsequent metabolism by the neonate. Br. J. Clin. Pharmacol. 24, 63–67.
Passage of paracetamol into breast milk and its subsequent metabolism by the neonate.Crossref | GoogleScholarGoogle Scholar | 3620287PubMed |

Pereira, M. R. F., Aleixo, J. F., Cavalcanti, L. de F., Costa, N. O., Vieira, M. L., Ceravolo, G. S., Moreira, E. G., and Gerardin, D. C. C. (2020). Can maternal exposure to paracetamol impair reproductive parameters of male rat offspring? Reprod. Toxicol. 93, 68–74.
Can maternal exposure to paracetamol impair reproductive parameters of male rat offspring?Crossref | GoogleScholarGoogle Scholar |

Pholmoo, N., and Bunchorntavakul, C. (2019). Characteristics and outcomes of acetaminophen overdose and hepatotoxicity in Thailand. J. Clin. Transl. Hepatol. 7, 132–139.
Characteristics and outcomes of acetaminophen overdose and hepatotoxicity in Thailand.Crossref | GoogleScholarGoogle Scholar | 31293913PubMed |

Ramachandran, A., and Jaeschke, H. (2017). Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology. J. Clin. Transl. Res , .
Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology.Crossref | GoogleScholarGoogle Scholar | 28670625PubMed |

Saad, A., Hegde, S., Kechichian, T., Gamble, P., Rahman, M., Stutz, S. J., Anastasio, N. C., Alshehri, W., Lei, J., Mori, S., Kajs, B., Cunningham, K. A., Saade, G., Burd, I., and Costantine, M. (2016). Is there a causal relation between maternal acetaminophen administration and ADHD? PLoS One 11, e0157380.
Is there a causal relation between maternal acetaminophen administration and ADHD?Crossref | GoogleScholarGoogle Scholar | 27295086PubMed |

Smarr, M. M., Bible, J., Gerlanc, N., Buck Louis, G. M., Bever, A., and Grantz, K. L. (2019). Comparison of fetal growth by maternal prenatal acetaminophen use. Pediatr. Res. 86, 261–268.
Comparison of fetal growth by maternal prenatal acetaminophen use.Crossref | GoogleScholarGoogle Scholar | 30911064PubMed |

Stern, S. T., Bruno, M. K., Hennig, G. E., Horton, R. A., Roberts, J. C., and Cohen, S. D. (2005). Contribution of acetaminophen-cysteine to acetaminophen nephrotoxicity in CD-1 mice: I. Enhancement of acetaminophen nephrotoxicity by acetaminophen-cysteine. Toxicol. Appl. Pharmacol. 202, 151–159.
Contribution of acetaminophen-cysteine to acetaminophen nephrotoxicity in CD-1 mice: I. Enhancement of acetaminophen nephrotoxicity by acetaminophen-cysteine.Crossref | GoogleScholarGoogle Scholar | 15629190PubMed |

Thiele, K., Kessler, T., Arck, P., Erhardt, A., and Tiegs, G. (2013). Acetaminophen and pregnancy: short- and long-term consequences for mother and child. J. Reprod. Immunol. 97, 128–139.
Acetaminophen and pregnancy: short- and long-term consequences for mother and child.Crossref | GoogleScholarGoogle Scholar | 23432879PubMed |

United States Environmental Protection Agency (2006). Harmonization in interspecies extrapolation: use of BW3/4 as default method in derivation of the oral RfD. Available at https://www.epa.gov/sites/production/files/2014-11/documents/harmonizationinterspecies.pdf [verified 5 December 2020].

Wang, X., Wu, Q., Liu, A., Anadón, A., Rodríguez, J. L., Martínez-Larrañaga, M. R., Yuan, Z., and Martínez, M. A. (2017). Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro. Drug Metab. Rev. 49, 395–437.
Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 28766385PubMed |

Werler, M. M., Mitchell, A. A., Hernandez-Diaz, S., and Honein, M. A. (2005). Use of over-the-counter medications during pregnancy. Am. J. Obstet. Gynecol. 193, 771–777.
Use of over-the-counter medications during pregnancy.Crossref | GoogleScholarGoogle Scholar | 16150273PubMed |

Yaman, H., Cakir, E., Akgul, E. O., Aydin, I., Onguru, O., Cayci, T., Kurt, Y. G., Agilli, M., Aydin, F. N., Gulec, M., Altinel, O., Isbilir, S., Ersoz, N., Yasar, M., Turker, T., Bilgi, C., and Erbil, K. M. (2013). Pentraxin 3 as a potential biomarker of acetaminophen-induced liver injury. Exp. Toxicol. Pathol. 65, 147–151.
Pentraxin 3 as a potential biomarker of acetaminophen-induced liver injury.Crossref | GoogleScholarGoogle Scholar | 21880472PubMed |