Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Expression of Vasa, Nanos2 and Sox9 during initial testicular development in Nile tilapia (Oreochromis niloticus) submitted to sex reversal

Luis H. Melo A * , Rafael M. C. Melo A * , Ronald K. Luz B , Nilo Bazzoli C and Elizete Rizzo https://orcid.org/0000-0001-8601-0856 A D
+ Author Affiliations
- Author Affiliations

A Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.

B Laboratório de Aquacultura, Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil.

C Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Av. Dom José Gaspar 500, 30535-610 Belo Horizonte, Minas Gerais, Brazil.

D Corresponding author. Email: ictio@icb.ufmg.br

Reproduction, Fertility and Development 31(10) 1637-1646 https://doi.org/10.1071/RD18488
Submitted: 1 December 2018  Accepted: 28 April 2019   Published: 17 May 2019

Abstract

Sexual differentiation and early gonadal development are critical events in vertebrate reproduction. In this study, the initial testis development and expression of the Vasa, Nanos2 and Sox9 proteins were examined in Nile tilapia Oreochromis niloticus submitted to induced sex reversal. To that end, 150 O. niloticus larvae at 5 days post-hatching (dph) were kept in nurseries with no hormonal addition (control group) and 150 larvae were kept with feed containing 17α-methyltestosterone to induce male sex reversal (treated group). Morphological sexual differentiation of Nile tilapia occurred between 21 and 25 dph and sex reversal resulted in 94% males, whereas the control group presented 53% males. During sexual differentiation, gonocytes (Gon) were the predominant germ cells, which decreased and disappeared after that stage in both groups. Undifferentiated spermatogonia (Aund) were identified at 21 dph in the control group and at 23 dph in the treated group. Differentiated spermatogonia (Adiff) were found at 23 dph in both groups. Vasa and Nanos2 occurred in Gon, Aund and Adiff and there were no significant differences between groups. Vasa-labelled Adiff increased at 50 dph in both groups and Nanos2 presented a high proportion of labelled germ cells during sampling. Sertoli cells expressed Sox9 throughout the experiment and its expression was significantly greater during sexual differentiation in the control group. The results indicate that hormonal treatment did not alter initial testis development and expression of Vasa and Nanos2 in Nile tilapia, although lower expression of Sox9 and a delay in sexual differentiation was detected in the treated group.

Additional keywords: developmental biology, germ cells, methyltestosterone, Sertoli cells, sexual differentiation, testis.


References

Afonso, L. O., Wassermann, G. J., and Terezinha de Oliveira, R. (2001). Sex reversal in Nile tilapia (Oreochromis niloticus) using a nonsteroidal aromatase inhibitor. J. Exp. Zool. 290, 177–181.
Sex reversal in Nile tilapia (Oreochromis niloticus) using a nonsteroidal aromatase inhibitor.Crossref | GoogleScholarGoogle Scholar | 11471147PubMed |

Beardmore, J. A., Mair, G. C., and Lewis, R. I. (2001). Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects. Aquaculture 197, 283–301.
Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects.Crossref | GoogleScholarGoogle Scholar |

Bhandari, R. K., Nakamura, M., Kobayashi, T., and Nagahama, Y. (2006). Suppression of steroidogenic enzyme expression during androgen-induced sex reversal in Nile tilapia (Oreochromis niloticus). Gen. Comp. Endocrinol. 145, 20–24.
Suppression of steroidogenic enzyme expression during androgen-induced sex reversal in Nile tilapia (Oreochromis niloticus).Crossref | GoogleScholarGoogle Scholar | 16115634PubMed |

Castrillon, D. H., Quade, B. J., Wang, T. Y., Quigley, C., and Crum, C. P. (2000). The human VASA gene is specifically expressed in the germ cell lineage. Proc. Natl. Acad. Sci. USA 97, 9585–9590.
The human VASA gene is specifically expressed in the germ cell lineage.Crossref | GoogleScholarGoogle Scholar | 10920202PubMed |

Chiang, E. F., Pai, C. I., Wyatt, M., Yan, Y. L., Postlethwait, J., and Chung, B. (2001). Two sox9 genes on duplicated zebrafish chromosomes, expression of similar transcription activators in distinct sites. Dev. Biol. 231, 149–163.
Two sox9 genes on duplicated zebrafish chromosomes, expression of similar transcription activators in distinct sites.Crossref | GoogleScholarGoogle Scholar | 11180959PubMed |

De Felici, M. (2013). Origin, migration, and proliferation of human primordial germ cells. In ‘Oogenesis’. (Eds G. Coticchio, D. Albertini and L. De Santis.) pp. 19–37. (Springer: London.)

De Santa Barbara, P., Moniot, B., Poulat, F., and Berta, P. (2000). Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development. Dev. Dyn. 217, 293–298.
Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development.Crossref | GoogleScholarGoogle Scholar | 10741423PubMed |

Devlin, R. H., and Nagahama, Y. (2002). Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364.
Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences.Crossref | GoogleScholarGoogle Scholar |

Drumond, A. L., Meistrich, M. L., and Chiarini-Garcia, H. (2011). Spermatogonial morphology and kinetics during testis development in mice: a high-resolution light microscopy approach. Reproduction 142, 145–155.
Spermatogonial morphology and kinetics during testis development in mice: a high-resolution light microscopy approach.Crossref | GoogleScholarGoogle Scholar | 21521798PubMed |

Extavour, C. G., Pang, K., Matus, D. Q., and Martindale, M. Q. (2005). Vasa and nanos expression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms. Evol. Dev. 7, 201–215.
Vasa and nanos expression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms.Crossref | GoogleScholarGoogle Scholar | 15876193PubMed |

Feng, R., Fang, L., Cheng, Y., He, X., Jiang, W., Dong, R., Shi, H., Jiang, D., Sun, L., and Wang, D. (2015). Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus). Sci. Rep. 5, 10131.
Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus).Crossref | GoogleScholarGoogle Scholar | 25976364PubMed |

Griswold, M. D. (1998). The central role of Sertoli cells in spermatogenesis. Semin. Cell Dev. Biol. 9, 411–416.
The central role of Sertoli cells in spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 9813187PubMed |

Guan, G., Kobayashi, T., and Nagahama, Y. (2000). Sexually dimorphic expression of two types of DM (Doublesex/Mab-3)-domain genes in a teleost fish, the Tilapia (Oreochromis niloticus). Biochem. Biophys. Res. Commun. 272, 662–666.
Sexually dimorphic expression of two types of DM (Doublesex/Mab-3)-domain genes in a teleost fish, the Tilapia (Oreochromis niloticus).Crossref | GoogleScholarGoogle Scholar | 10860811PubMed |

Hai, Y., Hou, J., Liu, Y., Liu, Y., Yang, H., Li, Z., and He, Z. (2014). The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Semin. Cell Dev. Biol. 29, 66–75.
The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 24718316PubMed |

Hayes, T. B. (1998). Sex determination and primary sex differentiation in amphibians: genetic and developmental mechanisms. J. Exp. Zool. 281, 373–399.
Sex determination and primary sex differentiation in amphibians: genetic and developmental mechanisms.Crossref | GoogleScholarGoogle Scholar | 9662826PubMed |

Ijiri, S., Kaneko, H., Kobayashi, T., Wang, D., Sakai, F., Paul-Prasanth, B., Nakamura, M., and Nagahama, Y. (2008). Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol. Reprod. 78, 333–341.
Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus.Crossref | GoogleScholarGoogle Scholar | 17942796PubMed |

Joly, W., Chartier, A., Rojas-Rios, P., Busseau, I., and Simonelig, M. (2013). The CCR4 deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal. Stem Cell Reports 1, 411–424.
The CCR4 deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal.Crossref | GoogleScholarGoogle Scholar | 24286029PubMed |

Kadyrova, L. Y., Habara, Y., Lee, T. H., and Wharton, R. P. (2007). Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline. Development 134, 1519–1527.
Translational control of maternal Cyclin B mRNA by Nanos in the Drosophila germline.Crossref | GoogleScholarGoogle Scholar | 17360772PubMed |

Kitano, T., Takamune, K., Nagahama, Y., and Abe, S. I. (2000). Aromatase inhibitor and 17α-methyltestosterone cause sex-reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in Japanese flounder (Paralichthys olivaceus). Mol. Reprod. Dev. 56, 1–5.
Aromatase inhibitor and 17α-methyltestosterone cause sex-reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in Japanese flounder (Paralichthys olivaceus).Crossref | GoogleScholarGoogle Scholar | 10737961PubMed |

Kobayashi, T., Kajiura-Kobayashi, H., and Nagahama, Y. (2000). Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus. Mech. Dev. 99, 139–142.
Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus.Crossref | GoogleScholarGoogle Scholar | 11091081PubMed |

Kobayashi, T., Kajiura-Kobayashi, H., and Nagahama, Y. (2002). Two isoforms of vasa homologs in a teleost fish: their differential expression during germ cell differentiation. Mech. Dev. 111, 167–171.
Two isoforms of vasa homologs in a teleost fish: their differential expression during germ cell differentiation.Crossref | GoogleScholarGoogle Scholar | 11804791PubMed |

Kobayashi, T., Kajiura-Kobayashi, H., Guan, G., and Nagahama, Y. (2008). Sexual dimorphic expression of DMRT1 and Sox9a during gonadal differentiation and hormone-induced sex reversal in the teleost fish Nile tilapia (Oreochromis niloticus). Dev. Dyn. 237, 297–306.
Sexual dimorphic expression of DMRT1 and Sox9a during gonadal differentiation and hormone-induced sex reversal in the teleost fish Nile tilapia (Oreochromis niloticus).Crossref | GoogleScholarGoogle Scholar | 18095345PubMed |

Kusz, K. M., Tomczyk, L., Sajek, M., Spik, A., Latos-Bielenska, A., Jedrzejczak, P., Pawelczyk, L., and Jaruzelska, J. (2009). The highly conserved NANOS2 protein: testis-specific expression and significance for the human male reproduction. Mol. Hum. Reprod. 15, 165–171.
The highly conserved NANOS2 protein: testis-specific expression and significance for the human male reproduction.Crossref | GoogleScholarGoogle Scholar | 19168545PubMed |

Lacerda, S. M. S. N., Costa, G. M. J., Da Silva, M. A., Campos-Junior, P. H. A., Segatelli, T. M., Peixoto, M. T. D., Resende, R. R., and De França, L. R. (2013). Phenotypic characterization and in vitro propagation and transplantation of the Nile tilapia (Oreochromis niloticus) spermatogonial stem cells. Gen. Comp. Endocrinol. 192, 95–106.
Phenotypic characterization and in vitro propagation and transplantation of the Nile tilapia (Oreochromis niloticus) spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar |

Lasala, C., Carré-Eusèbe, D., Picard, J. Y., and Rey, R. (2004). Subcellular and molecular mechanisms regulating anti-Müllerian hormone gene expression in mammalian and nonmammalian species. DNA Cell Biol. 23, 572–585.
Subcellular and molecular mechanisms regulating anti-Müllerian hormone gene expression in mammalian and nonmammalian species.Crossref | GoogleScholarGoogle Scholar | 15383177PubMed |

Li, M., and Wang, D. (2017). Gene editing nuclease and its application in tilapia. Sci. Bull. (Beijing) 62, 165–173.
Gene editing nuclease and its application in tilapia.Crossref | GoogleScholarGoogle Scholar |

Maatouk, D. M., and Resnick, J. L. (2003). Continuing primordial germ cell differentiation in the mouse embryo is a cell-intrinsic program sensitive to DNA methylation. Dev. Biol. 258, 201–208.
Continuing primordial germ cell differentiation in the mouse embryo is a cell-intrinsic program sensitive to DNA methylation.Crossref | GoogleScholarGoogle Scholar | 12781693PubMed |

Marracci, S., Casola, C., Bucci, S., Ragghianti, M., Ogielska, M., and Mancino, G. (2007). Differential expression of two vasa/PL10-related genes during gametogenesis in the special model system Rana. Dev. Genes Evol. 217, 395–402.
Differential expression of two vasa/PL10-related genes during gametogenesis in the special model system Rana.Crossref | GoogleScholarGoogle Scholar | 17333258PubMed |

Meyer, S., Temme, C., and Wahle, E. (2004). Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 197–216.
Messenger RNA turnover in eukaryotes: pathways and enzymes.Crossref | GoogleScholarGoogle Scholar | 15596551PubMed |

Nakamura, M., Kobayashi, T., Chang, X. T., and Nagahama, Y. (1998). Gonadal sex differentiation in teleost fish. J. Exp. Zool. 281, 362–372.
Gonadal sex differentiation in teleost fish.Crossref | GoogleScholarGoogle Scholar |

Nakamura, S., Watakabe, I., Nishimura, T., Toyoda, A., Taniguchi, Y., and Tanaka, M. (2012). Analysis of medaka sox9 orthologue reveals a conserved role in germ cell maintenance. PLoS One 7, e29982.
Analysis of medaka sox9 orthologue reveals a conserved role in germ cell maintenance.Crossref | GoogleScholarGoogle Scholar | 23251535PubMed |

Noce, T., Okamoto-Ito, S., and Tsunekawa, N. (2001). Vasa homolog genes in mammalian germ cell development. Cell Struct. Funct. 26, 131–136.
Vasa homolog genes in mammalian germ cell development.Crossref | GoogleScholarGoogle Scholar | 11565805PubMed |

Pandian, T. J., and Sheela, S. G. (1995). Hormonal induction of sex reversal in fish. Aquaculture 138, 1–22.
Hormonal induction of sex reversal in fish.Crossref | GoogleScholarGoogle Scholar |

Parker, R., and Sheth, U. (2007). P bodies and the control of mRNA translation and degradation. Mol. Cell 25, 635–646.
P bodies and the control of mRNA translation and degradation.Crossref | GoogleScholarGoogle Scholar | 17349952PubMed |

Raghuveer, K., Senthilkumaran, B., Sudhakumari, C. C., Sridevi, P., Rajakumar, A., Singh, R., Murugananthkumar, R., and Majumdar, K. C. (2011). Dimorphic expression of various transcription factor and steroidogenic enzyme genes during gonadal ontogeny in the air-breathing catfish, Clarias gariepinus. Sex Dev. 5, 213–223.
Dimorphic expression of various transcription factor and steroidogenic enzyme genes during gonadal ontogeny in the air-breathing catfish, Clarias gariepinus.Crossref | GoogleScholarGoogle Scholar | 21720151PubMed |

Raz, E. (2000). The function and regulation of vasa-like genes in germ-cell development. Genome Biol. 1, reviews1017.1–reviews1017.6.
The function and regulation of vasa-like genes in germ-cell development.Crossref | GoogleScholarGoogle Scholar |

Santana, J. C. O., and Quagio-Grassiotto, I. (2014). Extracellular matrix remodeling of the testes through the male reproductive cycle in Teleostei fish. Fish Physiol. Biochem. 40, 1863–1875.
Extracellular matrix remodeling of the testes through the male reproductive cycle in Teleostei fish.Crossref | GoogleScholarGoogle Scholar |

Schulz, R. W., de França, L. R., Lareyre, J. J., LeGac, F., Chiarini-Garcia, H., Nobrega, R. H., and Miura, T. (2010). Spermatogenesis in fish. Gen. Comp. Endocrinol. 165, 390–411.
Spermatogenesis in fish.Crossref | GoogleScholarGoogle Scholar | 19348807PubMed |

Sekido, R., and Lovell-Badge, R. (2008). Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453, 930–934.
Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer.Crossref | GoogleScholarGoogle Scholar | 18454134PubMed |

Sekido, R., Bar, B., Narváez, V., Penny, G., and Lovell-Badge, R. (2004). SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev. Biol. 274, 271–279.
SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors.Crossref | GoogleScholarGoogle Scholar | 15385158PubMed |

Seydoux, G., and Strome, S. (1999). Launching the germline in Caenorhabditis elegans: regulation of gene expression in early germ cells. Development 126, 3275–3283.
| 10393107PubMed |

Silva, S. M., Hacker, A., Harley, V., Goodfellow, P., Swain, A., and Lovell-Badge, R. (1996). Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat. Genet. 14, 62–68.
Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds.Crossref | GoogleScholarGoogle Scholar |

Sun, D., Zhang, Y., Wang, C., Hua, X., Zhang, X. A., and Yan, J. (2013). Sox9-related signaling controls zebrafish juvenile ovary-testis transformation. Cell Death Dis. 4, e930.
Sox9-related signaling controls zebrafish juvenile ovary-testis transformation.Crossref | GoogleScholarGoogle Scholar | 24263104PubMed |

Suzuki, A., and Saga, Y. (2008). Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes Dev. 22, 430–435.
Nanos2 suppresses meiosis and promotes male germ cell differentiation.Crossref | GoogleScholarGoogle Scholar | 18281459PubMed |

Suzuki, A., Igarashi, K., Aisaki, K. I., Kanno, J., and Saga, Y. (2010). NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs. Proc. Natl. Acad. Sci. USA 107, 3594–3599.
NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs.Crossref | GoogleScholarGoogle Scholar | 20133598PubMed |

Tanaka, S. S., Toyooka, Y., Akasu, R., Katoh-Fukui, Y., Nakahara, Y., Suzuki, R., Yokoyama, M., and Noce, T. (2000). The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev. 14, 841–853.
The mouse homolog of Drosophila Vasa is required for the development of male germ cells.Crossref | GoogleScholarGoogle Scholar | 10766740PubMed |

Tsuda, M., Sasaoka, Y., Kiso, M., Abe, K., Haraguchi, S., Kobayashi, S., and Saga, Y. (2003). Conserved role of Nanos proteins in germ cell development. Science 301, 1239–1241.
Conserved role of Nanos proteins in germ cell development.Crossref | GoogleScholarGoogle Scholar | 12947200PubMed |

Vidal, V. P., Chaboissier, M. C., de Rooij, D. G., and Schedl, A. (2001). Sox9 induces testis development in XX transgenic mice. Nat. Genet. 28, 216–217.
Sox9 induces testis development in XX transgenic mice.Crossref | GoogleScholarGoogle Scholar | 11431689PubMed |

Wilhelm, D., Palmer, S., and Koopman, P. (2007). Sex determination and gonadal development in mammals. Physiol. Rev. 87, 1–28.
Sex determination and gonadal development in mammals.Crossref | GoogleScholarGoogle Scholar | 17237341PubMed |

Xu, H., Gui, J., and Hong, Y. (2005). Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate. Dev. Dyn. 233, 872–882.
Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate.Crossref | GoogleScholarGoogle Scholar | 15880437PubMed |

Zhao, L., Svingen, T., Ng, E. T., and Koopman, P. (2015). Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1. Development 142, 1083–1088.
Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1.Crossref | GoogleScholarGoogle Scholar | 25725066PubMed |