Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Methylation mechanisms and biomechanical effectors controlling cell fate

Tiziana A. L. Brevini A B , Elena F. M. Manzoni A and Fulvio Gandolfi A
+ Author Affiliations
- Author Affiliations

A Laboratory of Biomedical Embryology, Centre for Stem Cell Research, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy.

B Corresponding author. Email: tiziana.brevini@unimi.it

Reproduction, Fertility and Development 30(1) 64-72 https://doi.org/10.1071/RD17348
Published: 4 December 2017

Abstract

Mammalian development and cell fate specification are controlled by multiple regulatory mechanisms that interact in a coordinated way to ensure proper regulation of gene expression and spatial restriction, allowing cells to adopt distinct differentiation traits and a terminal phenotype. For example, cell potency is modulated by changes in methylation that are under the control of methyltransferases and ten–eleven translocation (TET) enzymes, which establish or erase a phenotype-specific methylation pattern during embryo development and mesenchymal to epithelial transition (MET). Cell plasticity is also responsive to extracellular factors, such as small molecules that interact with cell fate definition and induce a transient pluripotent state that allows the direct conversion of an adult mature cell into another differentiated cell type. In addition, cell-secreted vesicles emerge as powerful effectors, capable of modifying cell function and phenotype and delivering different signals, such as octamer-binding transcription factor-4 (Oct4) and SRY (sex determining region Y)-box 2 (Sox2) mRNAs (implicated in the preservation of pluripotency), thus triggering epigenetic changes in the recipient cells. In parallel, mechanical properties of the cellular microenvironment and three-dimensional rearrangement can affect both cell potency and differentiation through marked effects on cytoskeletal remodelling and with the involvement of specific mechanosensing-related pathways.

Additional keywords: epigenetic modifier, extracellular vesicles, mechanosensing, methyltransferase, ten–eleven translocation (TET) enzyme.


References

Abedi, M., Greer, D. A., Colvin, G. A., Demers, D. A., Dooner, M. S., Harpel, J. A., Weier, H. U., Lambert, J. F., and Quesenberry, P. J. (2004). Robust conversion of marrow cells to skeletal muscle with formation of marrow-derived muscle cell colonies: a multifactorial process. Exp. Hematol. 32, 426–434.
Robust conversion of marrow cells to skeletal muscle with formation of marrow-derived muscle cell colonies: a multifactorial process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVCqtrk%3D&md5=204343ac668e092e21bb13ac1f29e83cCAS |

Aimiuwu, J., Wang, H., Chen, P., Xie, Z., Wang, J., Liu, S., Klisovic, R., Mims, A., Blum, W., Marcucci, G., and Chan, K. K. (2012). RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia. Blood 119, 5229–5238.
RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVWjs73I&md5=df5e561294a09e01f82b2e735ba89a42CAS |

Anastasia, L., Sampaolesi, M., Papini, N., Oleari, D., Lamorte, G., Tringali, C., Monti, E., Galli, D., Tettamanti, G., Cossu, G., and Venerando, B. (2006). Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle. Cell Death Differ. 13, 2042–2051.
Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2nsrbF&md5=021145e2c464ca0a7eeb8bc3da9fea53CAS |

Arbatan, T., Al-Abboodi, A., Sarvi, F., Chan, P. P., and Shen, W. (2012). Tumor inside a pearl drop. Adv. Healthc. Mater. 1, 467–469.
Tumor inside a pearl drop.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFaksrrL&md5=c516d6a162afb437d4e488ecf61787a4CAS |

Badiavas, E. V., Abedi, M., Butmarc, J., Falanga, V., and Quesenberry, P. (2003). Participation of bone marrow derived cells in cutaneous wound healing. J. Cell. Physiol. 196, 245–250.
Participation of bone marrow derived cells in cutaneous wound healing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlSmsb4%3D&md5=2e074b96ed8a04748835c49c2492b015CAS |

Berdasco, M., and Esteller, M. (2011). DNA methylation in stem cell renewal and multipotency. Stem Cell Res. Ther. 2, 42.
DNA methylation in stem cell renewal and multipotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2qu7vM&md5=464a6a7294aecb42ae700b633150c1f5CAS |

Bhat, R., and Bissell, M. J. (2014). Of plasticity and specificity: dialectics of the microenvironment and macroenvironment and the organ phenotype. Wiley Interdiscip. Rev. Dev. Biol. 3, 147–163.
Of plasticity and specificity: dialectics of the microenvironment and macroenvironment and the organ phenotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1Wrsrs%3D&md5=cb51b849f7b3ad4a7219edbe95ebc99cCAS |

Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21.
DNA methylation patterns and epigenetic memory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1ehsQ%3D%3D&md5=2c6ef74239d02d4ff14795294bb7dc4eCAS |

Brevini, T. A., Cillo, F., Colleoni, S., Lazzari, G., Galli, C., and Gandolfi, F. (2004). Expression pattern of the maternal factor zygote arrest 1 (Zar1) in bovine tissues, oocytes, and embryos. Mol. Reprod. Dev. 69, 375–380.
Expression pattern of the maternal factor zygote arrest 1 (Zar1) in bovine tissues, oocytes, and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvFOlur0%3D&md5=bbb37db41eebdadffd754dfc3f955543CAS |

Brevini, T. A., Pennarossa, G., Rahman, M. M., Paffoni, A., Antonini, S., Ragni, G., deEguileor, M., Tettamanti, G., and Gandolfi, F. (2014). Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Rev. 10, 633–642.
| 1:CAS:528:DC%2BC2cXoslyjs7Y%3D&md5=0c6706131b6c6ecee98f5497bb98e1beCAS |

Brevini, T. A. L., Pennarossa, G., Maffei, S., and Gandolfi, F. (2015). Phenotype switching through epigenetic conversion. Reprod. Fertil. Dev. 27, 776–783.
Phenotype switching through epigenetic conversion.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2MnhtVGqsA%3D%3D&md5=22fd253a54be42fcfa8c8a3cf7e8f42aCAS |

Brevini, T. A., Pennarossa, G., Acocella, F., Brizzola, S., Zenobi, A., and Gandolfi, F. (2016). Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells. Vet. J. 211, 52–56.
Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktVOnsbg%3D&md5=d74073f4810d7f8d7e3b301c64f749fbCAS |

Brevini, T. A. L., Manzoni, E. F. M., Ledda, S., and Gandolfi, F. (2017). Use of a super-hydrophobic microbioreactor to generate and boost pancreatic mini-organoids. Methods Mol. Biol. , .
Use of a super-hydrophobic microbioreactor to generate and boost pancreatic mini-organoids.Crossref | GoogleScholarGoogle Scholar |

Bruno, S., Grange, C., Deregibus, M. C., Calogero, R. A., Saviozzi, S., Collino, F., Morando, L., Busca, A., Falda, M., Bussolati, B., Tetta, C., and Camussi, G. (2009). Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. 20, 1053–1067.
Mesenchymal stem cell-derived microvesicles protect against acute tubular injury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFKqtrY%3D&md5=1791bb5a4126ee52d8fc1d3e6ab1d76aCAS |

Buganim, Y., Faddah, D. A., and Jaenisch, R. (2013). Mechanisms and models of somatic cell reprogramming. Nat. Rev. Genet. 14, 427–439.
Mechanisms and models of somatic cell reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslahsbk%3D&md5=7607a9b78d1c60abf3b4460b8ad75e9bCAS |

Castellana, D., Zobairi, F., Martinez, M. C., Panaro, M. A., Mitolo, V., Freyssinet, J. M., and Kunzelmann, C. (2009). Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1–CX3CR1 axis. Cancer Res. 69, 785–793.
Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1–CX3CR1 axis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOksbg%3D&md5=a0c9d8e0046b61e64608dfc31fd2ad8bCAS |

Chandrakanthan, V., Yeola, A., Kwan, J. C., Oliver, R. A., Qiao, Q., Kang, Y. C., Zarzour, P., Beck, D., Boelen, L., Unnikrishnan, A., Villanueva, J. E., Nunez, A. C., Knezevic, K., Palu, C., Nasrallah, R., Carnell, M., Macmillan, A., Whan, R., Yu, Y., Hardy, P., Grey, S. T., Gladbach, A., Delerue, F., Ittner, L., Mobbs, R., Walkley, C. R., Purton, L. E., Ward, R. L., Wong, J. W., Hesson, L. B., Walsh, W., and Pimanda, J. E. (2016). PDGF-AB and 5-azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proc. Natl Acad. Sci. USA 113, E2306–E2315.
PDGF-AB and 5-azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xltlaqsr0%3D&md5=46659aaee664ae135094a876004a055cCAS |

Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., and Ingber, D. E. (1997). Geometric control of cell life and death. Science 276, 1425–1428.
Geometric control of cell life and death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFOhu7s%3D&md5=819c7e17464c1fe50d67d5fffb42400aCAS |

Chen, S., Zhang, Q., Wu, X., Schultz, P. G., and Ding, S. (2004). Dedifferentiation of lineage-committed cells by a small molecule. J. Am. Chem. Soc. 126, 410–411.
Dedifferentiation of lineage-committed cells by a small molecule.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFKhsro%3D&md5=75e57151443f777b72ed5cd17670cdc8CAS |

Chen, S., Takanashi, S., Zhang, Q., Xiong, W., Zhu, S., Peters, E. C., Ding, S., and Schultz, P. G. (2007). Reversine increases the plasticity of lineage-committed mammalian cells. Proc. Natl Acad. Sci. USA 104, 10482–10487.
Reversine increases the plasticity of lineage-committed mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1Kkt7w%3D&md5=f2eb733593dc338e194e82068e215673CAS |

Cheng, L., Hu, W., Qiu, B., Zhao, J., Yu, Y., Guan, W., Wang, M., Yang, W., and Pei, G. (2015). Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res. 25, 645–646.
Generation of neural progenitor cells by chemical cocktails and hypoxia.Crossref | GoogleScholarGoogle Scholar |

Christman, J. K. (2002). 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483–5495.
5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslSqtLw%3D&md5=3c2575e73d736893798c2156fcdd326fCAS |

Clevers, H. (2016). Modeling development and disease with organoids. Cell 165, 1586–1597.
Modeling development and disease with organoids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVWlurvN&md5=19dede68306e277e3b0c82be7feb7976CAS |

Cocucci, E., Racchetti, G., and Meldolesi, J. (2009). Shedding microvesicles: artefacts no more. Trends Cell Biol. 19, 43–51.
Shedding microvesicles: artefacts no more.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1amt7Y%3D&md5=122580705b84edfea031c239947ec557CAS |

Discher, D. E., Mooney, D. J., and Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677.
Growth factors, matrices, and forces combine and control stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFOmtbo%3D&md5=b0bedebd1eb4f612d3e169c749025c8fCAS |

Dooner, M., Cerny, J., Colvin, G., Demers, D., Pimentel, J., Greer, D., Abedi, M., McAuliffe, C., and Quesenberry, P. (2004). Homing and conversion of murine hematopoietic stem cells to lung. Blood Cells Mol. Dis. 32, 47–51.
Homing and conversion of murine hematopoietic stem cells to lung.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVGktA%3D%3D&md5=75f2ec66ff923f460cb4932eca9adad9CAS |

Engler, A. J., Griffin, M. A., Sen, S., Bonnemann, C. G., Sweeney, H. L., and Discher, D. E. (2004). Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166, 877–887.
Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1yhtb4%3D&md5=df357d10000fcf2c643979e0032267a7CAS |

Engler, A. J., Sen, S., Sweeney, H. L., and Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689.
Matrix elasticity directs stem cell lineage specification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1aktbg%3D&md5=0006cd741ba0ef522f43b031bc8a6a9cCAS |

Epsztejn-Litman, S., Feldman, N., Abu-Remaileh, M., Shufaro, Y., Gerson, A., Ueda, J., Deplus, R., Fuks, F., Shinkai, Y., Cedar, H., and Bergman, Y. (2008). De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat. Struct. Mol. Biol. 15, 1176–1183.
De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlalsL3M&md5=c810b2e9bc8f55b0a06fb24c413a7a86CAS |

Folkman, J., and Moscona, A. (1978). Role of cell shape in growth control. Nature 273, 345–349.
Role of cell shape in growth control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlslOju70%3D&md5=c36f0d634dbd2e6a21d109431664c2d6CAS |

Gilbert, P. M., Havenstrite, K. L., Magnusson, K. E., Sacco, A., Leonardi, N. A., Kraft, P., Nguyen, N. K., Thrun, S., Lutolf, M. P., and Blau, H. M. (2010). Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081.
Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrt7fO&md5=f7ef59b2175ceae2595f1c8e022dec36CAS |

Glover, T. W., Coyle-Morris, J., Pearce-Birge, L., Berger, C., and Gemmill, R. M. (1986). DNA demethylation induced by 5-azacytidine does not affect fragile X expression. Am. J. Hum. Genet. 38, 309–318.
| 1:CAS:528:DyaL28XitVWmtLo%3D&md5=cb79f598f0f36b3aa8892f54f352becfCAS |

Grabole, N., Tischler, J., Hackett, J. A., Kim, S., Tang, F., Leitch, H. G., Magnusdottir, E., and Surani, M. A. (2013). Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Rep. 14, 629–637.
Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVShsr0%3D&md5=b46e9594612910d65cb35ca7fe9022a8CAS |

Gu, T.-P., Guo, F., Yang, H., Wu, H.-P., Xu, G.-F., Liu, W., Xie, Z.-G., Shi, L., He, X., Jin, S.-g., Iqbal, K., Shi, Y. G., Deng, Z., Szabo, P. E., Pfeifer, G. P., Li, J., and Xu, G.-L. (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610.
The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFersL7M&md5=b6e75dbdd0463306c0ee3da5036fa16bCAS |

Gurdon, J. B., and Melton, D. A. (2008). Nuclear reprogramming in cells. Science 322, 1811–1815.
Nuclear reprogramming in cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSmtrbK&md5=35bf8f4df3a8be71d4077da645219bf1CAS |

Habibi, E., Brinkman, A. B., Arand, J., Kroeze, L. I., Kerstens, H. H., Matarese, F., Lepikhov, K., Gut, M., Brun-Heath, I., Hubner, N. C., Benedetti, R., Altucci, L., Jansen, J. H., Walter, J., Gut, I. G., Marks, H., and Stunnenberg, H. G. (2013). Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13, 360–369.
Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2rur3L&md5=73fff5e70702aa16f058cacaf72da1e1CAS |

Hackett, J. A., Sengupta, R., Zylicz, J. J., Murakami, K., Lee, C., Down, T. A., and Surani, M. A. (2013). Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339, 448–452.
Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFyntL8%3D&md5=f2729cd2aab4c5005495ddc6ebb088a8CAS |

Harris, D. M., Hazan-Haley, I., Coombes, K., Bueso-Ramos, C., Liu, J., Liu, Z., Li, P., Ravoori, M., Abruzzo, L., Han, L., Singh, S., Sun, M., Kundra, V., Kurzrock, R., and Estrov, Z. (2011). Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells. PLoS One 6, e21250.
Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotF2gu7o%3D&md5=0975cf955a7bcb45ad48fdb5e64e3750CAS |

Harrison, S. E., Sozen, B., Christodoulou, N., Kyprianou, C., and Zernicka-Goetz, M. (2017). Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 356, eaal1810.
Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro.Crossref | GoogleScholarGoogle Scholar |

He, Y. F., Li, B. Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., Sun, Y., Li, X., Dai, Q., Song, C. X., Zhang, K., He, C., and Xu, G. L. (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307.
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2jt7nO&md5=9eafbd3fa58944f32179b01ed35b0daaCAS |

Hemberger, M., Dean, W., and Reik, W. (2009). Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat. Rev. Mol. Cell Biol. 10, 526–537.
Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFWhtrY%3D&md5=55c5e5b6b4801d89e579b6f8f1c21de5CAS |

Hu, X., Zhang, L., Mao, S. Q., Li, Z., Chen, J., Zhang, R. R., Wu, H. P., Gao, J., Guo, F., Liu, W., Xu, G. F., Dai, H. Q., Shi, Y. G., Li, X., Hu, B., Tang, F., Pei, D., and Xu, G. L. (2014). Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 14, 512–522.
Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFChs74%3D&md5=20382d4de69ca2dc46dddb7759907ac2CAS |

Iqbal, K., Jin, S. G., Pfeifer, G. P., and Szabo, P. E. (2011). Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl Acad. Sci. USA 108, 3642–3647.
Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFKqs7Y%3D&md5=ffb84637726218cee355094127058ad5CAS |

Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., He, C., and Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303.
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2jt7nN&md5=9bfbd36012b0a2c63e8decda67b5f38bCAS |

Jaalouk, D. E., and Lammerding, J. (2009). Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63–73.
Mechanotransduction gone awry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlSk&md5=bf75e3e402a81b711ca24f7671f08d6cCAS |

Jasnos, L., Aksoy, F. B., Hersi, H. M., Wantuch, S., and Sawado, T. (2013). Identifying division symmetry of mouse embryonic stem cells: negative impact of DNA methyltransferases on symmetric self-renewal. Stem Cell Reports 1, 360–369.
Identifying division symmetry of mouse embryonic stem cells: negative impact of DNA methyltransferases on symmetric self-renewal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvV2gsLY%3D&md5=aa6a7949c43104c7a8c632e3730b9d13CAS |

Jones, P. A. (1985). Effects of 5-azacytidine and its 2′-deoxyderivative on cell differentiation and DNA methylation. Pharmacol. Ther. 28, 17–27.
Effects of 5-azacytidine and its 2′-deoxyderivative on cell differentiation and DNA methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtVGisbo%3D&md5=52e5895a34abd18f727830a5d71ff9c5CAS |

Katsman, D., Stackpole, E. J., Domin, D. R., and Farber, D. B. (2012). Embryonic stem cell-derived microvesicles induce gene expression changes in Muller cells of the retina. PLoS One 7, e50417.
Embryonic stem cell-derived microvesicles induce gene expression changes in Muller cells of the retina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKqtrrI&md5=baf6e50bfe7b22fcd2c8ef4d60cbf421CAS |

Klein, E. A., Yin, L., Kothapalli, D., Castagnino, P., Byfield, F. J., Xu, T., Levental, I., Hawthorne, E., Janmey, P. A., and Assoian, R. K. (2009). Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr. Biol. 19, 1511–1518.
Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2iu7fK&md5=d2b71b3e2c669935e0edbce96dea4404CAS |

Leitch, H. G., McEwen, K. R., Turp, A., Encheva, V., Carroll, T., Grabole, N., Mansfield, W., Nashun, B., Knezovich, J. G., Smith, A., Surani, M. A., and Hajkova, P. (2013). Naive pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 20, 311–316.
Naive pluripotency is associated with global DNA hypomethylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXis1WrurY%3D&md5=bed3daa602e9747973efc96339aa94c0CAS |

Li, J. Y., Pu, M. T., Hirasawa, R., Li, B. Z., Huang, Y. N., Zeng, R., Jing, N. H., Chen, T., Li, E., Sasaki, H., and Xu, G. L. (2007). Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol. Cell. Biol. 27, 8748–8759.
Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1CitQ%3D%3D&md5=8b3238bab40b447b463fb799dbbb3341CAS |

Mammoto, A., and Ingber, D. E. (2009). Cytoskeletal control of growth and cell fate switching. Curr. Opin. Cell Biol. 21, 864–870.
Cytoskeletal control of growth and cell fate switching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2ksLnF&md5=e3a675a8aa91a2b77623ef9710cb3feaCAS |

Manzoni, E. F., Pennarossa, G., deEguileor, M., Tettamanti, G., Gandolfi, F., and Brevini, T. A. (2016). 5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Sci. Rep. 6, 37017.
5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVWmtbzE&md5=9240c4fbcbdf58f6a3b2eddc008d25f8CAS |

McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., and Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495.
Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFeqsbk%3D&md5=fc4281c6b41b53ee205633af975e5e55CAS |

Mirakhori, F., Zeynali, B., Kiani, S., and Baharvand, H. (2015). Brief azacytidine step allows the conversion of suspension human fibroblasts into neural progenitor-like cells. Cell J. 17, 153–158.

Nakamura, T., Liu, Y. J., Nakashima, H., Umehara, H., Inoue, K., Matoba, S., Tachibana, M., Ogura, A., Shinkai, Y., and Nakano, T. (2012). PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486, 415–419.
| 1:CAS:528:DC%2BC38XovFyrtro%3D&md5=2fdfc8dbbefec37129c323251bbabb29CAS |

Nichols, J., and Smith, A. (2009). Naive and primed pluripotent states. Cell Stem Cell 4, 487–492.
Naive and primed pluripotent states.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Ggt7c%3D&md5=c9a1f1da399988794003f5d74eb13a14CAS |

Oda, M., Kumaki, Y., Shigeta, M., Jakt, L. M., Matsuoka, C., Yamagiwa, A., Niwa, H., and Okano, M. (2013). DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation. PLoS Genet. 9, e1003574.
DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFGjsL3O&md5=c475561e8dc1f8c9a925b6bba35eb95dCAS |

Parsons, J. T., Horwitz, A. R., and Schwartz, M. A. (2010). Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643.
Cell adhesion: integrating cytoskeletal dynamics and cellular tension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGgtLfL&md5=c151855088326de606c0edd1a6be7d2eCAS |

Pennarossa, G., Maffei, S., Campagnol, M., Tarantini, L., Gandolfi, F., and Brevini, T. A. (2013). Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc. Natl Acad. Sci. USA 110, 8948–8953.
Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFait7zO&md5=378988a12d62b74c6f6b25e1d79e03afCAS |

Pennarossa, G., Maffei, S., Campagnol, M., Rahman, M. M., Brevini, T. A., and Gandolfi, F. (2014). Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine. Stem Cell Rev. 10, 31–43.
Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFCqtb4%3D&md5=8be4648d059483ea3f10d53e382406f1CAS |

Quesenberry, P. J., Dooner, M. S., and Aliotta, J. M. (2010). Stem cell plasticity revisited: the continuum marrow model and phenotypic changes mediated by microvesicles. Exp. Hematol. 38, 581–592.
Stem cell plasticity revisited: the continuum marrow model and phenotypic changes mediated by microvesicles.Crossref | GoogleScholarGoogle Scholar |

Ratajczak, J., Miekus, K., Kucia, M., Zhang, J., Reca, R., Dvorak, P., and Ratajczak, M. Z. (2006a). Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20, 847–856.
Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslOhsbs%3D&md5=f5e57f7bb6d2fa8bc0e59655d063d23eCAS |

Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A., and Ratajczak, M. Z. (2006b). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20, 1487–1495.
Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVSjsrk%3D&md5=b0ada5a144cda19cffd70d7638d57fdfCAS |

Santos, F., Hendrich, B., Reik, W., and Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182.
Dynamic reprogramming of DNA methylation in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVWhsrg%3D&md5=07b1d24d0df62a1106d44a52516c3753CAS |

Sarvi, F., Arbatan, T., Chan, P. P. Y., and Shen, W. (2013). A novel technique for the formation of embryoid bodies inside liquid marbles. RSC Advances 3, 14501–14508.
A novel technique for the formation of embryoid bodies inside liquid marbles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WitLjM&md5=1861f34d4ef5a11687491bbd1a110034CAS |

Sarvi, F., Jain, K., Arbatan, T., Verma, P. J., Hourigan, K., Thompson, M. C., Shen, W., and Chan, P. P. Y. (2015). Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv. Healthc. Mater. 4, 77–86.
Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXivFWnsw%3D%3D&md5=5b76a8defc9e628a4629ccd4d084c960CAS |

Serrano, M. C., Nardecchia, S., Gutierrez, M. C., Ferrer, M. L., and del Monte, F. (2015). Mammalian cell cryopreservation by using liquid marbles. ACS Appl. Mater. Interfaces 7, 3854–3860.
| 1:CAS:528:DC%2BC2MXhtlykt7w%3D&md5=004820803e58b91dbccf60a444a45fffCAS |

Simian, M., and Bissell, M. J. (2017). Organoids: a historical perspective of thinking in three dimensions. J. Cell Biol. 216, 31–40.
Organoids: a historical perspective of thinking in three dimensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXptFGru74%3D&md5=536dcad77a94c9b1d4b7b8df47cc3f52CAS |

Singhvi, R., Kumar, A., Lopez, G. P., Stephanopoulos, G. N., Wang, D. I., Whitesides, G. M., and Ingber, D. E. (1994). Engineering cell shape and function. Science 264, 696–698.
Engineering cell shape and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFemtr8%3D&md5=f08099f48cd8a983a0ebb97b1ee94f3cCAS |

Smith, Z. D., Chan, M. M., Mikkelsen, T. S., Gu, H., Gnirke, A., Regev, A., and Meissner, A. (2012). A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344.
A unique regulatory phase of DNA methylation in the early mammalian embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1yrsbw%3D&md5=7ff48dd04f8672dac30b1d38b8744287CAS |

Stresemann, C., and Lyko, F. (2008). Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer 123, 8–13.
Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlantrg%3D&md5=b7aacf7e44ce66f363f60cc156fff71eCAS |

Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., and Rao, A. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935.
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWnurY%3D&md5=12a271000998ab4a99b7534538dfb32eCAS |

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1aktbs%3D&md5=9819c7883953af6ac27c5007556c72c1CAS |

Tamada, H., Van Thuan, N., Reed, P., Nelson, D., Katoku-Kikyo, N., Wudel, J., Wakayama, T., and Kikyo, N. (2006). Chromatin decondensation and nuclear reprogramming by nucleoplasmin. Mol. Cell. Biol. 26, 1259–1271.
Chromatin decondensation and nuclear reprogramming by nucleoplasmin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFeqsLw%3D&md5=a9be2d7eede17983422fa14c84d13e92CAS |

Taylor, S. M., and Jones, P. A. (1979). Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17, 771–779.
Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlsFWqu7s%3D&md5=e65b2a6155168ef529884577ae3d1f38CAS |

Thoma, E. C., Merkl, C., Heckel, T., Haab, R., Knoflach, F., Nowaczyk, C., Flint, N., Jagasia, R., Jensen Zoffmann, S., Truong, H. H., Petitjean, P., Jessberger, S., Graf, M., and Iacone, R. (2014). Chemical conversion of human fibroblasts into functional Schwann cells. Stem Cell Reports 3, 539–547.
Chemical conversion of human fibroblasts into functional Schwann cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslKjsb7O&md5=588fe76f33a6f8e6cb51e3773797da03CAS |

Tian, J., Fu, N., Chen, X. D., and Shen, W. (2013). Respirable liquid marble for the cultivation of microorganisms. Colloids Surf. B Biointerfaces 106, 187–190.
Respirable liquid marble for the cultivation of microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlOiur8%3D&md5=345b7d57e1f0b5eac2bb0cde28f74ca9CAS |

Vogel, V., and Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275.
Local force and geometry sensing regulate cell functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt12qsLs%3D&md5=5a607d9b63cf86ea790fb16ffd357b60CAS |

Watt, F. M., Jordan, P. W., and O’Neill, C. H. (1988). Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc. Natl Acad. Sci. USA 85, 5576–5580.
Cell shape controls terminal differentiation of human epidermal keratinocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3ovFOlsw%3D%3D&md5=f4a7d7846f6364485cc08955c3c43713CAS |

Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C. J., Zakhartchenko, V., Boiani, M., Arand, J., Nakano, T., Reik, W., and Walter, J. (2011). 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, 241.
5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming.Crossref | GoogleScholarGoogle Scholar |

Wozniak, M. A., and Chen, C. S. (2009). Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 34–43.
Mechanotransduction in development: a growing role for contractility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlSm&md5=e4c4eb227f42558692e429cd3eaca1e2CAS |

Wu, S. C., and Zhang, Y. (2010). Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 11, 607–620.
Active DNA demethylation: many roads lead to Rome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1egtbY%3D&md5=c81188a3d4e20be5d80094ca59f8646cCAS |

Zhou, Q., and Melton, D. A. (2008). Extreme makeover: converting one cell into another. Cell Stem Cell 3, 382–388.
Extreme makeover: converting one cell into another.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12it7bO&md5=c253e1356d6c49f4ba5ae8cbfb70c2b4CAS |