Key molecules in the GABA signalling pathway are present in mouse and human cervical tissue
Marta Skelin A , Danijel Bursać B , Viviana Kozina A , Tristan Winters C , Marija Macan D and Marija Ćurlin A EA Department of Histology and Embryology, University of Zagreb School of Medicine, Šalata 3, 10000 Zagreb, Croatia.
B Department of Obstetrics and Gynaecology, Merkur Clinical Hospital, Zajčeva 19, 10000 Zagreb, Croatia.
C Medical Faculty Carl Gustav Carus, Institute of Physiological Chemistry Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
D Department of Gynaecological and Perinatal Pathology, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Kišpatićeva 12, 10000 Zagreb, Croatia.
E Corresponding author. Email: marija.curlin@mef.hr
Reproduction, Fertility and Development 30(9) 1267-1275 https://doi.org/10.1071/RD17333
Submitted: 22 August 2017 Accepted: 4 March 2018 Published: 18 April 2018
Abstract
Cervical mucus modulates fertility by cyclical changes of its biophysical and functional properties. Based on an analogy with bronchial goblet cells we set out to investigate the possible role of the gamma-aminobutyric acid (GABA) signalling pathway in the mediation of oestrogen-induced mucus secretion from endocervical secretory cells. The aim of the study was to examine the existence of GABAA receptor (GABAAR), glutamic acid decarboxylase 65/67 (GAD65/67) and vesicular GABA transporter (VGAT) in human and mouse cervical tissue. The mouse cervical tissue expressed GabaAR mRNA transcripts throughout the oestrous cycle. GABAAR-positive immunolabelling was present in the superficial layer of the mouse cervico–vaginal epithelium in pro-oestrus. Human cervical tissue showed the presence of GABAAR, GAD67 and VGAT mRNA transcripts and clear immunofluorescent signals of all three molecules were detected in the endocervical secretory epithelium. The results of this study confirmed that elements of the GABA signalling pathway are present in the secretory epithelium of mouse and human cervical tissue and that GABA signalling pathway could be considered a possible mediator in oestrogen regulation of mucus secretion in the endocervical glands.
Additional keywords: endocervix, fertility, mucus secretion.
References
Amenta, F., Cavallotti, C., Ferrante, F., and Erdö, S. L. (1988). Autoradiographic visualization of the GABA-A receptor agonist, 3H-muscimol in the rat uterus. Pharmacol. Res. Commun. 20, 863–868.| Autoradiographic visualization of the GABA-A receptor agonist, 3H-muscimol in the rat uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmt1ejtbk%3D&md5=dbdd73d71702e481fa5724fda050a3c4CAS |
Andersch-Björkman, Y., Thomsson, K. A., Holmén Larsson, J. M., Ekerhovd, E., and Hansson, G. C. (2007). Large scale identification of proteins, mucins, and their O-glycosylation in the endocervical mucus during the menstrual cycle. Mol. Cell. Proteomics 6, 708–716.
| Large scale identification of proteins, mucins, and their O-glycosylation in the endocervical mucus during the menstrual cycle.Crossref | GoogleScholarGoogle Scholar |
Brown, J. B., Harrisson, P., and Smith, M. A. (1985). A study of returning fertility after childbirth and during lactation by measurement of urinary oestrogen and pregnanediol excretion and cervical mucus production. J. Biosoc. Sci. Suppl. 17, 5–23.
| A study of returning fertility after childbirth and during lactation by measurement of urinary oestrogen and pregnanediol excretion and cervical mucus production.Crossref | GoogleScholarGoogle Scholar |
Brunelli, R., Papi, M., Arcovito, G., Bompiani, A., Castagnola, M., Parasassi, T., Sampaolese, B., Vincenzoni, F., and De Spirito, M. (2007). Globular structure of human ovulatory cervical mucus. FASEB J. 21, 3872–3876.
| Globular structure of human ovulatory cervical mucus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVahtb3L&md5=34f67f47b96e09c3cb207ed99ae83946CAS |
Caligioni, C. S. (2009). Assessing reproductive status/stages in mice. Curr. Protoc. Neurosci. 48, Appendix 4I.
| Assessing reproductive status/stages in mice.Crossref | GoogleScholarGoogle Scholar |
Cesetti, T., Ciccolini, F., and Li, Y. (2012). GABA not only a neurotransmitter: osmotic regulation by GABAAR signaling. Front. Cell. Neurosci. 6, 3.
| GABA not only a neurotransmitter: osmotic regulation by GABAAR signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFyqsL0%3D&md5=14b941dc74a31882bdef5351d31dfd8bCAS |
Ćurlin, M., and Bursać, D. (2013). Cervical mucus: from biochemical structure to clinical implications. Front. Biosci. (Schol. Ed.) S5, 507–515.
| Cervical mucus: from biochemical structure to clinical implications.Crossref | GoogleScholarGoogle Scholar |
Davis, C. W., and Dickey, B. F. (2008). Regulated airway goblet cell mucin secretion. Annu. Rev. Physiol. 70, 487–512.
| Regulated airway goblet cell mucin secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1eqt7s%3D&md5=7fdc8caed19c6e67bafdf0fc910dc9acCAS |
Erdö, S. L. (1984a). Alteration of GABA levels in ovary and fallopian tube of the pregnant rat. Life Sci. 34, 1879–1884.
| Alteration of GABA levels in ovary and fallopian tube of the pregnant rat.Crossref | GoogleScholarGoogle Scholar |
Erdö, S. L. (1984b). Identification of GABA receptor binding sites in rat and rabbit uterus. Biochem. Biophys. Res. Commun. 125, 18–24.
| Identification of GABA receptor binding sites in rat and rabbit uterus.Crossref | GoogleScholarGoogle Scholar |
Erdö, S. L. (1985). Peripheral GABAergic mechanisms. Trends Pharmacol. Sci. 6, 205–208.
| Peripheral GABAergic mechanisms.Crossref | GoogleScholarGoogle Scholar |
Frizzell, R. A., and Hanrahan, J. W. (2012). Physiology of epithelial chloride and fluid secretion. Cold Spring Harb. Perspect. Med. 2, a009563.
| Physiology of epithelial chloride and fluid secretion.Crossref | GoogleScholarGoogle Scholar |
Fu, X. W., Wood, K., and Spindel, E. R. (2011). Prenatal nicotine exposure increases GABA signaling and mucin expression in airway epithelium. Am. J. Respir. Cell Mol. Biol. 44, 222–229.
| Prenatal nicotine exposure increases GABA signaling and mucin expression in airway epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1Gqtbc%3D&md5=0293e2f046316ded9827c4e58b6ac1d9CAS |
Gaton, E., Zejdel, L., Bernstein, D., Glezerman, M., Czernobilsky, B., and Insler, V. (1982). The effect of estrogen and gestagen on the mucus production of human endocervical cells: a histochemical study. Fertil. Steril. 38, 580–585.
| The effect of estrogen and gestagen on the mucus production of human endocervical cells: a histochemical study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XmtVyrsbk%3D&md5=15e18c9dbfbfec131ecf2d31ba93462fCAS |
Gipson, I. K., Spurr-Michaud, S., Moccia, R., Zhan, Q., Toribara, N., Ho, S. B., Gargiulo, A. R., and Hill, J. A. I. I. I. (1999). MUC4 and MUC5B transcripts are the prevalent mucin mRNAs of the human endocervix. Biol. Reprod. 60, 58–64.
| MUC4 and MUC5B transcripts are the prevalent mucin mRNAs of the human endocervix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFymuw%3D%3D&md5=bb0b0cab13b1e133d58f74e6247fdbe5CAS |
Gipson, I. K., Moccia, R., Spurr-Michaud, S., Argueso, P., Gargiulo, A. R., Hill, J. A., Offner, G. D., and Keutmann, H. T. (2001). The amount of MUC5B mucin in cervical mucus peaks at midcycle. J. Clin. Endocrinol. Metab. 86, 594–600.
| 1:CAS:528:DC%2BD3MXht1KnsLc%3D&md5=1fa33a98069b3b834a1866d85d2e6b88CAS |
Grande, G., Milardi, D., Vincenzoni, F., Pompa, G., Biscione, A., Astorri, A. L., Fruscella, E., De Luca, A., Messana, I., Castagnola, M., and Marana, R. (2015). Proteomic characterization of the qualitative and quantitative differences in cervical mucus composition during the menstrual cycle. Mol. Biosyst. 11, 1717–1725.
| Proteomic characterization of the qualitative and quantitative differences in cervical mucus composition during the menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntVCis74%3D&md5=12491f7bbcb94271769fdd613d3c7aebCAS |
Gundavarapu, S., Mishra, N. C., Singh, S. P., Langley, R. J., Saeed, A. I., Feghali-Bostwick, C. A., McIntosh, J. M., Hutt, J., Hegde, R., Buch, S., and Sopori, M. L. (2013). HIV gp120 induces mucus formation in human bronchial epithelial cells through CXCR4/α7-nicotinic acetylcholine receptors. PLoS One 8, e77160.
| HIV gp120 induces mucus formation in human bronchial epithelial cells through CXCR4/α7-nicotinic acetylcholine receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1KiurvN&md5=4df64159cfbf0ea08f6f01a949fcbaaeCAS |
Hedblom, E., and Kirkness, E. F. (1997). A novel class of GABAA receptor subunit in tissues of the reproductive system. J. Biol. Chem. 272, 15346–15350.
| A novel class of GABAA receptor subunit in tissues of the reproductive system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvFOmtLo%3D&md5=337d33d817c2f4ce01cc1f83cdaaf02dCAS |
Katz, D. F., Slade, D. A., and Nakajima, S. T. (1997). Analysis of pre-ovulatory changes in cervical mucus hydration and sperm penetrability. Adv. Contracept. 13, 143–151.
| 1:STN:280:DyaK2svjsVCntA%3D%3D&md5=409ec6cf3392265520cc507267782836CAS |
Lamb, J. C., Newbold, R. R., Stumpf, W. E., and McLachlan, J. A. (1978). Transitional changes in the surface epithelium of the cycling mouse vagina, cervix and uterus: scanning electron microscopic studies. Biol. Reprod. 19, 701–711.
| Transitional changes in the surface epithelium of the cycling mouse vagina, cervix and uterus: scanning electron microscopic studies.Crossref | GoogleScholarGoogle Scholar |
Louzan, P., Gallardo, M. G., and Tramezzani, J. H. (1986). Gamma-aminobutyric acid in the genital tract of the rat during the oestrous cycle. J. Reprod. Fertil. 77, 499–504.
| Gamma-aminobutyric acid in the genital tract of the rat during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XkvFWqsLs%3D&md5=8e73f2a951c0b4a796e8919b2599b594CAS |
Miller, B. H., and Takahashi, J. S. (2014). Central circadian control of female reproductive function. Front. Endocrinol. (Lausanne) 4, 195.
| Central circadian control of female reproductive function.Crossref | GoogleScholarGoogle Scholar |
Murashima, Y. L., and Kato, T. (1986). Distribution of gamma-aminobutyric acid and glutamate decarboxylase in the layers of rat oviduct. J. Neurochem. 46, 166–172.
| Distribution of gamma-aminobutyric acid and glutamate decarboxylase in the layers of rat oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xks1amsg%3D%3D&md5=2991fbb8ae4a11a8845e09e9dcd8d637CAS |
Napoleone, P., Bronzetti, E., Cavallotti, C., and Amenta, F. (1990). Predominant epithelial localization of type A gamma-aminobutyric acid receptor sites within rat seminal vesicles and prostate glands. Pharmacology 41, 49–56.
| Predominant epithelial localization of type A gamma-aminobutyric acid receptor sites within rat seminal vesicles and prostate glands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltV2kt7o%3D&md5=4e85c4589c811e54df25975a614d08dcCAS |
Pritchett, K., and Taft, R. (2007). Reproductive biology of the laboratory mouse. In ‘The Mouse in Biomedical Research: Normative Biology, Husbandry, and Models’. (Eds J. G. Fox, S. W. Barthold, M. T. Davisson, C. T. Newcomer, F. W. Quimby and A. L. Smith.) pp. 100–101. (Elsevier: London.)
Romanò, N., Lee, K., Abrahám, I. M., Jasoni, C. L., and Herbison, A. E. (2008). Nonclassical estrogen modulation of presynaptic GABA terminals modulates calcium dynamics in gonadotropin-releasing hormone neurons. Endocrinology 149, 5335–5344.
| Nonclassical estrogen modulation of presynaptic GABA terminals modulates calcium dynamics in gonadotropin-releasing hormone neurons.Crossref | GoogleScholarGoogle Scholar |
Rossi, A. H., Sears, P. R., and Davis, C. W. (2004). Ca2+ dependency of ‘Ca2+-independent’ exocytosis in SPOC1 airway goblet cells. J. Physiol. 559, 555–565.
| Ca2+ dependency of ‘Ca2+-independent’ exocytosis in SPOC1 airway goblet cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVymurc%3D&md5=b6256f10e86950e9d557a818db7e6df6CAS |
Rossi, A. H., Salmon, W. C., Chua, M., and Davis, C. W. (2007). Calcium signaling in human airway goblet cells following purinergic activation. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L92–L98.
| Calcium signaling in human airway goblet cells following purinergic activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisFGjtr4%3D&md5=f81b86dc9435f9a8d8ca68f2ee316156CAS |
Tuvim, M. J., Mospan, A. R., Burns, K. A., Chua, M., Mohler, P. J., Melicoff, E., Adachi, R., Ammar-Aouchiche, Z., Davis, C. W., and Dickey, B. F. (2009). Synaptotagmin 2 couples mucin granule exocytosis to Ca2+ signaling from endoplasmic reticulum. J. Biol. Chem. 284, 9781–9787.
| Synaptotagmin 2 couples mucin granule exocytosis to Ca2+ signaling from endoplasmic reticulum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFKkurw%3D&md5=79dd8f4378d1acf02b4c434fa5e60c0bCAS |
Wang, G., Wang, R., Ferris, B., Salit, J., Strulovici-Barel, Y., Hackett, N. R., and Crystal, R. G. (2010). Smoking-mediated up-regulation of GAD65/67 expression in the human airway epithelium. Respir. Res. 11, 150.
| Smoking-mediated up-regulation of GAD65/67 expression in the human airway epithelium.Crossref | GoogleScholarGoogle Scholar |
Wendt, A., Birnir, B., Buschard, K., Gromada, J., Salehi, A., Sewing, S., Rorsman, P., and Braun, M. (2004). Glucose inhibition of glucagon secretion from rat alpha-cells is mediated by GABA released from neighboring beta-cells. Diabetes 53, 1038–1045.
| Glucose inhibition of glucagon secretion from rat alpha-cells is mediated by GABA released from neighboring beta-cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFyqsb0%3D&md5=f14644e424dfffeb3ef763f0dc0d36d2CAS |
Wood, G. A., Fata, J. E., Watson, K. L. M., and Khokha, R. (2007). Circulating hormones and estrous stage predict cellular and stromal remodeling in murine uterus. Reproduction 133, 1035–1044.
| Circulating hormones and estrous stage predict cellular and stromal remodeling in murine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlGmsro%3D&md5=f777dddd438090a43146acadfceb3074CAS |
Xiang, Y. Y., Wang, S., Liu, M., Hirota, J. A., Li, J., Ju, W., Fan, Y., Kelly, M. M., Ye, B., Orser, B., O’Byrne, P. M., Inman, M. D., Yang, X., and Lu, W. Y. (2007). A GABAergic system in airway epithelium is essential for mucus overproduction in asthma. Nat. Med. 13, 862–867.
| A GABAergic system in airway epithelium is essential for mucus overproduction in asthma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFWmtrY%3D&md5=961a6fc91d8f8e3ee5f20d27eea5a4e4CAS |
Yang, N., Garcia, M. A. S., and Quinton, P. M. (2013). Normal mucus formation requires cAMP-dependent HCO3− secretion and Ca2+-mediated mucin exocytosis. J. Physiol. 591, 4581–4593.
| Normal mucus formation requires cAMP-dependent HCO3− secretion and Ca2+-mediated mucin exocytosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCrur%2FP&md5=f75acfecf588b639987adf95c387dc1bCAS |