Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE (Open Access)

Transcriptional and epigenetic control of cell fate decisions in early embryos

Ramiro Alberio
+ Author Affiliations
- Author Affiliations

School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK. Email: ramiro.alberio@nottingham.ac.uk

Reproduction, Fertility and Development 30(1) 73-84 https://doi.org/10.1071/RD17403
Published: 4 December 2017

Journal Compilation © IETS 2018 Open Access CC BY

Abstract

Mammalian embryo development is characterised by regulative mechanisms of lineage segregation and cell specification. A combination of carefully orchestrated gene expression networks, signalling pathways and epigenetic marks defines specific developmental stages that can now be resolved at the single-cell level. These new ways to depict developmental processes have the potential to provide answers to unresolved questions on how lineage allocation and cell fate decisions are made during embryogenesis. Over the past few years, a flurry of studies reporting detailed single-cell transcription profiles in early embryos has complemented observations acquired using live cell imaging following gene editing techniques to manipulate specific genes. The adoption of this newly available toolkit is reshaping how researchers are designing experiments and how they view animal development. This review presents an overview of the current knowledge on lineage segregation and cell specification in mammals, and discusses some of the outstanding questions that current technological advances can help scientists address, like never before.

Additional keywords: epiblast, gastrulation, lineage segregation, primordial germ cells, stem cells.


References

Ahmed, K., Dehghani, H., Rugg-Gunn, P., Fussner, E., Rossant, J., and Bazett-Jones, D. P. (2010). Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS One 5, e10531.
Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar |

Alberio, R., Croxall, N., and Allegrucci, C. (2010). Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev. 19, 1627–1636.
Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wmu7vE&md5=b0cad1e479753a950043cf8d8cb53fa8CAS |

Arman, E., Haffner-Krausz, R., Chen, Y., Heath, J. K., and Lonai, P. (1998). Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc. Natl Acad. Sci. USA 95, 5082–5087.
Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivV2jsLo%3D&md5=d03e87e213ac67adf138b62a76b7f5b2CAS |

Arnold, S. J., and Robertson, E. J. (2009). Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10, 91–103.
Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlGntw%3D%3D&md5=9111fc4db6c0dbdc4dc9315ba95c5c66CAS |

Artus, J., Piliszek, A., and Hadjantonakis, A. K. (2011). The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17. Dev. Biol. 350, 393–404.
The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKnt70%3D&md5=ca499e368f51da3b6041aba52bf94ed9CAS |

Behringer, R. R., Wakamiya, M., Tsang, T. E., and Tam, P. P. (2000). A flattened mouse embryo: leveling the playing field. Genesis 28, 23–30.
A flattened mouse embryo: leveling the playing field.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FivFKisA%3D%3D&md5=0348a922f085bcea3cc46528fa2e7f7dCAS |

Berg, D. K., Smith, C. S., Pearton, D. J., Wells, D. N., Broadhurst, R., Donnison, M., and Pfeffer, P. L. (2011). Trophectoderm lineage determination in cattle. Dev. Cell 20, 244–255.
Trophectoderm lineage determination in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFeit7Y%3D&md5=39359cd401e0a820c8f8c6c5070ef594CAS |

Biechele, S., Cox, B. J., and Rossant, J. (2011). Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos. Dev. Biol. 355, 275–285.
Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslOlsbw%3D&md5=c619be67b0846935815d3e5c95f001b7CAS |

Blakeley, P., Fogarty, N. M., del Valle, I., Wamaitha, S. E., Hu, T. X., Elder, K., Snell, P., Christie, L., Robson, P., and Niakan, K. K. (2015). Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development 142, 3151–3165.
Defining the three cell lineages of the human blastocyst by single-cell RNA-seq.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XksV2rur8%3D&md5=482fa3f89290180fdd69ca93a82d3ed4CAS |

Boroviak, T., Loos, R., Bertone, P., Smith, A., and Nichols, J. (2014). The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat. Cell Biol. 16, 516–528.
The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXos1eqsb0%3D&md5=b86be3d67c24be8f68147f94b2a25fdeCAS |

Boroviak, T., Loos, R., Lombard, P., Okahara, J., Behr, R., Sasaki, E., Nichols, J., Smith, A., and Bertone, P. (2015). Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev. Cell 35, 366–382.
Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVSksr7P&md5=0bc784b1c0350179e0d9fca3b112cfdfCAS |

Bou, G., Liu, S., Guo, J., Zhao, Y., Sun, M., Xue, B., Wang, J., Wei, Y., Kong, Q., and Liu, Z. (2016). Cdx2 represses Oct4 function via inducing its proteasome-dependent degradation in early porcine embryos. Dev. Biol. 410, 36–44.
Cdx2 represses Oct4 function via inducing its proteasome-dependent degradation in early porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVGgs7zP&md5=d72f2410b623d4f17cf10351195df2f5CAS |

Bou, G., Liu, S., Sun, M., Zhu, J., Xue, B., Guo, J., Zhao, Y., Qu, B., Weng, X., Wei, Y., Lei, L., and Liu, Z. (2017). CDX2 is essential for cell proliferation and polarity in porcine blastocysts. Development 144, 1296–1306.
CDX2 is essential for cell proliferation and polarity in porcine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtF2gsrzO&md5=c9fcb61f8e01697a89391077a71bd55dCAS |

Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., and Young, R. A. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956.
Core transcriptional regulatory circuitry in human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOrurbJ&md5=e78ff095c08ce07c10882446a291d845CAS |

Brewer, J. R., Mazot, P., and Soriano, P. (2016). Genetic insights into the mechanisms of Fgf signaling. Genes Dev. 30, 751–771.
Genetic insights into the mechanisms of Fgf signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1KjurfN&md5=eed1041622e48dd61f52d185f2f6b14aCAS |

Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S. M., Howlett, S. K., Clarkson, A., Ahrlund-Richter, L., Pedersen, R. A., and Vallier, L. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195.
Derivation of pluripotent epiblast stem cells from mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFeisbw%3D&md5=946fa4d5038703b514bc7b4b99d28056CAS |

Buecker, C., Srinivasan, R., Wu, Z., Calo, E., Acampora, D., Faial, T., Simeone, A., Tan, M., Swigut, T., and Wysocka, J. (2014). Reorganization of enhancer patterns in transition from naive to primed pluripotency. Cell Stem Cell 14, 838–853.
Reorganization of enhancer patterns in transition from naive to primed pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvFSktL0%3D&md5=bcda370228629e5b054e53155fbaf2fcCAS |

Burton, A., Muller, J., Tu, S., Padilla-Longoria, P., Guccione, E., and Torres-Padilla, M. E. (2013). Single-cell profiling of epigenetic modifiers identifies PRDM14 as an inducer of cell fate in the mammalian embryo. Cell Reports 5, 687–701.
Single-cell profiling of epigenetic modifiers identifies PRDM14 as an inducer of cell fate in the mammalian embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWmtr7P&md5=0f541c0a65387cd3e1e8be6a37f78b02CAS |

Campolo, F., Gori, M., Favaro, R., Nicolis, S., Pellegrini, M., Botti, F., Rossi, P., Jannini, E. A., and Dolci, S. (2013). Essential role of Sox2 for the establishment and maintenance of the germ cell line. Stem Cells 31, 1408–1421.
Essential role of Sox2 for the establishment and maintenance of the germ cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlWjsL3M&md5=fa09717f4a3bda5e3865c6e6868dcd9dCAS |

Cao, S., Han, J., Wu, J., Li, Q., Liu, S., Zhang, W., Pei, Y., Ruan, X., Liu, Z., Wang, X., Lim, B., and Li, N. (2014). Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genomics 15, 4.
Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing.Crossref | GoogleScholarGoogle Scholar |

Cauffman, G., Van de Velde, H., Liebaers, I., and Van Steirteghem, A. (2005). Oct-4 mRNA and protein expression during human preimplantation development. Mol. Hum. Reprod. 11, 173–181.
Oct-4 mRNA and protein expression during human preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitV2jtr8%3D&md5=41b200ab62473793fdcc3c3fb39c93b8CAS |

Cauffman, G., De Rycke, M., Sermon, K., Liebaers, I., and Van de Velde, H. (2009). Markers that define stemness in ESC are unable to identify the totipotent cells in human preimplantation embryos. Hum. Reprod. 24, 63–70.
Markers that define stemness in ESC are unable to identify the totipotent cells in human preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtbfJ&md5=d296cd094fedf1554c2ea62ec1bd83dfCAS |

Chatfield, J., O’Reilly, M. A., Bachvarova, R. F., Ferjentsik, Z., Redwood, C., Walmsley, M., Patient, R., Loose, M., and Johnson, A. D. (2014). Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos. Development 141, 2429–2440.
Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WkurrL&md5=4af323ffb79205751b692e87270ec28aCAS |

Chazaud, C., Yamanaka, Y., Pawson, T., and Rossant, J. (2006). Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2–MAPK pathway. Dev. Cell 10, 615–624.
Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2–MAPK pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVyktro%3D&md5=8f1b3339a54ca64b349b7b01000284f7CAS |

Chen, J., Zhang, Z., Li, L., Chen, B. C., Revyakin, A., Hajj, B., Legant, W., Dahan, M., Lionnet, T., Betzig, E., Tjian, R., and Liu, Z. (2014). Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156, 1274–1285.
Single-molecule dynamics of enhanceosome assembly in embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksVWrtbg%3D&md5=0094dc478920284498419cd6993b8ae2CAS |

Cheng, A. M., Saxton, T. M., Sakai, R., Kulkarni, S., Mbamalu, G., Vogel, W., Tortorice, C. G., Cardiff, R. D., Cross, J. C., Muller, W. J., and Pawson, T. (1998). Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95, 793–803.
Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivVKi&md5=da58c75e964f9922a0c2ae5dc0361f49CAS |

Clark, S. J., Lee, H. J., Smallwood, S. A., Kelsey, G., and Reik, W. (2016). Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol. 17, 72.
Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity.Crossref | GoogleScholarGoogle Scholar |

Cui, X. S., Lee, J. Y., Choi, S. H., Kwon, M. S., Kim, T., and Kim, N. H. (2004). Mouse granulocyte–macrophage colony-stimulating factor enhances viability of porcine embryos in defined culture conditions. Anim. Reprod. Sci. 84, 169–177.
Mouse granulocyte–macrophage colony-stimulating factor enhances viability of porcine embryos in defined culture conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVGjs70%3D&md5=1e55780e362f18eb0c22f2f1dd9cf5f6CAS |

Dahl, J. A., Jung, I., Aanes, H., Greggains, G. D., Manaf, A., Lerdrup, M., Li, G., Kuan, S., Li, B., Lee, A. Y., Preissl, S., Jermstad, I., Haugen, M. H., Suganthan, R., Bjoras, M., Hansen, K., Dalen, K. T., Fedorcsak, P., Ren, B., and Klungland, A. (2016). Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548–552.
Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFWiurnI&md5=5c867a72a40c1ea6f435fc6293ce75c1CAS |

De Paepe, C., Cauffman, G., Verloes, A., Sterckx, J., Devroey, P., Tournaye, H., Liebaers, I., and Van de Velde, H. (2013). Human trophectoderm cells are not yet committed. Hum. Reprod. 28, 740–749.
Human trophectoderm cells are not yet committed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislOmtb8%3D&md5=70026d31dc2c98e8fd354d5e323822f2CAS |

Denicol, A. C., Block, J., Kelley, D. E., Pohler, K. G., Dobbs, K. B., Mortensen, C. J., Ortega, M. S., and Hansen, P. J. (2014). The WNT signaling antagonist Dickkopf-1 directs lineage commitment and promotes survival of the preimplantation embryo. FASEB J. 28, 3975–3986.
The WNT signaling antagonist Dickkopf-1 directs lineage commitment and promotes survival of the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFanur%2FM&md5=d0ee4b0ab24b0bab372889b33611334cCAS |

Dietrich, J. E., and Hiiragi, T. (2007). Stochastic patterning in the mouse pre-implantation embryo. Development 134, 4219–4231.
Stochastic patterning in the mouse pre-implantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFegtw%3D%3D&md5=71757b0dd53aff8eb0a44676881e116aCAS |

Eakin, G. S., and Behringer, R. R. (2004). Diversity of germ layer and axis formation among mammals. Semin. Cell Dev. Biol. 15, 619–629.
Diversity of germ layer and axis formation among mammals.Crossref | GoogleScholarGoogle Scholar |

Evsikov, A. V., Graber, J. H., Brockman, J. M., Hampl, A., Holbrook, A. E., Singh, P., Eppig, J. J., Solter, D., and Knowles, B. B. (2006). Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev. 20, 2713–2727.
Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2hsLjN&md5=594d5aa651d32e84b00f392780eed29eCAS |

Factor, D. C., Corradin, O., Zentner, G. E., Saiakhova, A., Song, L., Chenoweth, J. G., McKay, R. D., Crawford, G. E., Scacheri, P. C., and Tesar, P. J. (2014). Epigenomic comparison reveals activation of “seed” enhancers during transition from naive to primed pluripotency. Cell Stem Cell 14, 854–863.
Epigenomic comparison reveals activation of “seed” enhancers during transition from naive to primed pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvFSktLs%3D&md5=4195f22f6829caf4bbf5ed42d35bf597CAS |

Feldman, B., Poueymirou, W., Papaioannou, V. E., DeChiara, T. M., and Goldfarb, M. (1995). Requirement of FGF-4 for postimplantation mouse development. Science 267, 246–249.
Requirement of FGF-4 for postimplantation mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt1ensbo%3D&md5=a92b21f8165554cf36d7479993c66ad6CAS |

Fléchon, J. E., Degrouard, J., and Fléchon, B. (2004). Gastrulation events in the prestreak pig embryo: ultrastructure and cell markers. Genesis 38, 13–25.
Gastrulation events in the prestreak pig embryo: ultrastructure and cell markers.Crossref | GoogleScholarGoogle Scholar |

Fogarty, N. M. E., McCarthy, A., Snijders, K. E., Powell, B. E., Kubikova, N., Blakeley, P., Lea, R., Elder, K., Wamaitha, S. E., Kim, D., Maciulyte, V., Kleinjung, J., Kim, J. S., Wells, D., Vallier, L., Bertero, A., Turner, J. M. A., and Niakan, K. K. (2017). Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550, 67–73.
Genome editing reveals a role for OCT4 in human embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsFehtrzI&md5=36543ec33550e77d9f2324aa0fd043c7CAS |

Goolam, M., Scialdone, A., Graham, S. J. L., Macaulay, I. C., Jedrusik, A., Hupalowska, A., Voet, T., Marioni, J. C., and Zernicka-Goetz, M. (2016). Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165, 61–74.
Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XltVamu70%3D&md5=e73d838690b8589da78381d0c242fd1fCAS |

Greber, B., Wu, G., Bernemann, C., Joo, J. Y., Han, D. W., Ko, K., Tapia, N., Sabour, D., Sterneckert, J., Tesar, P., and Scholer, H. R. (2010). Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell 6, 215–226.
Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1KmsrY%3D&md5=d47cf74e0f93dea6384dd565158b897fCAS |

Guo, G., Yang, J., Nichols, J., Hall, J. S., Eyres, I., Mansfield, W., and Smith, A. (2009). Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136, 1063–1069.
Klf4 reverts developmentally programmed restriction of ground state pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Oqt7g%3D&md5=7bbda9496a20c136e99c3a5fcbed7f59CAS |

Guo, G., Huss, M., Tong, G. Q., Wang, C., Li Sun, L., Clarke, N. D., and Robson, P. (2010). Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18, 675–685.
Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsF2mtbo%3D&md5=36cbdc7c050aa5d8e855a2ded0ec29c3CAS |

Guo, G., von Meyenn, F., Santos, F., Chen, Y., Reik, W., Bertone, P., Smith, A., and Nichols, J. (2016). Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports 6, 437–446.
Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjs1Ghur8%3D&md5=14e5fcb144f2bc13c2122ac77e8353d4CAS |

Habibi, E., Brinkman, A. B., Arand, J., Kroeze, L. I., Kerstens, H. H., Matarese, F., Lepikhov, K., Gut, M., Brun-Heath, I., Hubner, N. C., Benedetti, R., Altucci, L., Jansen, J. H., Walter, J., Gut, I. G., Marks, H., and Stunnenberg, H. G. (2013). Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13, 360–369.
Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2rur3L&md5=73fff5e70702aa16f058cacaf72da1e1CAS |

Hackett, J. A., Sengupta, R., Zylicz, J. J., Murakami, K., Lee, C., Down, T. A., and Surani, M. A. (2013). Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339, 448–452.
Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFyntL8%3D&md5=f2729cd2aab4c5005495ddc6ebb088a8CAS |

Hall, V. J., Christensen, J., Gao, Y., Schmidt, M. H., and Hyttel, P. (2009). Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Dev. Dyn. 238, 2014–2024.
Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKrsbbO&md5=b52bdf56fde36b3a8c1b38bfcfb7f901CAS |

Irie, N., Weinberger, L., Tang, W. W., Kobayashi, T., Viukov, S., Manor, Y. S., Dietmann, S., Hanna, J. H., and Surani, M. A. (2015). SOX17 is a critical specifier of human primordial germ cell fate. Cell 160, 253–268.
SOX17 is a critical specifier of human primordial germ cell fate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnslGlsA%3D%3D&md5=36e24b099dada6a206881ffa0cd028b3CAS |

Ishiuchi, T., Enriquez-Gasca, R., Mizutani, E., Boskovic, A., Ziegler-Birling, C., Rodriguez-Terrones, D., Wakayama, T., Vaquerizas, J. M., and Torres-Padilla, M. E. (2015). Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat. Struct. Mol. Biol. 22, 662–671.
Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1entLfJ&md5=1601306665a7fe9986ae1048996d8409CAS |

Jachowicz, J. W., Bing, X., Pontabry, J., Boskovic, A., Rando, O. J., and Torres-Padilla, M. E. (2017). LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat. Genet. 49, 1502–1510.
LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtl2gtL%2FO&md5=ecc154e29f9f87a59547c304e09bd16aCAS |

Johnson, A. D., and Alberio, R. (2015). Primordial germ cells: the first cell lineage or the last cells standing? Development 142, 2730–2739.
Primordial germ cells: the first cell lineage or the last cells standing?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1enu77E&md5=053bf0d7458a345f9a59eadc90a48a2eCAS |

Johnson, M. H., and Ziomek, C. A. (1983). Cell interactions influence the fate of mouse blastomeres undergoing the transition from the 16- to the 32-cell stage. Dev. Biol. 95, 211–218.
Cell interactions influence the fate of mouse blastomeres undergoing the transition from the 16- to the 32-cell stage.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s7jt1Oqtg%3D%3D&md5=6c13a6a533232b94dfc1760d524a0e4eCAS |

Kagiwada, S., Kurimoto, K., Hirota, T., Yamaji, M., and Saitou, M. (2013). Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J. 32, 340–353.
Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVektL7P&md5=3796561d277acd969fdd12ec9f593026CAS |

Kang, M., Garg, V., and Hadjantonakis, A. K. (2017). Lineage establishment and progression within the inner cell mass of the mouse blastocyst requires FGFR1 and FGFR2. Dev. Cell 41, 496–510.e5.
Lineage establishment and progression within the inner cell mass of the mouse blastocyst requires FGFR1 and FGFR2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXos1Wjsrw%3D&md5=68cd929ed7f31b355454ac55cc6a99f3CAS |

Khan, D. R., Dube, D., Gall, L., Peynot, N., Ruffini, S., Laffont, L., Le Bourhis, D., Degrelle, S., Jouneau, A., and Duranthon, V. (2012). Expression of pluripotency master regulators during two key developmental transitions: EGA and early lineage specification in the bovine embryo. PLoS One 7, e34110.
Expression of pluripotency master regulators during two key developmental transitions: EGA and early lineage specification in the bovine embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFamsbk%3D&md5=eedd6c894b2a5d22b2f19cb38e5a56d7CAS |

Kimber, S. J., Sneddon, S. F., Bloor, D. J., El-Bareg, A. M., Hawkhead, J. A., Metcalfe, A. D., Houghton, F. D., Leese, H. J., Rutherford, A., Lieberman, B. A., and Brison, D. R. (2008). Expression of genes involved in early cell fate decisions in human embryos and their regulation by growth factors. Reproduction 135, 635–647.
Expression of genes involved in early cell fate decisions in human embryos and their regulation by growth factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Wqur4%3D&md5=8f54bd37fafe795e8504104557192cf8CAS |

Kirchhof, N., Carnwath, J. W., Lemme, E., Anastassiadis, K., Scholer, H., and Niemann, H. (2000). Expression pattern of Oct-4 in preimplantation embryos of different species. Biol. Reprod. 63, 1698–1705.
Expression pattern of Oct-4 in preimplantation embryos of different species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKhtrY%3D&md5=22cb3839e2b34ea2d4e10999b2f0de3cCAS |

Kobayashi, T., Zhang, H., Tang, W. W. C., Irie, N., Withey, S., Klisch, D., Sybirna, A., Dietmann, S., Contreras, D. A., Webb, R., Allegrucci, C., Alberio, R., and Surani, M. A. (2017). Principles of early human development and germ cell program from conserved model systems. Nature 546, 416–420.
Principles of early human development and germ cell program from conserved model systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXpt1Oqtbs%3D&md5=71396156cd0f486e4f7e7c11734d664dCAS |

Korotkevich, E., Niwayama, R., Courtois, A., Friese, S., Berger, N., Buchholz, F., and Hiiragi, T. (2017). The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev. Cell 40, 235–247.e7.
The apical domain is required and sufficient for the first lineage segregation in the mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXisVCqurk%3D&md5=d77da1dbaeb12e878f3e970472437158CAS |

Koyama, H., Suzuki, H., Yang, X., Jiang, S., and Foote, R. H. (1994). Analysis of polarity of bovine and rabbit embryos by scanning electron microscopy. Biol. Reprod. 50, 163–170.
Analysis of polarity of bovine and rabbit embryos by scanning electron microscopy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7ks1ajsw%3D%3D&md5=02974857440e215359e50ff51f960b47CAS |

Krivega, M., Essahib, W., and Van de Velde, H. (2015). WNT3 and membrane-associated beta-catenin regulate trophectoderm lineage differentiation in human blastocysts. Mol. Hum. Reprod. 21, 711–722.
WNT3 and membrane-associated beta-catenin regulate trophectoderm lineage differentiation in human blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsVGgsbzM&md5=75ce7a8d6c5bf6efb15c00fa30fd7da3CAS |

Kuijk, E. W., Du Puy, L., Van Tol, H. T., Oei, C. H., Haagsman, H. P., Colenbrander, B., and Roelen, B. A. (2008). Differences in early lineage segregation between mammals. Dev. Dyn. 237, 918–927.
Differences in early lineage segregation between mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFaktbY%3D&md5=00dcf92eecffcc6518036bce906b5e31CAS |

Kuijk, E. W., van Tol, L. T., Van de Velde, H., Wubbolts, R., Welling, M., Geijsen, N., and Roelen, B. A. (2012). The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development 139, 871–882.
The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmsl2hu7c%3D&md5=906de039634fae68877672286bfd6426CAS |

Kunath, T., Yamanaka, Y., Detmar, J., MacPhee, D., Caniggia, I., Rossant, J., and Jurisicova, A. (2014). Developmental differences in the expression of FGF receptors between human and mouse embryos. Placenta 35, 1079–1088.
Developmental differences in the expression of FGF receptors between human and mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Kmtr7I&md5=8b90da1a98a9d4e6422a4e291d7d0c75CAS |

Lawson, K. A., Dunn, N. R., Roelen, B. A., Zeinstra, L. M., Davis, A. M., Wright, C. V., Korving, J. P., and Hogan, B. L. (1999). Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436.
Bmp4 is required for the generation of primordial germ cells in the mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1ajtL0%3D&md5=8431e87c942be4bca6c2a21fb9eed87cCAS |

Liu, H., Kim, J. M., and Aoki, F. (2004). Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development 131, 2269–2280.
Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlGrtrs%3D&md5=756ec95fe4b704afde95bcc0b386cc69CAS |

Liu, S., Bou, G., Sun, R., Guo, S., Xue, B., Wei, R., Cooney, A. J., and Liu, Z. (2015). Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies. Dev. Dyn. 244, 619–627.
Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlt1Wlsrw%3D&md5=5d422fdc5f9ac3c5ebbb7d33859aa040CAS |

Liu, X., Wang, C., Liu, W., Li, J., Li, C., Kou, X., Chen, J., Zhao, Y., Gao, H., Wang, H., Zhang, Y., Gao, Y., and Gao, S. (2016). Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558–562.
Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFWiurbO&md5=050ef23d9b30446ccfaa70cc8851f0acCAS |

Loureiro, B., Bonilla, L., Block, J., Fear, J. M., Bonilla, A. Q., and Hansen, P. J. (2009). Colony-stimulating factor 2 (CSF-2) improves development and posttransfer survival of bovine embryos produced in vitro. Endocrinology 150, 5046–5054.
Colony-stimulating factor 2 (CSF-2) improves development and posttransfer survival of bovine embryos produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCht7bF&md5=c662f1929cf665c12c19a680a7ceb919CAS |

Lu, F., Liu, Y., Inoue, A., Suzuki, T., Zhao, K., and Zhang, Y. (2016). Establishing chromatin regulatory landscape during mouse preimplantation development. Cell 165, 1375–1388.
Establishing chromatin regulatory landscape during mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpslaltrY%3D&md5=2a03e394d88c694e437603e17eb52ce6CAS |

Macfarlan, T. S., Gifford, W. D., Driscoll, S., Lettieri, K., Rowe, H. M., Bonanomi, D., Firth, A., Singer, O., Trono, D., and Pfaff, S. L. (2012). Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63.
| 1:CAS:528:DC%2BC38XpvVSmsb4%3D&md5=8c26dbf9335025e7ded33657b131aaa4CAS |

Magnúsdóttir, E., Dietmann, S., Murakami, K., Günesdogan, U., Tang, F., Bao, S., Diamanti, E., Lao, K., Gottgens, B., and Azim Surani, M. (2013). A tripartite transcription factor network regulates primordial germ cell specification in mice. Nat. Cell Biol. 15, 905–915.
A tripartite transcription factor network regulates primordial germ cell specification in mice.Crossref | GoogleScholarGoogle Scholar |

Maître, J. L., Turlier, H., Illukkumbura, R., Eismann, B., Niwayama, R., Nédélec, F., and Hiiragi, T. (2016). Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536, 344–348.
Asymmetric division of contractile domains couples cell positioning and fate specification.Crossref | GoogleScholarGoogle Scholar |

Marks, H., Kalkan, T., Menafra, R., Denissov, S., Jones, K., Hofemeister, H., Nichols, J., Kranz, A., Stewart, A. F., Smith, A., and Stunnenberg, H. G. (2012). The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604.
The transcriptional and epigenomic foundations of ground state pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1Gqtbw%3D&md5=d57b725eb0fbb07713536b2f378a7b3aCAS |

McLean, Z., Meng, F., Henderson, H., Turner, P., and Oback, B. (2014). Increased MAP kinase inhibition enhances epiblast-specific gene expression in bovine blastocysts. Biol. Reprod. 91, 49.
Increased MAP kinase inhibition enhances epiblast-specific gene expression in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar |

Meilhac, S. M., Adams, R. J., Morris, S. A., Danckaert, A., Le Garrec, J. F., and Zernicka-Goetz, M. (2009). Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst. Dev. Biol. 331, 210–221.
Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Wmtbo%3D&md5=39e3b1387fdfaf1fbcd436f3ab1c502dCAS |

Meng, F., Forrester-Gauntlett, B., Turner, P., Henderson, H., and Oback, B. (2015). Signal inhibition reveals JAK/STAT3 pathway as critical for bovine inner cell mass development. Biol. Reprod. 93, 132.
Signal inhibition reveals JAK/STAT3 pathway as critical for bovine inner cell mass development.Crossref | GoogleScholarGoogle Scholar |

Messerschmidt, D. M., and Kemler, R. (2010). Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism. Dev. Biol. 344, 129–137.
Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVClu77M&md5=f9689ae1e061d013beb5276d718c823dCAS |

Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642.
The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFehur4%3D&md5=3fea1e5e26e7e5747bc6fa8674baf450CAS |

Molotkov, A., Mazot, P., Brewer, J. R., Cinalli, R. M., and Soriano, P. (2017). Distinct requirements for FGFR1 and FGFR2 in primitive endoderm development and exit from pluripotency. Dev. Cell 41, 511–526.e4.
Distinct requirements for FGFR1 and FGFR2 in primitive endoderm development and exit from pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXos1Wjs74%3D&md5=8458a335174b6dd9de4bc9c394000466CAS |

Morris, S. A., Graham, S. J., Jedrusik, A., and Zernicka-Goetz, M. (2013). The differential response to Fgf signalling in cells internalized at different times influences lineage segregation in preimplantation mouse embryos. Open Biol. 3, 130104.
The differential response to Fgf signalling in cells internalized at different times influences lineage segregation in preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar |

Motosugi, N., Bauer, T., Polanski, Z., Solter, D., and Hiiragi, T. (2005). Polarity of the mouse embryo is established at blastocyst and is not prepatterned. Genes Dev. 19, 1081–1092.
Polarity of the mouse embryo is established at blastocyst and is not prepatterned.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Cgsrk%3D&md5=e8118f8b691a85928d413ce8bc324bfaCAS |

Nakamura, T., Okamoto, I., Sasaki, K., Yabuta, Y., Iwatani, C., Tsuchiya, H., Seita, Y., Nakamura, S., Yamamoto, T., and Saitou, M. (2016). A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62.
A developmental coordinate of pluripotency among mice, monkeys and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVamtrvL&md5=f179a2ecaec92e22c2d6208bb7e91aa3CAS |

Ng, R. K., Dean, W., Dawson, C., Lucifero, D., Madeja, Z., Reik, W., and Hemberger, M. (2008). Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat. Cell Biol. 10, 1280–1290.
Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlais7nN&md5=05a61e9dc1a76a6a3db31ba57b7b28ddCAS |

Niakan, K. K., and Eggan, K. (2013). Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 375, 54–64.
Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Oksr4%3D&md5=670ccee0bcaf416f840b2683faa6af11CAS |

Nichols, J., and Smith, A. (2009). Naive and primed pluripotent states. Cell Stem Cell 4, 487–492.
Naive and primed pluripotent states.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Ggt7c%3D&md5=c9a1f1da399988794003f5d74eb13a14CAS |

Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391.
Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlCqt74%3D&md5=f9da3159e1f4ac09f842e5858fd2dc11CAS |

Nichols, J., Silva, J., Roode, M., and Smith, A. (2009). Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136, 3215–3222.
Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyjsrjJ&md5=29fb94f22beb472a92cd1bd5a535a56fCAS |

Nikas, G., Ao, A., Winston, R. M., and Handyside, A. H. (1996). Compaction and surface polarity in the human embryo in vitro. Biol. Reprod. 55, 32–37.
Compaction and surface polarity in the human embryo in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltlKnsL8%3D&md5=fab72a36ddf18805998a2cf68289b556CAS |

Nishioka, N., Inoue, K., Adachi, K., Kiyonari, H., Ota, M., Ralston, A., Yabuta, N., Hirahara, S., Stephenson, R. O., Ogonuki, N., Makita, R., Kurihara, H., Morin-Kensicki, E. M., Nojima, H., Rossant, J., Nakao, K., Niwa, H., and Sasaki, H. (2009). The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410.
The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1ynsrw%3D&md5=fa95429b9f9a238df9489ad97ea52c69CAS |

Ohnishi, Y., Huber, W., Tsumura, A., Kang, M., Xenopoulos, P., Kurimoto, K., Oles, A. K., Arauzo-Bravo, M. J., Saitou, M., Hadjantonakis, A. K., and Hiiragi, T. (2014). Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat. Cell Biol. 16, 27–37.
Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGqs7%2FM&md5=a22d8f6e21c2a56fab766884ca9d210bCAS |

Ohno, R., Nakayama, M., Naruse, C., Okashita, N., Takano, O., Tachibana, M., Asano, M., Saitou, M., and Seki, Y. (2013). A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells. Development 140, 2892–2903.
A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlCmu7fE&md5=abfad23900759444fce417b8f9382503CAS |

Osorno, R., Tsakiridis, A., Wong, F., Cambray, N., Economou, C., Wilkie, R., Blin, G., Scotting, P. J., Chambers, I., and Wilson, V. (2012). The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression. Development 139, 2288–2298.
The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOgtbfE&md5=046a1ff3c7eb764fa869381e4f7f42a0CAS |

Ozawa, M., Sakatani, M., Dobbs, K. B., Kannampuzha-Francis, J., and Hansen, P. J. (2016). Regulation of gene expression in the bovine blastocyst by colony stimulating factor 2. BMC Res. Notes 9, 250.
Regulation of gene expression in the bovine blastocyst by colony stimulating factor 2.Crossref | GoogleScholarGoogle Scholar |

Pastor, W. A., Chen, D., Liu, W., Kim, R., Sahakyan, A., Lukianchikov, A., Plath, K., Jacobsen, S. E., and Clark, A. T. (2016). Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell 18, 323–329.
Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xit1Siu7k%3D&md5=7597044612ec87031d3474cffe979eaaCAS |

Pearton, D. J., Broadhurst, R., Donnison, M., and Pfeffer, P. L. (2011). Elf5 regulation in the trophectoderm. Dev. Biol. 360, 343–350.
Elf5 regulation in the trophectoderm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOjtb3J&md5=61b01713b61fa6a3be85f2c51fa9edfdCAS |

Pearton, D. J., Smith, C. S., Redgate, E., van Leeuwen, J., Donnison, M., and Pfeffer, P. L. (2014). Elf5 counteracts precocious trophoblast differentiation by maintaining Sox2 and 3 and inhibiting Hand1 expression. Dev. Biol. 392, 344–357.
Elf5 counteracts precocious trophoblast differentiation by maintaining Sox2 and 3 and inhibiting Hand1 expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslKlsLk%3D&md5=8a80b01ba84b1ba8e7daa994a50d1327CAS |

Peaston, A. E., Evsikov, A. V., Graber, J. H., de Vries, W. N., Holbrook, A. E., Solter, D., and Knowles, B. B. (2004). Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7, 597–606.
Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlGjur4%3D&md5=03d9fea6d61893761d441118cdf8446fCAS |

Pedersen, R. A., Wu, K., and Balakier, H. (1986). Origin of the inner cell mass in mouse embryos: cell lineage analysis by microinjection. Dev. Biol. 117, 581–595.
Origin of the inner cell mass in mouse embryos: cell lineage analysis by microinjection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s%2FgsFGrsA%3D%3D&md5=b6a3b90e5e546f9ea6cf2e4b1898b1b9CAS |

Peter, I. S., and Davidson, E. H. (2017). Assessing regulatory information in developmental gene regulatory networks. Proc. Natl Acad. Sci. USA 114, 5862–5869.
Assessing regulatory information in developmental gene regulatory networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXpt1Ons7k%3D&md5=1ade57b35db31493418e5bb89a992502CAS |

Petropoulos, S., Edsgard, D., Reinius, B., Deng, Q., Panula, S. P., Codeluppi, S., Plaza Reyes, A., Linnarsson, S., Sandberg, R., and Lanner, F. (2016). Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026.
Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlslWqur8%3D&md5=ddbcdad414bd4ef9d164dcc3f06d74d6CAS |

Pfeffer, P. L., and Pearton, D. J. (2012). Trophoblast development. Reproduction 143, 231–246.
Trophoblast development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFOqs7c%3D&md5=b228a102d4cff0797090e9170700de5eCAS |

Plusa, B., Piliszek, A., Frankenberg, S., Artus, J., and Hadjantonakis, A. K. (2008). Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135, 3081–3091.
Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlansrbE&md5=819a83a3c2f95d72e44dea1583498dccCAS |

Ralston, A., and Rossant, J. (2008). Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev. Biol. 313, 614–629.
Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFGrsA%3D%3D&md5=420b3e15a082a780798d03bf631fda03CAS |

Reima, I., Lehtonen, E., Virtanen, I., and Flechon, J. E. (1993). The cytoskeleton and associated proteins during cleavage, compaction and blastocyst differentiation in the pig. Differentiation 54, 35–45.
The cytoskeleton and associated proteins during cleavage, compaction and blastocyst differentiation in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtlSmt7s%3D&md5=fe59def3cfbd27be217768e509a695a7CAS |

Rodríguez, A., Allegrucci, C., and Alberio, R. (2012). Modulation of pluripotency in the porcine embryo and iPS cells. PLoS One 7, e49079.
Modulation of pluripotency in the porcine embryo and iPS cells.Crossref | GoogleScholarGoogle Scholar |

Roode, M., Blair, K., Snell, P., Elder, K., Marchant, S., Smith, A., and Nichols, J. (2012). Human hypoblast formation is not dependent on FGF signalling. Dev. Biol. 361, 358–363.
Human hypoblast formation is not dependent on FGF signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12hu7nO&md5=fcee03095da3314409f9ba6d1b8c0aefCAS |

Sasaki, K., Nakamura, T., Okamoto, I., Yabuta, Y., Iwatani, C., Tsuchiya, H., Seita, Y., Nakamura, S., Shiraki, N., Takakuwa, T., Yamamoto, T., and Saitou, M. (2016). The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Dev. Cell 39, 169–185.
The germ cell fate of cynomolgus monkeys is specified in the nascent amnion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1ClsL7I&md5=1a9ca199bf7041c4bfde0bff99816ef9CAS |

Savatier, P., Osteil, P., and Tam, P. P. (2017). Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: slippery slope, terrace and cliff. Stem Cell Res. 19, 104–112.
Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: slippery slope, terrace and cliff.Crossref | GoogleScholarGoogle Scholar |

Sjöblom, C., Wikland, M., and Robertson, S. A. (1999). Granulocyte–macrophage colony-stimulating factor promotes human blastocyst development in vitro. Hum. Reprod. 14, 3069–3076.
Granulocyte–macrophage colony-stimulating factor promotes human blastocyst development in vitro.Crossref | GoogleScholarGoogle Scholar |

Sjöblom, C., Roberts, C. T., Wikland, M., and Robertson, S. A. (2005). Granulocyte–macrophage colony-stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis. Endocrinology 146, 2142–2153.
Granulocyte–macrophage colony-stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis.Crossref | GoogleScholarGoogle Scholar |

Steptoe, P. C., Edwards, R. G., and Purdy, J. M. (1971). Human blastocysts grown in culture. Nature 229, 132–133.
Human blastocysts grown in culture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3M%2FmtlGlsw%3D%3D&md5=a8e1d1aef46473b764cae9e3c39e7e42CAS |

Suwińska, A., Czołowska, R., Ożdżeński, W., and Tarkowski, A. K. (2008). Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos. Dev. Biol. 322, 133–144.
Blastomeres of the mouse embryo lose totipotency after the fifth cleavage division: expression of Cdx2 and Oct4 and developmental potential of inner and outer blastomeres of 16- and 32-cell embryos.Crossref | GoogleScholarGoogle Scholar |

Szczepanska, K., Stanczuk, L., and Maleszewski, M. (2011). Isolated mouse inner cell mass is unable to reconstruct trophectoderm. Differentiation 82, 1–8.
Isolated mouse inner cell mass is unable to reconstruct trophectoderm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVymt7w%3D&md5=42bb8230e05c80f747db34da6626c821CAS |

Takashima, Y., Guo, G., Loos, R., Nichols, J., Ficz, G., Krueger, F., Oxley, D., Santos, F., Clarke, J., Mansfield, W., Reik, W., Bertone, P., and Smith, A. (2015). Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 162, 452–453.
Resetting transcription factor control circuitry toward ground-state pluripotency in human.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1KgtLzL&md5=e76b8c96624fe66ebca958fbe3304b10CAS |

Tarkowski, A. K., and Wroblewska, J. (1967). Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J. Embryol. Exp. Morphol. 18, 155–180.
| 1:STN:280:DyaF1c%2Fgt1arsg%3D%3D&md5=5100175b689b42228dfdf3837a68b964CAS |

Theunissen, T. W., Powell, B. E., Wang, H., Mitalipova, M., Faddah, D. A., Reddy, J., Fan, Z. P., Maetzel, D., Ganz, K., Shi, L., Lungjangwa, T., Imsoonthornruksa, S., Stelzer, Y., Rangarajan, S., D’Alessio, A., Zhang, J., Gao, Q., Dawlaty, M. M., Young, R. A., Gray, N. S., and Jaenisch, R. (2014). Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487.
Systematic identification of culture conditions for induction and maintenance of naive human pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1agsL%2FN&md5=d3d1872e9d2dcdb68342da9396af6e90CAS |

Theunissen, T. W., Friedli, M., He, Y., Planet, E., O’Neil, R. C., Markoulaki, S., Pontis, J., Wang, H., Iouranova, A., Imbeault, M., Duc, J., Cohen, M. A., Wert, K. J., Castanon, R., Zhang, Z., Huang, Y., Nery, J. R., Drotar, J., Lungjangwa, T., Trono, D., Ecker, J. R., and Jaenisch, R. (2016). Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19, 502–515.
Molecular criteria for defining the naive human pluripotent state.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFyiur%2FM&md5=d027bdbf709c093641379fdb3e893ffdCAS |

Valdez Magaña, G., Rodríguez, A., Zhang, H., Webb, R., and Alberio, R. (2014). Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation. Dev. Biol. 387, 15–27.
Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation.Crossref | GoogleScholarGoogle Scholar |

van de Pavert, S. A., Boerjan, M. L., Stroband, H. W., Taverne, M. A., and van den Hurk, R. (2001). Uterine–embryonic interaction in pig: activin, follistatin, and activin receptor II in uterus and embryo during early gestation. Mol. Reprod. Dev. 59, 390–399.
Uterine–embryonic interaction in pig: activin, follistatin, and activin receptor II in uterus and embryo during early gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVWmsL0%3D&md5=0a8640fb1e6f57173e06c9f31d052a31CAS |

Van der Jeught, M., Heindryckx, B., O’Leary, T., Duggal, G., Ghimire, S., Lierman, S., Van Roy, N., Chuva de Sousa Lopes, S. M., Deroo, T., Deforce, D., and De Sutter, P. (2014). Treatment of human embryos with the TGFbeta inhibitor SB431542 increases epiblast proliferation and permits successful human embryonic stem cell derivation. Hum. Reprod. 29, 41–48.
Treatment of human embryos with the TGFbeta inhibitor SB431542 increases epiblast proliferation and permits successful human embryonic stem cell derivation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFequrfE&md5=b146e30dd9d0c15acfe8578fcebb6a6eCAS |

Van Soom, A., Boerjan, M. L., Bols, P. E., Vanroose, G., Lein, A., Coryn, M., and de Kruif, A. (1997). Timing of compaction and inner cell allocation in bovine embryos produced in vivo after superovulation. Biol. Reprod. 57, 1041–1049.
Timing of compaction and inner cell allocation in bovine embryos produced in vivo after superovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFSns7o%3D&md5=a6ba18e599e3f4aa2c1b7a3f90283d6eCAS |

von Meyenn, F., Iurlaro, M., Habibi, E., Liu, N. Q., Salehzadeh-Yazdi, A., Santos, F., Petrini, E., Milagre, I., Yu, M., Xie, Z., Kroeze, L. I., Nesterova, T. B., Jansen, J. H., Xie, H., He, C., Reik, W., and Stunnenberg, H. G. (2016). Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells. Mol. Cell 62, 983.
Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVWlurjP&md5=f3f08bb184983d17adc9eba1a6d0dd03CAS |

Wei, Q., Zhong, L., Zhang, S., Mu, H., Xiang, J., Yue, L., Dai, Y., and Han, J. (2017). Bovine lineage specification revealed by single-cell gene expression analysis from zygote to blastocyst. Biol. Reprod. 97, 5–17.
Bovine lineage specification revealed by single-cell gene expression analysis from zygote to blastocyst.Crossref | GoogleScholarGoogle Scholar |

White, M. D., Angiolini, J. F., Alvarez, Y. D., Kaur, G., Zhao, Z. W., Mocskos, E., Bruno, L., Bissiere, S., Levi, V., and Plachta, N. (2016). Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo. Cell 165, 75–87.
Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XltVamurw%3D&md5=ad697014ccedfab5f9ee6df02c683c75CAS |

Winnier, G., Blessing, M., Labosky, P. A., and Hogan, B. L. (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116.
Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVOnu7w%3D&md5=eba32cf9f797c768276802b45c6d9699CAS |

Wolpert, L. (2008). ‘The Triumph of the Embryo.’ (Dover Publications: New York.)

Wu, J., Huang, B., Chen, H., Yin, Q., Liu, Y., Xiang, Y., Zhang, B., Liu, B., Wang, Q., Xia, W., Li, W., Li, Y., Ma, J., Peng, X., Zheng, H., Ming, J., Zhang, W., Zhang, J., Tian, G., Xu, F., Chang, Z., Na, J., Yang, X., and Xie, W. (2016). The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652–657.
The landscape of accessible chromatin in mammalian preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVSksbjP&md5=e0c18b854c1437094dc62dfe8193b09eCAS |

Xue, Z., Huang, K., Cai, C., Cai, L., Jiang, C. Y., Feng, Y., Liu, Z., Zeng, Q., Cheng, L., Sun, Y. E., Liu, J. Y., Horvath, S., and Fan, G. (2013). Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597.
Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFygsLrL&md5=4d78534b57a4b0d6a116754aa563079fCAS |

Yamaguchi, S., Kimura, H., Tada, M., Nakatsuji, N., and Tada, T. (2005). Nanog expression in mouse germ cell development. Gene Expr. Patterns 5, 639–646.
Nanog expression in mouse germ cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFSlsbw%3D&md5=37d306dc1399bfe5be503a3b88f7292fCAS |

Yamaguchi, S., Kurimoto, K., Yabuta, Y., Sasaki, H., Nakatsuji, N., Saitou, M., and Tada, T. (2009). Conditional knockdown of Nanog induces apoptotic cell death in mouse migrating primordial germ cells. Development 136, 4011–4020.
Conditional knockdown of Nanog induces apoptotic cell death in mouse migrating primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislSktg%3D%3D&md5=1dcaaca298c74ccce611af6a6e81bc81CAS |

Yamaguchi, S., Hong, K., Liu, R., Inoue, A., Shen, L., Zhang, K., and Zhang, Y. (2013). Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming. Cell Res. 23, 329–339.
Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFaqtb0%3D&md5=f86df0d72a6e0b4088d9900a35febd3bCAS |

Yamaji, M., Seki, Y., Kurimoto, K., Yabuta, Y., Yuasa, M., Shigeta, M., Yamanaka, K., Ohinata, Y., and Saitou, M. (2008). Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat. Genet. 40, 1016–1022.
Critical function of Prdm14 for the establishment of the germ cell lineage in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVKrsr4%3D&md5=31b310f222a3a9e4555a7068cbb2e055CAS |

Yamanaka, Y., Lanner, F., and Rossant, J. (2010). FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137, 715–724.
FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVChu78%3D&md5=da1157a6a16fe0ce613adcbed7b3419bCAS |

Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J., Huang, J., Li, M., Wu, X., Wen, L., Lao, K., Li, R., Qiao, J., and Tang, F. (2013). Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139.
Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CgsLnO&md5=b0769540dbe89ea9068963ef0a6026e4CAS |

Yeom, Y. I., Fuhrmann, G., Ovitt, C. E., Brehm, A., Ohbo, K., Gross, M., Hubner, K., and Scholer, H. R. (1996). Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881–894.
| 1:CAS:528:DyaK28XhvVOrtbs%3D&md5=52e8ac06c641d09e0d543d9652bca9efCAS |

Yoshida, M., Kajikawa, E., Kurokawa, D., Tokunaga, T., Onishi, A., Yonemura, S., Kobayashi, K., Kiyonari, H., and Aizawa, S. (2016). Conserved and divergent expression patterns of markers of axial development in eutherian mammals. Dev. Dyn. 245, 67–86.
Conserved and divergent expression patterns of markers of axial development in eutherian mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVentLvM&md5=e255182a04a92458d41db999db4cff1dCAS |

Zhang, B., Zheng, H., Huang, B., Li, W., Xiang, Y., Peng, X., Ming, J., Wu, X., Zhang, Y., Xu, Q., Liu, W., Kou, X., Zhao, Y., He, W., Li, C., Chen, B., Li, Y., Wang, Q., Ma, J., Yin, Q., Kee, K., Meng, A., Gao, S., Xu, F., Na, J., and Xie, W. (2016). Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553–557.
Allelic reprogramming of the histone modification H3K4me3 in early mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFWiurbN&md5=a4516948740113cd9282960498108682CAS |