Epigenetic regulation of progesterone receptors and the onset of labour
Marina Ilicic A B E , Tamas Zakar C D E F and Jonathan W. Paul C D E GA School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
B Priority Research Centre for Stroke and Brain Injury, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
C School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
D Priority Research Centre for Reproductive Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
E Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
F John Hunter Hospital, Lookout Road, New Lambton Heights, NSW 2305, Australia.
G Corresponding author. Email: jonathan.paul@newcastle.edu.au
Reproduction, Fertility and Development 31(6) 1035-1048 https://doi.org/10.1071/RD18392
Submitted: 2 October 2018 Accepted: 29 January 2019 Published: 4 April 2019
Abstract
Progesterone plays a crucial role in maintaining pregnancy by promoting myometrial quiescence. The withdrawal of progesterone action signals the end of pregnancy and, in most mammalian species, this is achieved by a rapid fall in progesterone concentrations. However, in humans circulating progesterone concentrations remain high up to and during labour. Efforts to understand this phenomenon led to the ‘functional progesterone withdrawal’ hypothesis, whereby the pro-gestation actions of progesterone are withdrawn, despite circulating concentrations remaining elevated. The exact mechanism of functional progesterone withdrawal is still unclear and in recent years has been the focus of intense research. Emerging evidence now indicates that epigenetic regulation of progesterone receptor isoform expression may be the crucial mechanism by which functional progesterone withdrawal is achieved, effectively precipitating human labour despite high concentrations of circulating progesterone. This review examines current evidence that epigenetic mechanisms play a role in determining whether the pro-gestation or pro-contractile isoform of the progesterone receptor is expressed in the pregnant human uterus. We explore the mechanism by which these epigenetic modifications are achieved and, importantly, how these underlying epigenetic mechanisms are influenced by known regulators of uterine physiology, such as prostaglandins and oestrogens, in order to phenotypically transform the pregnant uterus and initiate labour.
Additional keywords: DNA methylation, histone modifications, histone-modifying enzymes, parturition.
References
Agger, K., Cloos, P. A. C., Christensen, J., Pasini, D., Rose, S., Rappsilber, J., Issaeva, I., Canaani, E., Salcini, A. E., and Helin, K. (2007). UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731–734.| UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development.Crossref | GoogleScholarGoogle Scholar | 17713478PubMed |
Allport, V. C., Pieber, D., Slater, D. M., Newton, R., White, J. O., and Bennett, P. R. (2001). Human labour is associated with nuclear factor-kappaB activity which mediates cyclo-oxygenase-2 expression and is involved with the ‘functional progesterone withdrawal’. Mol. Hum. Reprod. 7, 581–586.
| Human labour is associated with nuclear factor-kappaB activity which mediates cyclo-oxygenase-2 expression and is involved with the ‘functional progesterone withdrawal’.Crossref | GoogleScholarGoogle Scholar | 11385114PubMed |
Arck, P., Hansen, P. J., Mulac Jericevic, B., Piccinni, M. P., and Szekeres-Bartho, J. (2007). Progesterone during pregnancy: endocrine–immune cross talk in mammalian species and the role of stress. Am. J. Reprod. Immunol. 58, 268–279.
| Progesterone during pregnancy: endocrine–immune cross talk in mammalian species and the role of stress.Crossref | GoogleScholarGoogle Scholar | 17681043PubMed |
Astle, S., Slater, D. M., and Thornton, S. (2003). The involvement of progesterone in the onset of human labour. Eur. J. Obstet. Gynecol. Reprod. Biol. 108, 177–181.
| The involvement of progesterone in the onset of human labour.Crossref | GoogleScholarGoogle Scholar | 12781407PubMed |
Avrech, O. M., Golan, A., Weinraub, Z., Bukovsky, I., and Caspi, E. (1991). Mifepristone (RU486) alone or in combination with a prostaglandin analogue for termination of early pregnancy: a review. Fertil. Steril. 56, 385–393.
| Mifepristone (RU486) alone or in combination with a prostaglandin analogue for termination of early pregnancy: a review.Crossref | GoogleScholarGoogle Scholar | 1894013PubMed |
Bannister, A. J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Res. 21, 381–395.
| Regulation of chromatin by histone modifications.Crossref | GoogleScholarGoogle Scholar | 21321607PubMed |
Bannister, A. J., Schneider, R., and Kouzarides, T. (2002). Histone methylation: dynamic or static? Cell 109, 801–806.
| Histone methylation: dynamic or static?Crossref | GoogleScholarGoogle Scholar | 12110177PubMed |
Bernard, A., Duffek, L., Torok, I., and Kosa, Z. (1988). Progesterone and oestradiol levels and cytoplasmic receptor concentrations in the human myometrium at term, before labour and during labour. Acta Physiol. Hung. 71, 507–510.
| 3207038PubMed |
Bernstein, B. E., Mikkelsen, T. S., Xie, X. H., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S. L., and Lander, E. S. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326.
| A bivalent chromatin structure marks key developmental genes in embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 16630819PubMed |
Bird, A. P., and Wolffe, A. P. (1999). Methylation-induced repression – belts, braces, and chromatin. Cell 99, 451–454.
| Methylation-induced repression – belts, braces, and chromatin.Crossref | GoogleScholarGoogle Scholar | 10589672PubMed |
Blencowe, H., Cousens, S., Oestergaard, M. Z., Chou, D., Moller, A. B., Narwal, R., Adler, A., Vera Garcia, C., Rohde, S., Say, L., and Lawn, J. E. (2012). National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379, 2162–2172.
| National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications.Crossref | GoogleScholarGoogle Scholar | 22682464PubMed |
Blencowe, H., Cousens, S., Chou, D., Oestergaard, M., Say, L., Moller, A. B., Kinney, M., Lawn, J., and Born Too Soon Preterm Birth Action, G. (2013). Born too soon: the global epidemiology of 15 million preterm births. Reprod. Health 10, S2.
| Born too soon: the global epidemiology of 15 million preterm births.Crossref | GoogleScholarGoogle Scholar | 24625129PubMed |
Boroditsky, R. S., Reyes, F. I., Winter, J. S., and Faiman, C. (1978). Maternal serum estrogen and progesterone concentrations preceding normal labor. Obstet. Gynecol. 51, 686–691.
| 566408PubMed |
Bouchard, P. (1999). Progesterone and the progesterone receptor. J. Reprod. Med. 44, 153–157.
| 11392025PubMed |
Breyer, R. M., Bagdassarian, C. K., Myers, S. A., and Breyer, M. D. (2001). Prostanoid receptors: subtypes and signaling. Annu. Rev. Pharmacol. Toxicol. 41, 661–690.
| Prostanoid receptors: subtypes and signaling.Crossref | GoogleScholarGoogle Scholar | 11264472PubMed |
Brodt-Eppley, J., and Myatt, L. (1998). Changes in expression of contractile FP and relaxatory EP2 receptors in pregnant rat myometrium during late gestation, at labor, and postpartum. Biol. Reprod. 59, 878–883.
| Changes in expression of contractile FP and relaxatory EP2 receptors in pregnant rat myometrium during late gestation, at labor, and postpartum.Crossref | GoogleScholarGoogle Scholar | 9746738PubMed |
Chai, S. Y., Smith, R., Zakar, T., Mitchell, C., and Madsen, G. (2012). Term myometrium is characterized by increased activating epigenetic modifications at the progesterone receptor-A promoter. Mol. Hum. Reprod. 18, 401–409.
| Term myometrium is characterized by increased activating epigenetic modifications at the progesterone receptor-A promoter.Crossref | GoogleScholarGoogle Scholar | 22369759PubMed |
Chai, S. Y., Smith, R., Fitter, J. T., Mitchell, C., Pan, X., Ilicic, M., Maiti, K., Zakar, T., and Madsen, G. (2014). Increased progesterone receptor A expression in labouring human myometrium is associated with decreased promoter occupancy by the histone demethylase JARID1A. Mol. Hum. Reprod. 20, 442–453.
| Increased progesterone receptor A expression in labouring human myometrium is associated with decreased promoter occupancy by the histone demethylase JARID1A.Crossref | GoogleScholarGoogle Scholar | 24442343PubMed |
Challis, J. R. (2001). Understanding pre-term birth. Clin. Invest. Med. 24, 60–67.
| 11266035PubMed |
Challis, J. R. G., Matthews, S. G., Gibb, W., and Lye, S. J. (2000). Endocrine and paracrine regulation of birth at term and preterm. Endocr. Rev. 21, 514–550.
| Endocrine and paracrine regulation of birth at term and preterm.Crossref | GoogleScholarGoogle Scholar |
Challis, J. R., Sloboda, D. M., Alfaidy, N., Lye, S. J., Gibb, W., Patel, F. A., Whittle, W. L., and Newnham, J. P. (2002). Prostaglandins and mechanisms of preterm birth. Reproduction 124, 1–17.
| Prostaglandins and mechanisms of preterm birth.Crossref | GoogleScholarGoogle Scholar | 12090913PubMed |
Christensen, J., Agger, K., Cloos, P. A. C., Pasini, D., Rose, S., Sennels, L., Rappsilber, J., Hansen, K. H., Salcini, A. E., and Helin, K. (2007). RBP2 belongs to a family of demethylases, specific for tri- and dimethylated lysine 4 on histone 3. Cell 128, 1063–1076.
| RBP2 belongs to a family of demethylases, specific for tri- and dimethylated lysine 4 on histone 3.Crossref | GoogleScholarGoogle Scholar | 17320161PubMed |
Coleman, R. A., Eglen, R. M., Jones, R. L., Narumiya, S., Shimizu, T., Smith, W. L., Dahlen, S. E., Drazen, J. M., Gardiner, P. J., and Jackson, W. T. (1995). Prostanoid and leukotriene receptors: a progress report from the IUPHAR working parties on classification and nomenclature. Adv. Prostaglandin Thromboxane Leukot. Res. 23, 283–285.
| 7732854PubMed |
Condon, J. C., Jeyasuria, P., Faust, J. M., Wilson, J. W., and Mendelson, C. R. (2003). A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition. Proc. Natl Acad. Sci. USA 100, 9518–9523.
| A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition.Crossref | GoogleScholarGoogle Scholar | 12886011PubMed |
Conneely, O. M., and Lydon, J. P. (2000). Progesterone receptors in reproduction: functional impact of the A and B isoforms. Steroids 65, 571–577.
| Progesterone receptors in reproduction: functional impact of the A and B isoforms.Crossref | GoogleScholarGoogle Scholar | 11108861PubMed |
Conneely, O. M., Mulac-Jericevic, B., DeMayo, F., Lydon, J. P., and O’Malley, B. W. (2002). Reproductive functions of progesterone receptors. Recent Prog. Horm. Res. 57, 339–355.
| Reproductive functions of progesterone receptors.Crossref | GoogleScholarGoogle Scholar | 12017551PubMed |
Cook, J. L., Shallow, M. C., Zaragoza, D. B., Anderson, K. I., and Olson, D. M. (2003). Mouse placental prostaglandins are associated with uterine activation and the timing of birth. Biol. Reprod. 68, 579–587.
| Mouse placental prostaglandins are associated with uterine activation and the timing of birth.Crossref | GoogleScholarGoogle Scholar | 12533422PubMed |
Creasy, R. K. (1991). Preventing preterm birth. N. Engl. J. Med. 325, 727–729.
| Preventing preterm birth.Crossref | GoogleScholarGoogle Scholar | 1870643PubMed |
Csapo, A. (1956). Progesterone block. Am. J. Anat. 98, 273–291.
| Progesterone block.Crossref | GoogleScholarGoogle Scholar | 13326855PubMed |
Deaton, A. M., and Bird, A. (2011). CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022.
| CpG islands and the regulation of transcription.Crossref | GoogleScholarGoogle Scholar | 21576262PubMed |
Defeo-Jones, D., Huang, P. S., Jones, R. E., Haskell, K. M., Vuocolo, G. A., Hanobik, M. G., Huber, H. E., and Oliff, A. (1991). Cloning of cDNAs for cellular proteins that bind to the retinoblastoma gene product. Nature 352, 251–254.
| Cloning of cDNAs for cellular proteins that bind to the retinoblastoma gene product.Crossref | GoogleScholarGoogle Scholar | 1857421PubMed |
Dodd, J. M., and Crowther, C. A. (2010). The role of progesterone in prevention of preterm birth. Int. J. Womens Health 1, 73–84.
| 21072277PubMed |
Dong, Y. L., and Yallampalli, C. (2000). Pregnancy and exogenous steroid treatments modulate the expression of relaxant EP(2) and contractile FP receptors in the rat uterus. Biol. Reprod. 62, 533–539.
| Pregnancy and exogenous steroid treatments modulate the expression of relaxant EP(2) and contractile FP receptors in the rat uterus.Crossref | GoogleScholarGoogle Scholar | 10684792PubMed |
Elger, W., and Hasan, S. G. (1985). Studies on the mechanism of action of antifertile PG in animal models. Acta Physiol. Hung. 65, 415–432.
| 3859989PubMed |
Elger, W., Hasan, S. H., and Friedreich, E. (1973). ‘Uterine’ and ‘luteal’ effects of prostaglandins (PG) in rats and guinea pigs as potential abortifacient mechanisms. Acta Endocrinol. Suppl. (Copenh.) 173, 46.
| ‘Uterine’ and ‘luteal’ effects of prostaglandins (PG) in rats and guinea pigs as potential abortifacient mechanisms.Crossref | GoogleScholarGoogle Scholar | 4542124PubMed |
Embrey, M. (1971). PGE compounds for induction of labour and abortion. Ann. N. Y. Acad. Sci. 180, 518–523.
| PGE compounds for induction of labour and abortion.Crossref | GoogleScholarGoogle Scholar | 5286106PubMed |
Embrey, M. P. (1981). Prostaglandins in human reproduction. BMJ 283, 1563–1566.
| Prostaglandins in human reproduction.Crossref | GoogleScholarGoogle Scholar | 6796167PubMed |
Evans, R. M. (1988). The steroid and thyroid hormone receptor superfamily. Science 240, 889–895.
| The steroid and thyroid hormone receptor superfamily.Crossref | GoogleScholarGoogle Scholar | 3283939PubMed |
Fang, X., Wong, S., and Mitchell, B. F. (1997). Effects of RU486 on estrogen, progesterone, oxytocin, and their receptors in the rat uterus during late gestation. Endocrinology 138, 2763–2768.
| Effects of RU486 on estrogen, progesterone, oxytocin, and their receptors in the rat uterus during late gestation.Crossref | GoogleScholarGoogle Scholar | 9202215PubMed |
Fattaey, A. R., Helin, K., Dembski, M. S., Dyson, N., Harlow, E., Vuocolo, G. A., Hanobik, M. G., Haskell, K. M., Oliff, A., Defeojones, D., and Jones, R. E. (1993). Characterization of the retinoblastoma binding-proteins Rbp1 and Rbp2. Oncogene 8, 3149–3156.
| 8414517PubMed |
Ferguson, A. T., Lapidus, R. G., and Davidson, N. E. (1998). Demethylation of the progesterone receptor CpG island is not required for progesterone receptor gene expression. Oncogene 17, 577–583.
| Demethylation of the progesterone receptor CpG island is not required for progesterone receptor gene expression.Crossref | GoogleScholarGoogle Scholar | 9704923PubMed |
Fischer, J. J., Toedling, J., Krueger, T., Schueler, M., Huber, W., and Sperling, S. (2008). Combinatorial effects of four histone modifications in transcription and differentiation. Genomics 91, 41–51.
| Combinatorial effects of four histone modifications in transcription and differentiation.Crossref | GoogleScholarGoogle Scholar | 17997276PubMed |
Garcia, B. A., Hake, S. B., Diaz, R. L., Kauer, M., Morris, S. A., Recht, J., Shabanowitz, J., Mishra, N., Strahl, B. D., Allis, C. D., and Hunt, D. F. (2007). Organismal differences in post-translational modifications in histones H3 and H4. J. Biol. Chem. 282, 7641–7655.
| Organismal differences in post-translational modifications in histones H3 and H4.Crossref | GoogleScholarGoogle Scholar | 17194708PubMed |
Gaudet, M. M., Campan, M., Figueroa, J. D., Yang, X. R., Lissowska, J., Peplonska, B., Brinton, L. A., Rimm, D. L., Laird, P. W., Garcia-Closas, M., and Sherman, M. E. (2009). DNA hypermethylation of ESR1 and PGR in breast cancer: pathologic and epidemiologic associations. Cancer Epidemiol. Biomarkers Prev. 18, 3036–3043.
| DNA hypermethylation of ESR1 and PGR in breast cancer: pathologic and epidemiologic associations.Crossref | GoogleScholarGoogle Scholar | 19861523PubMed |
Gellersen, B., Fernandes, M. S., and Brosens, J. J. (2009). Non-genomic progesterone actions in female reproduction. Hum. Reprod. Update 15, 119–138.
| Non-genomic progesterone actions in female reproduction.Crossref | GoogleScholarGoogle Scholar | 18936037PubMed |
Giangrande, P. H., and McDonnell, D. P. (1999). The A and B isoforms of the human progesterone receptor: two functionally different transcription factors encoded by a single gene. Recent Prog. Horm. Res. 54, 291–313.
| 10548881PubMed |
Giangrande, P. H., Pollio, G., and McDonnell, D. P. (1997). Mapping and characterization of the functional domains responsible for the differential activity of the A and B isoforms of the human progesterone receptor. J. Biol. Chem. 272, 32889–32900.
| Mapping and characterization of the functional domains responsible for the differential activity of the A and B isoforms of the human progesterone receptor.Crossref | GoogleScholarGoogle Scholar | 9407067PubMed |
Graham, J. D., and Clarke, C. L. (1997). Physiological action of progesterone in target tissues. Endocr. Rev. 18, 502–519.
| 9267762PubMed |
Grant, P. A. (2001). A tale of histone modifications. Genome Biol. 2, reviews0003.1.
| A tale of histone modifications.Crossref | GoogleScholarGoogle Scholar | 11305943PubMed |
Haluska, G. J., Kaler, C. A., Cook, M. J., and Novy, M. J. (1994). Prostaglandin production during spontaneous labor and after treatment with RU486 in pregnant rhesus macaques. Biol. Reprod. 51, 760–765.
| Prostaglandin production during spontaneous labor and after treatment with RU486 in pregnant rhesus macaques.Crossref | GoogleScholarGoogle Scholar | 7819458PubMed |
Haluska, G. J., Wells, T. R., Hirst, J. J., Brenner, R. M., Sadowsky, D. W., and Novy, M. J. (2002). Progesterone receptor localization and isoforms in myometrium, decidua, and fetal membranes from rhesus macaques: evidence for functional progesterone withdrawal at parturition. J. Soc. Gynecol. Investig. 9, 125–136.
| 12009386PubMed |
Hamamoto, R., Furukawa, Y., Morita, M., Iimura, Y., Silva, F. P., Li, M. H., Yagyu, R., and Nakamura, Y. (2004). SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol. 6, 731–740.
| SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells.Crossref | GoogleScholarGoogle Scholar | 15235609PubMed |
Hamamoto, R., Silva, F. P., Tsuge, M., Nishidate, T., Katagiri, T., Nakamura, Y., and Furukawa, Y. (2006). Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci. 97, 113–118.
| Enhanced SMYD3 expression is essential for the growth of breast cancer cells.Crossref | GoogleScholarGoogle Scholar | 16441421PubMed |
Heintzman, N. D., Hon, G. C., Hawkins, R. D., Kheradpour, P., Stark, A., Harp, L. F., Ye, Z., Lee, L. K., Stuart, R. K., Ching, C. W., Ching, K. A., Antosiewicz-Bourget, J. E., Liu, H., Zhang, X. M., Green, R. D., Lobanenkov, V. V., Stewart, R., Thomson, J. A., Crawford, G. E., Kellis, M., and Ren, B. (2009). Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112.
| Histone modifications at human enhancers reflect global cell-type-specific gene expression.Crossref | GoogleScholarGoogle Scholar | 19295514PubMed |
Hovi, P., Andersson, S., Eriksson, J. G., Jarvenpaa, A. L., Strang-Karlsson, S., Makitie, O., and Kajantie, E. (2007). Glucose regulation in young adults with very low birth weight. N. Engl. J. Med. 356, 2053–2063.
| Glucose regulation in young adults with very low birth weight.Crossref | GoogleScholarGoogle Scholar | 17507704PubMed |
Hovi, P., Vohr, B., Ment, L. R., Doyle, L. W., McGarvey, L., Morrison, K. M., Evensen, K. A., van der Pal, S., Grunau, R. E., APIC Adults Born Preterm International Collaboration Brubakk, A. M., Andersson, S., Saigal, S., and Kajantie, E. (2016). Blood pressure in young adults born at very low birth weight: Adults Born Preterm International Collaboration. Hypertension 68, 880–887.
| Blood pressure in young adults born at very low birth weight: Adults Born Preterm International Collaboration.Crossref | GoogleScholarGoogle Scholar | 27572149PubMed |
Huang, Q. T., Gao, Y. F., Zhong, M., and Yu, Y. H. (2016). Preterm birth and subsequent risk of acute childhood leukemia: a meta-analysis of observational studies. Cell. Physiol. Biochem. 39, 1229–1238.
| Preterm birth and subsequent risk of acute childhood leukemia: a meta-analysis of observational studies.Crossref | GoogleScholarGoogle Scholar | 27595399PubMed |
Ilicic, M., Zakar, T., and Paul, J. W. (2017). Modulation of progesterone receptor isoform expression in pregnant human myometrium. BioMed Res. Int. 2017, 4589214.
| Modulation of progesterone receptor isoform expression in pregnant human myometrium.Crossref | GoogleScholarGoogle Scholar | 28540297PubMed |
Ingvarsdottir, K., Edwards, C., Lee, M. G., Lee, J. S., Schultz, D. C., Shilatifard, A., Shiekhattar, R., and Berger, S. L. (2007). Histone H3K4 demethylation during activation and attenuation of GAL1 transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 7856–7864.
| Histone H3K4 demethylation during activation and attenuation of GAL1 transcription in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 17875926PubMed |
Jain, J. K., and Mishell, D. R. (1994). A comparison of intravaginal misoprostol with prostaglandin E2 for termination of second-trimester pregnancy. N. Engl. J. Med. 331, 290–293.
| A comparison of intravaginal misoprostol with prostaglandin E2 for termination of second-trimester pregnancy.Crossref | GoogleScholarGoogle Scholar | 8022438PubMed |
Jakowlew, S. B., Breathnach, R., Jeltsch, J. M., Masiakowski, P., and Chambon, P. (1984). Sequence of the Ps2 messenger-RNA induced by estrogen in the human-breast cancer cell-line Mcf-7. Nucleic Acids Res. 12, 2861–2878.
| Sequence of the Ps2 messenger-RNA induced by estrogen in the human-breast cancer cell-line Mcf-7.Crossref | GoogleScholarGoogle Scholar | 6324130PubMed |
Jansen, A., and Verstrepen, K. J. (2011). Nucleosome positioning in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 75, 301–320.
| Nucleosome positioning in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 21646431PubMed |
Jenuwein, T., and Allis, C. D. (2001). Translating the histone code. Science 293, 1074–1080.
| Translating the histone code.Crossref | GoogleScholarGoogle Scholar | 11498575PubMed |
Kastner, P., Krust, A., Turcotte, B., Stropp, U., Tora, L., Gronemeyer, H., and Chambon, P. (1990). Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 9, 1603–1614.
| Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B.Crossref | GoogleScholarGoogle Scholar | 2328727PubMed |
Ke, W., Chen, C., Luo, H., Tang, J., Zhang, Y., Gao, W., Yang, X., Tian, Z., Chang, Q., and Liang, Z. (2016). Histone deacetylase 1 regulates the expression of progesterone receptor a during human parturition by occupying the progesterone receptor A promoter. Reprod. Sci. 23, 955–964.
| Histone deacetylase 1 regulates the expression of progesterone receptor a during human parturition by occupying the progesterone receptor A promoter.Crossref | GoogleScholarGoogle Scholar | 26758364PubMed |
Kim, H., Heo, K., Kim, J. H., Kim, K., Choi, J., and An, W. J. (2009a). Requirement of histone methyltransferase SMYD3 for estrogen receptor-mediated transcription. J. Biol. Chem. 284, 19867–19877.
| Requirement of histone methyltransferase SMYD3 for estrogen receptor-mediated transcription.Crossref | GoogleScholarGoogle Scholar | 19509295PubMed |
Kim, J. K., Samaranayake, M., and Pradhan, S. (2009b). Epigenetic mechanisms in mammals. Cell. Mol. Life Sci. 66, 596–612.
| Epigenetic mechanisms in mammals.Crossref | GoogleScholarGoogle Scholar | 18985277PubMed |
Kishimoto, M., Fujiki, R., Takezawa, S., Sasaki, Y., Nakamura, T., Yamaoka, K., Kitagawa, H., and Kato, S. (2006). Nuclear receptor mediated gene regulation through chromatin remodeling and histone modifications. Endocr. J. 53, 157–172.
| Nuclear receptor mediated gene regulation through chromatin remodeling and histone modifications.Crossref | GoogleScholarGoogle Scholar | 16618973PubMed |
Klose, R. J., Yan, Q., Tothova, Z., Yamane, K., Erdjument-Bromage, H., Tempst, P., Gilliland, D. G., Zhang, Y., and Kaelin, W. G. (2007). The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 128, 889–900.
| The retinoblastoma binding protein RBP2 is an H3K4 demethylase.Crossref | GoogleScholarGoogle Scholar | 17320163PubMed |
Kooistra, S. M., and Helin, K. (2012). Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol. 13, 297–311.
| Molecular mechanisms and potential functions of histone demethylases.Crossref | GoogleScholarGoogle Scholar | 22473470PubMed |
Kotani, M., Tanaka, I., Ogawa, Y., Suganami, T., Matsumoto, T., Muro, S., Yamamoto, Y., Sugawara, A., Yoshimasa, Y., Sagawa, N., Narumiya, S., and Nakao, K. (2000). Multiple signal transduction pathways through two prostaglandin E receptor EP3 subtype isoforms expressed in human uterus. J. Clin. Endocrinol. Metab. 85, 4315–4322.
| Multiple signal transduction pathways through two prostaglandin E receptor EP3 subtype isoforms expressed in human uterus.Crossref | GoogleScholarGoogle Scholar | 11095474PubMed |
Lan, F., Bayliss, P. E., Rinn, J. L., Whetstine, J. R., Wang, J. K., Chen, S. Z., Iwase, S., Alpatov, R., Issaeva, I., Canaani, E., Roberts, T. M., Chang, H. Y., and Shi, Y. (2007). A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449, 689–694.
| A histone H3 lysine 27 demethylase regulates animal posterior development.Crossref | GoogleScholarGoogle Scholar | 17851529PubMed |
Lapidus, R. G., Ferguson, A. T., Ottaviano, Y. L., Parl, F. F., Smith, H. S., Weitzman, S. A., Baylin, S. B., Issa, J. P., and Davidson, N. E. (1996). Methylation of estrogen and progesterone receptor gene 5′ CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin. Cancer Res. 2, 805–810.
| 9816234PubMed |
Leader, J. E., Wang, C., Fu, M., and Pestell, R. G. (2006). Epigenetic regulation of nuclear steroid receptors. Biochem. Pharmacol. 72, 1589–1596.
| Epigenetic regulation of nuclear steroid receptors.Crossref | GoogleScholarGoogle Scholar | 16844098PubMed |
Leonhardt, S. A., Boonyaratanakornkit, V., and Edwards, D. P. (2003). Progesterone receptor transcription and non-transcription signaling mechanisms. Steroids 68, 761–770.
| Progesterone receptor transcription and non-transcription signaling mechanisms.Crossref | GoogleScholarGoogle Scholar | 14667966PubMed |
Liggins, G. C. (1989). Initiation of labour. Biol. Neonate 55, 366–375.
| Initiation of labour.Crossref | GoogleScholarGoogle Scholar | 2500989PubMed |
Liggins, G. C., Fairclough, R. J., Grieves, S. A., Kendall, J. Z., and Knox, B. S. (1973). The mechanism of initiation of parturition in the ewe. Recent Prog. Horm. Res. 29, 111–159.
| 4356273PubMed |
Lim, R., and Lappas, M. (2014). Differential expression of AP-1 proteins in human myometrium after spontaneous term labour onset. Eur. J. Obstet. Gynecol. Reprod. Biol. 177, 100–105.
| Differential expression of AP-1 proteins in human myometrium after spontaneous term labour onset.Crossref | GoogleScholarGoogle Scholar | 24784710PubMed |
Liu, Z. J., Maekawa, M., Horii, T., and Morita, M. (2003). The multiple promoter methylation profile of PR gene and ERalpha gene in tumor cell lines. Life Sci. 73, 1963–1972.
| The multiple promoter methylation profile of PR gene and ERalpha gene in tumor cell lines.Crossref | GoogleScholarGoogle Scholar | 12899921PubMed |
Liu, C., Xu, D. W., Han, H. Y., Fan, Y. D., Schain, F., Xu, Z. H., Claesson, H. E., Bjorkholm, M., and Sjoberg, J. (2012). Transcriptional regulation of 15-lipoxygenase expression by histone H3 lysine 4 methylation/demethylation. PLoS One 7, e52703.
| Transcriptional regulation of 15-lipoxygenase expression by histone H3 lysine 4 methylation/demethylation.Crossref | GoogleScholarGoogle Scholar | 23285160PubMed |
Liu, C., Wang, C., Wang, K., Liu, L., Shen, Q., Yan, K. Q., Sun, X. Q., Chen, J., Liu, J. K., Ren, H. B., Liu, H. N., Xu, Z. H., Hu, S. Y., Xu, D. W., and Fan, Y. D. (2013). SMYD3 as an oncogenic driver in prostate cancer by stimulation of androgen receptor transcription. J. Natl Cancer Inst. 105, 1719–1728.
| SMYD3 as an oncogenic driver in prostate cancer by stimulation of androgen receptor transcription.Crossref | GoogleScholarGoogle Scholar | 24174655PubMed |
López Bernal, A., Rivera, J., Europe-Finner, G. N., Phaneuf, S., and Asbóth, G. (1995). Parturition: activation of stimulatory pathways or loss of uterine quiescence? Adv. Exp. Med. Biol. 395, 435–451.
| 8713997PubMed |
Lopez-Bigas, N., Kisiel, T. A., DeWaal, D. C., Holmes, K. B., Volkert, T. L., Gupta, S., Love, J., Murray, H. L., Young, R. A., and Benevolenskaya, E. V. (2008). Genome-wide analysis of the H3K4 histone demethylase RBP2 reveals a transcriptional program controlling differentiation. Mol. Cell 31, 520–530.
| Genome-wide analysis of the H3K4 histone demethylase RBP2 reveals a transcriptional program controlling differentiation.Crossref | GoogleScholarGoogle Scholar | 18722178PubMed |
Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260.
| Crystal structure of the nucleosome core particle at 2.8 Å resolution.Crossref | GoogleScholarGoogle Scholar | 9305837PubMed |
MacIntyre, D. A., Lee, Y. S., Migale, R., Herbert, B. R., Waddington, S. N., Peebles, D., Hagberg, H., Johnson, M. R., and Bennett, P. R. (2014). Activator protein 1 is a key terminal mediator of inflammation-induced preterm labor in mice. FASEB J. 28, 2358–2368.
| Activator protein 1 is a key terminal mediator of inflammation-induced preterm labor in mice.Crossref | GoogleScholarGoogle Scholar | 24497579PubMed |
Madsen, G., Zakar, T., Ku, C. Y., Sanborn, B. M., Smith, R., and Mesiano, S. (2004). Prostaglandins differentially modulate progesterone receptor-A and -B expression in human myometrial cells: evidence for prostaglandin-induced functional progesterone withdrawal. J. Clin. Endocrinol. Metab. 89, 1010–1013.
| Prostaglandins differentially modulate progesterone receptor-A and -B expression in human myometrial cells: evidence for prostaglandin-induced functional progesterone withdrawal.Crossref | GoogleScholarGoogle Scholar | 14764828PubMed |
Margueron, R., Trojer, P., and Reinberg, D. (2005a). The key to development: interpreting the histone code? Curr. Opin. Genet. Dev. 15, 163–176.
| The key to development: interpreting the histone code?Crossref | GoogleScholarGoogle Scholar | 15797199PubMed |
Margueron, R., Trojer, P., and Reinberg, D. (2005b). The key to development: interpreting the histone code? Curr. Opin. Genet. Dev. 15, 163–176.
| The key to development: interpreting the histone code?Crossref | GoogleScholarGoogle Scholar | 15797199PubMed |
Martin, C., and Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6, 838–849.
| The diverse functions of histone lysine methylation.Crossref | GoogleScholarGoogle Scholar | 16261189PubMed |
Mc Cormack, O., Chung, W. Y., Fitzpatrick, P., Cooke, F., Flynn, B., Harrison, M., Fox, E., Gallagher, E., McGoldrick, A., Dervan, P. A., McCann, A., and Kerin, M. J. (2008). Progesterone receptor B (PRB) promoter hypermethylation in sporadic breast cancer: progesterone receptor B hypermethylation in breast cancer. Breast Cancer Res. Treat. 111, 45–53.
| Progesterone receptor B (PRB) promoter hypermethylation in sporadic breast cancer: progesterone receptor B hypermethylation in breast cancer.Crossref | GoogleScholarGoogle Scholar | 17896177PubMed |
Meissner, A., Mikkelsen, T. S., Gu, H. C., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X. L., Bernstein, B. E., Nusbaum, C., Jaffe, D. B., Gnirke, A., Jaenisch, R., and Lander, E. S. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770.
| Genome-scale DNA methylation maps of pluripotent and differentiated cells.Crossref | GoogleScholarGoogle Scholar | 18600261PubMed |
Merlino, A. A., Welsh, T. N., Tan, H., Yi, L. J., Cannon, V., Mercer, B. M., and Mesiano, S. (2007). Nuclear progesterone receptors in the human pregnancy myometrium: evidence that parturition involves functional progesterone withdrawal mediated by increased expression of progesterone receptor-A. J. Clin. Endocrinol. Metab. 92, 1927–1933.
| Nuclear progesterone receptors in the human pregnancy myometrium: evidence that parturition involves functional progesterone withdrawal mediated by increased expression of progesterone receptor-A.Crossref | GoogleScholarGoogle Scholar | 17341556PubMed |
Mesiano, S. (2004). Myometrial progesterone responsiveness and the control of human parturition. J. Soc. Gynecol. Investig. 11, 193–202.
| Myometrial progesterone responsiveness and the control of human parturition.Crossref | GoogleScholarGoogle Scholar | 15120691PubMed |
Mesiano, S. (2007). Myometrial progesterone responsiveness. Semin. Reprod. Med. 25, 5–13.
| Myometrial progesterone responsiveness.Crossref | GoogleScholarGoogle Scholar | 17205419PubMed |
Mesiano, S., and Welsh, T. N. (2007). Steroid hormone control of myometrial contractility and parturition. Semin. Cell Dev. Biol. 18, 321–331.
| Steroid hormone control of myometrial contractility and parturition.Crossref | GoogleScholarGoogle Scholar | 17613262PubMed |
Mesiano, S., Chan, E. C., Fitter, J. T., Kwek, K., Yeo, G., and Smith, R. (2002). Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J. Clin. Endocrinol. Metab. 87, 2924–2930.
| Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium.Crossref | GoogleScholarGoogle Scholar | 12050275PubMed |
Nadeem, L., Shynlova, O., Matysiak-Zablocki, E., Mesiano, S., Dong, X., and Lye, S. (2016). Molecular evidence of functional progesterone withdrawal in human myometrium. Nat. Commun. 7, 11565.
| Molecular evidence of functional progesterone withdrawal in human myometrium.Crossref | GoogleScholarGoogle Scholar | 27220952PubMed |
Nafee, T. M., Farrell, W. E., Carroll, W. D., Fryer, A. A., and Ismail, K. M. (2008). Epigenetic control of fetal gene expression. BJOG 115, 158–168.
| Epigenetic control of fetal gene expression.Crossref | GoogleScholarGoogle Scholar | 17970798PubMed |
Namba, T., Sugimoto, Y., Negishi, M., Irie, A., Ushikubi, F., Kakizuka, A., Ito, S., Ichikawa, A., and Narumiya, S. (1993). Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature 365, 166–170.
| Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity.Crossref | GoogleScholarGoogle Scholar | 8396726PubMed |
Negishi, M., Sugimoto, Y., and Ichikawa, A. (1993). Prostanoid receptors and their biological actions. Prog. Lipid Res. 32, 417–434.
| Prostanoid receptors and their biological actions.Crossref | GoogleScholarGoogle Scholar | 8309950PubMed |
Negishi, M., Sugimoto, Y., and Ichikawa, A. (1995). Prostaglandin E receptors. J. Lipid Mediat. Cell Signal. 12, 379–391.
| Prostaglandin E receptors.Crossref | GoogleScholarGoogle Scholar | 8777580PubMed |
Norwitz, E. R., Robinson, J. N., and Challis, J. R. (1999). The control of labor. N. Engl. J. Med. 341, 660–666.
| The control of labor.Crossref | GoogleScholarGoogle Scholar | 10460818PubMed |
Omini, C., Folco, G. C., Pasargiklian, R., Fano, M., and Berti, F. (1979). Prostacyclin (PGI2) in pregnant human uterus. Prostaglandins 17, 113–120.
| Prostacyclin (PGI2) in pregnant human uterus.Crossref | GoogleScholarGoogle Scholar | 220673PubMed |
Ou, C. W., Chen, Z. Q., Qi, S., and Lye, S. J. (2000). Expression and regulation of the messenger ribonucleic acid encoding the prostaglandin F(2alpha) receptor in the rat myometrium during pregnancy and labor. Am. J. Obstet. Gynecol. 182, 919–925.
| Expression and regulation of the messenger ribonucleic acid encoding the prostaglandin F(2alpha) receptor in the rat myometrium during pregnancy and labor.Crossref | GoogleScholarGoogle Scholar | 10764474PubMed |
Palliser, H. K., Zakar, T., Symonds, I. M., and Hirst, J. J. (2010). Progesterone receptor isoform expression in the guinea pig myometrium from normal and growth restricted pregnancies. Reprod. Sci. 17, 776–782.
| Progesterone receptor isoform expression in the guinea pig myometrium from normal and growth restricted pregnancies.Crossref | GoogleScholarGoogle Scholar | 20595710PubMed |
Pan, G., Tian, S., Nie, J., Yang, C., Ruotti, V., Wei, H., Jonsdottir, G. A., Stewart, R., and Thomson, J. A. (2007). Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1, 299–312.
| Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 18371364PubMed |
Pasini, D., Hansen, K. H., Christensen, J., Agger, K., Cloos, P. A. C., and Helin, K. (2008). Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and the polycomb repressive complex 2. Genes Dev. 116, 424–424.
Pavri, R., Zhu, B., Li, G. H., Trojer, P., Mandal, S., Shilatifard, A., and Reinberg, D. (2006). Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125, 703–717.
| Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II.Crossref | GoogleScholarGoogle Scholar | 16713563PubMed |
Pieber, D., Allport, V. C., Hills, F., Johnson, M., and Bennett, P. R. (2001). Interactions between progesterone receptor isoforms in myometrial cells in human labour. Mol. Hum. Reprod. 7, 875–879.
| Interactions between progesterone receptor isoforms in myometrial cells in human labour.Crossref | GoogleScholarGoogle Scholar | 11517295PubMed |
Rezapour, M., Backstrom, T., Lindblom, B., and Ulmsten, U. (1997). Sex steroid receptors and human parturition. Obstet. Gynecol. 89, 918–924.
| Sex steroid receptors and human parturition.Crossref | GoogleScholarGoogle Scholar | 9170465PubMed |
Robins, J., and Mann, L. I. (1975). Midtrimester pregnancy termination by intramuscular injection of a 15-methyl analogue of prostaglandin F2 alpha. Am. J. Obstet. Gynecol. 123, 625–631.
| Midtrimester pregnancy termination by intramuscular injection of a 15-methyl analogue of prostaglandin F2 alpha.Crossref | GoogleScholarGoogle Scholar | 1200047PubMed |
Roth, S. Y., Denu, J. M., and Allis, C. D. (2001). Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120.
| Histone acetyltransferases.Crossref | GoogleScholarGoogle Scholar | 11395403PubMed |
Sanborn, B. M., Ku, C. Y., Shlykov, S., and Babich, L. (2005). Molecular signaling through G-protein-coupled receptors and the control of intracellular calcium in myometrium. J. Soc. Gynecol. Investig. 12, 479–487.
| Molecular signaling through G-protein-coupled receptors and the control of intracellular calcium in myometrium.Crossref | GoogleScholarGoogle Scholar | 16202924PubMed |
Sasaki, M., Dharia, A., Oh, B. R., Tanaka, Y., Fujimoto, S., and Dahiya, R. (2001). Progesterone receptor B gene inactivation and CpG hypermethylation in human uterine endometrial cancer. Cancer Res. 61, 97–102.
| 11196205PubMed |
Seligson, D. B., Horvath, S., Shi, T., Yu, H., Tze, S., Grunstein, M., and Kurdistani, S. K. (2005). Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262–1266.
| Global histone modification patterns predict risk of prostate cancer recurrence.Crossref | GoogleScholarGoogle Scholar | 15988529PubMed |
Sharma, S. V., Lee, D. Y., Li, B. H., Quinlan, M. P., Takahashi, F., Maheswaran, S., McDermott, U., Azizian, N., Zou, L., Fischbach, M. A., Wong, K. K., Brandstetter, K., Wittner, B., Ramaswamy, S., Classon, M., and Settleman, J. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80.
| A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations.Crossref | GoogleScholarGoogle Scholar | 20371346PubMed |
Shiota, M., Yokomizo, A., and Naito, S. (2011). Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target. J. Mol. Endocrinol. 47, R25–R41.
| Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target.Crossref | GoogleScholarGoogle Scholar | 21504942PubMed |
Shmygol, A., Gullam, J., Blanks, A., and Thornton, S. (2006). Multiple mechanisms involved in oxytocin-induced modulation of myometrial contractility. Acta Pharmacol. Sin. 27, 827–832.
| Multiple mechanisms involved in oxytocin-induced modulation of myometrial contractility.Crossref | GoogleScholarGoogle Scholar | 16787565PubMed |
Sims, R. J., Millhouse, S., Chen, C. F., Lewis, B. A., Erdjument-Bromage, H., Tempst, P., Manley, J. L., and Reinberg, D. (2007). Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol. Cell 28, 665–676.
| Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing.Crossref | GoogleScholarGoogle Scholar | 18042460PubMed |
Smith, R., Paul, J., Maiti, K., Tolosa, J., and Madsen, G. (2012). Recent advances in understanding the endocrinology of human birth. Trends Endocrinol. Metab. 23, 516–523.
| Recent advances in understanding the endocrinology of human birth.Crossref | GoogleScholarGoogle Scholar | 22682480PubMed |
Stratmann, A., and Haendler, B. (2011). The histone demethylase JARID1A regulates progesterone receptor expression. FEBS J. 278, 1458–1469.
| The histone demethylase JARID1A regulates progesterone receptor expression.Crossref | GoogleScholarGoogle Scholar | 21348942PubMed |
Sugimoto, Y., Yamasaki, A., Segi, E., Tsuboi, K., Aze, Y., Nishimura, T., Oida, H., Yoshida, N., Tanaka, T., Katsuyama, M., Hasumoto, K., Murata, T., Hirata, M., Ushikubi, F., Negishi, M., Ichikawa, A., and Narumiya, S. (1997). Failure of parturition in mice lacking the prostaglandin F receptor. Science 277, 681–683.
| Failure of parturition in mice lacking the prostaglandin F receptor.Crossref | GoogleScholarGoogle Scholar | 9235889PubMed |
Trasler, J. M. (2006). Gamete imprinting: setting epigenetic patterns for the next generation. Reprod. Fertil. Dev. 18, 63–69.
| Gamete imprinting: setting epigenetic patterns for the next generation.Crossref | GoogleScholarGoogle Scholar | 16478603PubMed |
Tu, S., Teng, Y. C., Yuan, C., Wu, Y. T., Chan, M. Y., Cheng, A. N., Lin, P. H., Juan, L. J., and Tsai, M. D. (2008). The ARID domain of the H3K4 demethylase RBP2 binds to a DNA CCGCCC motif. Nat. Struct. Mol. Biol. 15, 419–421.
| The ARID domain of the H3K4 demethylase RBP2 binds to a DNA CCGCCC motif.Crossref | GoogleScholarGoogle Scholar | 18270511PubMed |
Tulchinsky, D., Hobel, C. J., Yeager, E., and Marshall, J. R. (1972). Plasma estrone, estradiol, estriol, progesterone, and 17-hydroxyprogesterone in human pregnancy. I. Normal pregnancy. Am. J. Obstet. Gynecol. 112, 1095–1100.
| Plasma estrone, estradiol, estriol, progesterone, and 17-hydroxyprogesterone in human pregnancy. I. Normal pregnancy.Crossref | GoogleScholarGoogle Scholar | 5025870PubMed |
Van Aller, G. S., Reynoird, N., Barbash, O., Huddleston, M., Liu, S. C., Zmoos, A. F., McDevitt, P., Sinnamon, R., Le, B. C., Mas, G., Annan, R., Sage, J., Garcia, B. A., Tummino, P. J., Gozani, O., and Kruger, R. G. (2012). Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7, 340–343.
| Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation.Crossref | GoogleScholarGoogle Scholar | 22419068PubMed |
Vegeto, E., Shahbaz, M. M., Wen, D. X., Goldman, M. E., O’Malley, B. W., and McDonnell, D. P. (1993). Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor B function. Mol. Endocrinol. 7, 1244–1255.
| 8264658PubMed |
Walsh, S. W., Stanczyk, F. Z., and Novy, M. J. (1984). Daily hormonal changes in the maternal, fetal, and amniotic fluid compartments before parturition in a primate species. J. Clin. Endocrinol. Metab. 58, 629–639.
| Daily hormonal changes in the maternal, fetal, and amniotic fluid compartments before parturition in a primate species.Crossref | GoogleScholarGoogle Scholar | 6230368PubMed |
Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q., and Zhao, K. (2008). Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897–903.
| Combinatorial patterns of histone acetylations and methylations in the human genome.Crossref | GoogleScholarGoogle Scholar | 18552846PubMed |
Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Paabo, S., Rebhan, M., and Schubeler, D. (2007). Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 39, 457–466.
| Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome.Crossref | GoogleScholarGoogle Scholar | 17334365PubMed |
Welsh, T. N., Hirst, J. J., Palliser, H., and Zakar, T. (2014). Progesterone receptor expression declines in the guinea pig uterus during functional progesterone withdrawal and in response to prostaglandins. PLoS One 9, e105253.
| Progesterone receptor expression declines in the guinea pig uterus during functional progesterone withdrawal and in response to prostaglandins.Crossref | GoogleScholarGoogle Scholar | 25360601PubMed |
Widschwendter, M., Siegmund, K. D., Muller, H. M., Fiegl, H., Marth, C., Muller-Holzner, E., Jones, P. A., and Laird, P. W. (2004). Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res. 64, 3807–3813.
| Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen.Crossref | GoogleScholarGoogle Scholar | 15172987PubMed |
Wu, Y., Strawn, E., Basir, Z., Halverson, G., and Guo, S. W. (2006). Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. Epigenetics 1, 106–111.
| Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis.Crossref | GoogleScholarGoogle Scholar | 17965625PubMed |
Xiong, Y., Dowdy, S. C., Gonzalez Bosquet, J., Zhao, Y., Eberhardt, N. L., Podratz, K. C., and Jiang, S. W. (2005). Epigenetic-mediated upregulation of progesterone receptor B gene in endometrial cancer cell lines. Gynecol. Oncol. 99, 135–141.
| Epigenetic-mediated upregulation of progesterone receptor B gene in endometrial cancer cell lines.Crossref | GoogleScholarGoogle Scholar | 16024066PubMed |
Yang, X., Phillips, D. L., Ferguson, A. T., Nelson, W. G., Herman, J. G., and Davidson, N. E. (2001). Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res. 61, 7025–7029.
| 11585728PubMed |
Young, I. R. (2001). The comparative physiology of parturition in mammals. Front. Horm. Res. 27, 10–30.
| The comparative physiology of parturition in mammals.Crossref | GoogleScholarGoogle Scholar | 11450421PubMed |
Yuan, H. Q., Feng, K., Wang, X. L., Young, C. Y. F., Hu, X. Y., and Lou, H. X. (2008). Inhibitory effect of acetyl-11-keto-beta-boswellic acid on androgen receptor by interference of Sp1 binding activity in prostate cancer cells. Biochem. Pharmacol. 75, 2112–2121.
| Inhibitory effect of acetyl-11-keto-beta-boswellic acid on androgen receptor by interference of Sp1 binding activity in prostate cancer cells.Crossref | GoogleScholarGoogle Scholar | 18430409PubMed |
Zhao, X. D., Han, X., Chew, J. L., Liu, J., Chiu, K. P., Choo, A., Oriov, Y. L., Sung, W. K., Shahab, A., Kuznetsov, V. A., Bourque, G., Oh, S., Ruan, Y., Ng, H. H., and Wei, C. L. (2007). Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–298.
| Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 18371363PubMed |
Zhou, Q., Atadja, P., and Davidson, N. E. (2007). Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation. Cancer Biol. Ther. 6, 64–69.
| Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation.Crossref | GoogleScholarGoogle Scholar | 17172825PubMed |
Zhou, X., Sun, H., Chen, H. B., Zavadil, J., Kluz, T., Arita, A., and Costa, M. (2010). Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase. Cancer Res. 70, 4214–4221.
| Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase.Crossref | GoogleScholarGoogle Scholar | 20406991PubMed |