A journey through horse cloning
Andrés Gambini A B D and Marc Maserati CA Laboratory of Animal Biotechnology, Agriculture Faculty, University of Buenos Aires, Av. San Martin 4453, C1417DSE, Ciudad Autonóma de Buenos Aires, Buenos Aires, Argentina.
B National Institute of Scientific and Technological Research (CONICET), Godoy Cruz 2290, C1425FQB, Ciudad Autonóma de Buenos Aires, Buenos Aires, Argentina.
C In Vitro Clonagem Animal S/A, Rod SP 340, Km 166, (Cx Postal 238), Mogi Mirim, Sao Pablo, Brasil.
D Corresponding author. Email: gambini@agro.uba.ar
Reproduction, Fertility and Development 30(1) 8-17 https://doi.org/10.1071/RD17374
Published: 4 December 2017
Abstract
Interest in equine somatic cell nuclear transfer technology has increased significantly since the first equid clones were produced in 2003. This is demonstrated by the multiple commercial equine cloning companies having produced numerous cloned equids to date; worldwide, more than 370 cloned horses have been produced in at least six different countries. Equine cloning can be performed using several different approaches, each with different rates of success. In this review we cover the history and applications of equine cloning and summarise the major scientific advances in the development of this technology in horses. We explain the advantages and disadvantages of different procedures to produce cloned equine embryos and describe the current status of equine clone commercialisation, along with observations of differences in regional breed association registration regulations.
Additional keywords: embryo, equine, somatic cell nuclear transfer.
References
Allen, W. R., and Pashen, R. L. (1984). Production of monozygotic (identical) horse twins by embryo micromanipulation. J. Reprod. Fertil. 71, 607–613.| Production of monozygotic (identical) horse twins by embryo micromanipulation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c3mslKntA%3D%3D&md5=02f43347d1296f89d32f047b399c3193CAS |
Allen, W., Kydd, J., Short, R., and Antczak, D. (2011). Interspecific and extraspecific equine pregnancies. In ‘Equine Reproducton’, 2nd edn. (Eds A. McKinnon, E. L. Squires, W. E. Vaala, and D. D. Varner.) pp. 2302–2323. (Wiley-Blackwell: Chichester, UK.)
Bedford, S. J., Kurokawa, M., Hinrichs, K., and Fissore, R. A. (2003). Intracellular calcium oscillations and activation in horse oocytes injected with stallion sperm extracts or spermatozoa. Reproduction 126, 489–499.
| Intracellular calcium oscillations and activation in horse oocytes injected with stallion sperm extracts or spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Clu7Y%3D&md5=6002a0a8c3aa919f69f515937b82fd3aCAS |
Boiani, M., Eckardt, S., Leu, N. A., Schöler, H. R., and McLaughlin, K. J. (2003). Pluripotency deficit in clones overcome by clone–clone aggregation: epigenetic complementation? EMBO J. 22, 5304–5312.
| Pluripotency deficit in clones overcome by clone–clone aggregation: epigenetic complementation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVequrY%3D&md5=e91af9f2b4141aaad6373dd9f9833510CAS |
Bordignon, V., and Smith, L. C. (2006). Telophase-stage host ooplasts support complete reprogramming of roscovitine-treated somatic cell nuclei in cattle. Cloning Stem Cells 8, 305–317.
| Telophase-stage host ooplasts support complete reprogramming of roscovitine-treated somatic cell nuclei in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVer&md5=181fa25fcdcee59db4edb37b021bddbeCAS |
Buemo, C. P., Gambini, A., Moro, L. N., Hiriart, M. I., Fernández-Martín, R., Collas, P., and Salamone, D. F. (2016). Embryo aggregation in pig improves cloning efficiency and embryo quality. PLoS One 11, e0146390.
| Embryo aggregation in pig improves cloning efficiency and embryo quality.Crossref | GoogleScholarGoogle Scholar |
Campbell, M. L. H. (2016). Is cloning horses ethical? Equine Veterinary Education , .
| Is cloning horses ethical?Crossref | GoogleScholarGoogle Scholar |
Choi, Y. H., Love, C. C., Varner, D. D., Thompson, J. A., and Hinrichs, K. (2001). Activation of cumulus-free equine oocytes: effect of maturation medium, calcium ionophore concentration and duration of cycloheximide exposure. Reproduction 122, 177–183.
| Activation of cumulus-free equine oocytes: effect of maturation medium, calcium ionophore concentration and duration of cycloheximide exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVGis7Y%3D&md5=719a623f1bcf17949bcab646a7d7ca78CAS |
Choi, Y. H., Love, C. C., Chung, Y. G., Varner, D. D., Westhusin, M. E., Burghardt, R. C., and Hinrichs, K. (2002). Production of nuclear transfer horse embryos by Piezo-driven injection of somatic cell nuclei and activation with stallion sperm cytosolic extract. Biol. Reprod. 67, 561–567.
| Production of nuclear transfer horse embryos by Piezo-driven injection of somatic cell nuclei and activation with stallion sperm cytosolic extract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFKqtLg%3D&md5=40643cf75a5c18ff7e4590782432a2c1CAS |
Choi, Y. H., Love, L. B., Westhusin, M. E., and Hinrichs, K. (2004). Activation of equine nuclear transfer oocytes: methods and timing of treatment in relation to nuclear remodeling. Biol. Reprod. 70, 46–53.
| Activation of equine nuclear transfer oocytes: methods and timing of treatment in relation to nuclear remodeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVyi&md5=495992bdde8984603511ace67f850fdaCAS |
Choi, Y. H., Hartman, D. L., Fissore, R., Bedford-Guaus, S. J., and Hinrichs, K. (2009). Effect of sperm extract injection volume, injection of PLCzeta cRNA, and tissue cell line on efficiency of equine nuclear transfer. Cloning Stem Cells 11, 301–308.
| Effect of sperm extract injection volume, injection of PLCzeta cRNA, and tissue cell line on efficiency of equine nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Cis74%3D&md5=8ca917ed53d03c77f6ae62846fe3e8e6CAS |
Choi, Y. H., Norris, J. D., Velez, I. C., Jacobson, C. C., Hartman, D. L., and Hinrichs, K. (2013). A viable foal obtained by equine somatic cell nuclear transfer using oocytes recovered from immature follicles of live mares. Theriogenology 79, 791–796.e1.
| A viable foal obtained by equine somatic cell nuclear transfer using oocytes recovered from immature follicles of live mares.Crossref | GoogleScholarGoogle Scholar |
Choi, Y. H., Ritthaler, J., and Hinrichs, K. (2014). Production of a mitochondrial-DNA identical cloned foal using oocytes recovered from immature follicles of selected mares. Theriogenology 82, 411–417.
| Production of a mitochondrial-DNA identical cloned foal using oocytes recovered from immature follicles of selected mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWmtrvK&md5=97f7495998ce277f346e8f9381ea367cCAS |
Choi, Y. H., Velez, I. C., Macías-García, B., and Hinrichs, K. (2015). Timing factors affecting blastocyst development in equine somatic cell nuclear transfer. Cell. Reprogram. 17, 124–130.
| Timing factors affecting blastocyst development in equine somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXls1Wltbo%3D&md5=efd739f0a288b58d09326bebf43367a5CAS |
De Souza Ribeiro, E., Gerger, R. P. D. C., Ohlweiler, L. U., Ortigari, I., Mezzalira, J. C., Forell, F., Bertolini, L. R., Rodrigues, J. L., Ambrósio, C. E., Miglino, M. A., Mezzalira, A., and Bertolini, M. (2009). Developmental potential of bovine hand-made clone embryos reconstructed by aggregation or fusion with distinct cytoplasmic volumes. Cloning Stem Cells 11, 377–386.
| Developmental potential of bovine hand-made clone embryos reconstructed by aggregation or fusion with distinct cytoplasmic volumes.Crossref | GoogleScholarGoogle Scholar |
Eckardt, S., and McLaughlin, K. J. (2004). Interpretation of reprogramming to predict the success of somatic cell cloning. Anim. Reprod. Sci. 82–83, 97–108.
| Interpretation of reprogramming to predict the success of somatic cell cloning.Crossref | GoogleScholarGoogle Scholar |
Fernandes, C. B., Devito, L. G., Martins, L. R., Blanco, I. D. P., de Lima Neto, J. F., Tsuribe, P. M., Gonçalves, C. G., and da Cruz Landim-Alvarenga, F. (2014). Artificial activation of bovine and equine oocytes with cycloheximide, roscovitine, strontium, or 6-dimethylaminopurine in low or high calcium concentrations. Zygote 22, 387–394.
| Artificial activation of bovine and equine oocytes with cycloheximide, roscovitine, strontium, or 6-dimethylaminopurine in low or high calcium concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKhsLbF&md5=188329ffbb1d1e9c7ce443f423f25c3aCAS |
Fulka, J., and Okolski, A. (1981). Culture of horse oocytes in vitro. J. Reprod. Fertil. 61, 213–215.
| Culture of horse oocytes in vitro.Crossref | GoogleScholarGoogle Scholar |
Galli, C., Lagutina, I., Crotti, G., Colleoni, S., Turini, P., Ponderato, N., Duchi, R., and Lazzari, G. (2003). Pregnancy: a cloned horse born to its dam twin. Nature 424, 635.
| Pregnancy: a cloned horse born to its dam twin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVektbc%3D&md5=7ce17e3291dada504b184da1ee665fb8CAS |
Galli, C., Colleoni, S., Duchi, R., Lagutina, I., and Lazzari, G. (2007). Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer. Anim. Reprod. Sci. 98, 39–55.
| Developmental competence of equine oocytes and embryos obtained by in vitro procedures ranging from in vitro maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Sksr4%3D&md5=656d88d92ca940c29d4dc298a57d20bbCAS |
Gambini, A., Jarazo, J., Olivera, R., and Salamone, D. F. (2012). Equine cloning: in vitro and in vivo development of aggregated embryos. Biol. Reprod. 87, 15.
| Equine cloning: in vitro and in vivo development of aggregated embryos.Crossref | GoogleScholarGoogle Scholar |
Gambini, A., De Stefano, A., Bevacqua, R. J., Karlanian, F., and Salamone, D. F. (2014). The aggregation of four reconstructed zygotes is the limit to improve the developmental competence of cloned equine embryos. PLoS One 9, e110998.
| The aggregation of four reconstructed zygotes is the limit to improve the developmental competence of cloned equine embryos.Crossref | GoogleScholarGoogle Scholar |
Gambini, A., Jarazo, J., Karlanian, F., De Stéfano, A., and Salamone, D. F. (2014b). Effect of collection–maturation interval time and pregnancy status of donor mares on oocyte developmental competence in horse cloning. J. Anim. Sci. 92, 561–567.
| Effect of collection–maturation interval time and pregnancy status of donor mares on oocyte developmental competence in horse cloning.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2crntFCltQ%3D%3D&md5=828c7cd4a563a5461e09030292d1c61dCAS |
Gambini, A., De Stefano, A., Jarazo, J., Buemo, C., Karlanian, F., and Salamone, D. F. (2016). Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse. Theriogenology 86, 1081–1091.
| Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse.Crossref | GoogleScholarGoogle Scholar |
Gambini, A., Kelly, J. M., McKinnon, A. O., Fry, R., Salamone, D. F., and Verma, P. J. (2016b). Rescuing equine cloned embryos by aggregation. J. Equine Vet. Sci. 41, 62–63.
| Rescuing equine cloned embryos by aggregation.Crossref | GoogleScholarGoogle Scholar |
Ginther, O. J. (1992). Reproductive biology of the mare: basic and applied aspects. In ‘Reproductive anatomy’, 2nd edn. (Ed. Equiservices.) pp. 1–40. (Equiservices Publishing: Cross Plains, WI.)
Hawley, L. R., Enders, A. C., and Hinrichs, K. (1995). Comparison of equine and bovine oocyte–cumulus morphology within the ovarian follicle. Biol. Reprod. Monograph Series I, 243–252.
Hinrichs, K. (2005). Update on equine ICSI and cloning. Theriogenology 64, 535–541.
| Update on equine ICSI and cloning.Crossref | GoogleScholarGoogle Scholar |
Hinrichs, K. (2006). A review of cloning in the horse. In ‘52nd Annual Convention of the American Association of Equine Practitioners Proceedings’, Vol. 52. (Ed. American Association of Equine Practitioners) pp. 398–401. (American Association of Equine Practitioners: San Antonio, TX.)
Hinrichs, K., Choi, Y. H., Love, C. C., Chung, Y. G., and Varner, D. D. (2006). Production of horse foals via direct injection of roscovitine-treated donors cells and activation by injection of sperm extract. Reproduction 131, 1063–1072.
| Production of horse foals via direct injection of roscovitine-treated donors cells and activation by injection of sperm extract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1ehurw%3D&md5=257ed8eacb8cd39de20a86c2d3a60846CAS |
Hinrichs, K., Choi, Y. H., Varner, D. D., and Hartman, D. L. (2007). Production of cloned horse foals using roscovitine-treated donor cells and activation with sperm extract and/or ionomycin. Reproduction 134, 319–325.
| Production of cloned horse foals using roscovitine-treated donor cells and activation with sperm extract and/or ionomycin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKls77O&md5=5b4e377bae99a55c4a1bacd7fbcdd9feCAS |
Johnson, A. K., and Hinrichs, K. (2015). Neonatal care and management of foals derived by somatic cell nuclear transfer. Methods Mol. Biol. 1330, 189–201.
| Neonatal care and management of foals derived by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXntleit7s%3D&md5=73784ca10934e9ea6adf52ca3a8c1bb6CAS |
Johnson, A. K., Clark-Price, S. C., Choi, Y., Hartman, D. L., and Hinrichs, K. (2010). Physical and clinicopathologic findings in foals derived by use of somatic cell nuclear transfer: 14 cases (2004–2008). J. Am. Vet. Med. Assoc. 236, 983–990.
| Physical and clinicopathologic findings in foals derived by use of somatic cell nuclear transfer: 14 cases (2004–2008).Crossref | GoogleScholarGoogle Scholar |
Klein, C. (2016). Early pregnancy in the mare: old concepts revisited. Domest. Anim. Endocrinol. 56, S212–S217.
| Early pregnancy in the mare: old concepts revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmsVGht7k%3D&md5=c75f815ff31e5d1563b65e1d93f45c44CAS |
Lagutina, I., Lazzari, G., Duchi, R., Colleoni, S., Ponderato, N., Turini, P., Crotti, G., and Galli, C. (2005). Somatic cell nuclear transfer in horses: effect of oocyte morphology, embryo reconstruction method and donor cell type. Reproduction 130, 559–567.
| Somatic cell nuclear transfer in horses: effect of oocyte morphology, embryo reconstruction method and donor cell type.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFent7vP&md5=c559a9bc05ab808ff4526f70ba47b284CAS |
Lee, W., Song, K., Lee, I., Shin, H., Lee, B. C., Yeon, S., and Jang, G. (2015). Cloned foal derived from in vivo matured horse oocytes aspirated by the short disposable needle system. J. Vet. Sci. 16, 509–516.
| Cloned foal derived from in vivo matured horse oocytes aspirated by the short disposable needle system.Crossref | GoogleScholarGoogle Scholar |
Li, X., Morris, L. H., and Allen, W. R. (2000). Effects of different activation treatments on fertilization of horse oocytes by intracytoplasmic sperm injection. J. Reprod. Fertil. 119, 253–260.
| 1:CAS:528:DC%2BD3cXltlyltr8%3D&md5=90787c5753c0d249b872f4b55d7a66d5CAS |
Li, X., Morris, L. H., and Allen, W. R. (2002). In vitro development of horse oocytes reconstructed with the nuclei of fetal and adult cells. Biol. Reprod. 66, 1288–1292.
| In vitro development of horse oocytes reconstructed with the nuclei of fetal and adult cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFWgu70%3D&md5=1d9d1ff3e76eea0a940855b7689a7593CAS |
Li, X., Tremoleda, J. L., and Allen, W. R. (2003). Effect of the number of passages of fetal and adult fibroblasts on nuclear remodelling and first embryonic division in reconstructed horse oocytes after nuclear transfer. Reproduction 125, 535–542.
| Effect of the number of passages of fetal and adult fibroblasts on nuclear remodelling and first embryonic division in reconstructed horse oocytes after nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFOqtLw%3D&md5=9185985f3a8672c1011223bdd6cab6f4CAS |
Maserati, M., and Mutto, A. (2016). In vitro production of equine embryos and cloning: today’s status. J. Equine Vet. Sci. 41, 42–50.
| In vitro production of equine embryos and cloning: today’s status.Crossref | GoogleScholarGoogle Scholar |
McKinnon, A., Carnevale, E. M., Squires, E. L., Carney, N. J., and Seidel, G. E. (1989). Bisection of equine embryos. Equine Vet. J. 21, 129–133.
| Bisection of equine embryos.Crossref | GoogleScholarGoogle Scholar |
Miragaya, M., Revora, M., Rigali, F., Herrera, C., Viviani, L., Quintans, C., Pascualini, S., and Losinno, L. (2011). First equine clone born in Argentina by somatic cell nuclear transfer from a polo Argentino mare. Reprod. Fertil. Dev. 23, 131.
| First equine clone born in Argentina by somatic cell nuclear transfer from a polo Argentino mare.Crossref | GoogleScholarGoogle Scholar |
Oliveira, R. J., Mantovani, M. S., Da Silva, A. F., Pesarini, J. R., Mauro, M. O., and Ribeiro, L. R. (2014). Compounds used to produce cloned animals are genotoxic and mutagenic in mammalian assays in vitro and in vivo. Braz. J. Med. Biol. Res. 47, 287–298.
| Compounds used to produce cloned animals are genotoxic and mutagenic in mammalian assays in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Sju7vP&md5=571c0c01612676e409a89a522787c450CAS |
Olivera, R., Moro, L. N., Jordan, R., Luzzani, C., Miriuka, S., Radrizzani, M., Donadeu, F. X., and Vichera, G. (2016). In vitro and in vivo development of horse cloned embryos generated with iPSCs, mesenchymal stromal cells and fetal or adult fibroblasts as nuclear donors. PLoS One 11, e0164049.
| In vitro and in vivo development of horse cloned embryos generated with iPSCs, mesenchymal stromal cells and fetal or adult fibroblasts as nuclear donors.Crossref | GoogleScholarGoogle Scholar |
Ortiz-Escribano, N., Bogado Pascottini, O., Woelders, H., Vandenberghe, L., De Schauwer, C., Govaere, J., Van den Abbeel, E., Vullers, T., Ververs, C., Roels, K., Van De Velde, M., Van Soom, A., and Smits, K. (2017). An improved vitrification protocol for equine immature oocytes, resulting in a first live foal. Equine Vet. J. , .
| An improved vitrification protocol for equine immature oocytes, resulting in a first live foal.Crossref | GoogleScholarGoogle Scholar |
Pozor, M. A., Sheppard, B., Hinrichs, K., Kelleman, A. A., Macpherson, M. L., Runcan, E., Choi, Y.-H., Diaw, M., and Mathews, P. M. (2016). Placental abnormalities in equine pregnancies generated by SCNT from one donor horse. Theriogenology 86, 1573–1582.
| Placental abnormalities in equine pregnancies generated by SCNT from one donor horse.Crossref | GoogleScholarGoogle Scholar |
Reis, A. P. (2015). Acceptability of biotechnologies in the horse industry in Europe. In ‘Proceedings of the IETS Equine Reproduction Symposium’, 9–10 January 2015, France. (Ed. E. Palmer.) pp. 32–33. (French Academy of Agriculture: Paris).
Skidmore, J., Boyle, M. S., Cran, D., and Allen, W. R. (1989). Micromanipulation of equine embryos to produce monozygotic twins. Equine Vet. J. 21, 126–128.
| Micromanipulation of equine embryos to produce monozygotic twins.Crossref | GoogleScholarGoogle Scholar |
Smits, K., Govaere, J., Peelman, L. J., Goossens, K., De Graaf, D. C., Vercauteren, D., Vandaele, L., Hoogewijs, M., Wydooghe, E., Stout, T., and Van Soom, A. (2012). Influence of the uterine environment on the development of in vitro-produced equine embryos. Reproduction 143, 173–181.
| Influence of the uterine environment on the development of in vitro-produced equine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Kkt7o%3D&md5=8b72185c287485f9e94da4591f5b5fdbCAS |
Smits, K., Hoogewijs, M., Woelders, H., Daels, P., and Van Soom, A. (2012b). Breeding or assisted reproduction? Relevance of the horse model applied to the conservation of endangered equids. Reprod. Domest. Anim. 47, 239–248.
| Breeding or assisted reproduction? Relevance of the horse model applied to the conservation of endangered equids.Crossref | GoogleScholarGoogle Scholar |
Squires, E. L. (2015). Social acceptance of equine arts – USA perspective. In ‘Proceedings of the IETS Equine Reproduction Symposium’, 9–10 January 2015, France. (Ed. E. Palmer.) pp. 32–33. (French Academy of Agriculture: Paris).
Summers, P. M., Shephard, A. M., Hodges, J. K., Kydd, J., Boyle, M. S., and Allen, W. R. (1987). Successful transfer of the embryos of Przewalski’s horses (Equus przewalskii) and Grant’s zebra (E. burchelli) to domestic mares (E. caballus). J. Reprod. Fertil. 80, 13–20.
| Successful transfer of the embryos of Przewalski’s horses (Equus przewalskii) and Grant’s zebra (E. burchelli) to domestic mares (E. caballus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s3lsVSjuw%3D%3D&md5=dc043dae76691592444fd774e7ac9056CAS |
Szekeres-Bartho, J. (2002). Immunological relationship between the mother and the fetus. Int. Rev. Immunol. 21, 471–495.
| Immunological relationship between the mother and the fetus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1Ojsrw%3D&md5=bdf5d0c967958eaf0a70bfa34d8e8f28CAS |
Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.
| Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1aktbs%3D&md5=9819c7883953af6ac27c5007556c72c1CAS |
Tecirlioglu, R. T., Guo, J., and Trounson, A. O. (2006). Interspecies somatic cell nuclear transfer and preliminary data for horse–cow/mouse iSCNT. Stem Cell Rev. 2, 277–287.
| Interspecies somatic cell nuclear transfer and preliminary data for horse–cow/mouse iSCNT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1als7c%3D&md5=464375f03d89a7752b3c1c86f36ecab9CAS |
Tremoleda, J. L., Stout, T. A., Lagutina, I., Lazzari, G., Bevers, M. M., Colenbrander, B., and Galli, C. (2003). Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics, and blastocyst capsule formation. Biol. Reprod. 69, 1895–1906.
| Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics, and blastocyst capsule formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVCns7k%3D&md5=b5cc16c81031a1dfa25566f1ae228cd5CAS |
Vajta, G., Korosi, T., Du, Y., Nakata, K., Ieda, S., Kuwayama, M., and Nagy, Z. P. (2008). The well-of-the-well system: an efficient approach to improve embryo development. Reprod. Biomed. Online 17, 73–81.
| The well-of-the-well system: an efficient approach to improve embryo development.Crossref | GoogleScholarGoogle Scholar |
Vanderwall, D. K., Woo’ds, G. L., Aston, K. I., Bunch, T. D., Li, G., Meerdo, L. N., and White, K. L. (2004). Cloned horse pregnancies produced using adult cumulus cells. Reprod. Fertil. Dev. 16, 675–679.
| Cloned horse pregnancies produced using adult cumulus cells.Crossref | GoogleScholarGoogle Scholar |
Vanderwall, D. K., Woods, G. L., Sellon, D. C., Tester, D. F., Schlafer, D. H., and White, K. L. (2004b). Present status of equine cloning and clinical characterization of embryonic, fetal, and neonatal development of three cloned mules. J. Am. Vet. Med. Assoc. 225, 1694–1699.
| Present status of equine cloning and clinical characterization of embryonic, fetal, and neonatal development of three cloned mules.Crossref | GoogleScholarGoogle Scholar |
Wakayama, T., Perry, A. C. F., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.
| Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFKnsbs%3D&md5=82a85411382dc289f93934dfd7205f11CAS |
Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
| Viable offspring derived from fetal and adult mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFamsLs%3D&md5=5cf384086cb771187e5cfef8a8d1beb2CAS |
Woods, G. L., White, K. L., Vanderwall, D. K., Li, G.-P., Aston, K. I., Bunch, T. D., Meerdo, L. N., and Pate, B. J. (2003). A mule cloned from fetal cells by nuclear transfer. Science 301, 1063.
| A mule cloned from fetal cells by nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1KhurY%3D&md5=fc93c514d4a0b0996388d1a2fd0862d3CAS |
Young, L. E., Sinclair, K. D., and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev. Reprod. 3, 155–163.
| Large offspring syndrome in cattle and sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlaltL8%3D&md5=d7047e3da0b19430074e70ee6d128f1cCAS |