Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9
Yiyuan Niu A , Xiaoe Zhao B , Jiankui Zhou C , Yan Li A , Yu Huang A , Bei Cai A , Yutai Liu B , Qiang Ding A , Shiwei Zhou A , Jin Zhao A , Guangxian Zhou A , Baohua Ma B , Xingxu Huang C , Xiaolong Wang A D and Yulin Chen A DA College of Animal Science and Technology, Northwest A&F University, #22, Xinong Road, Yangling 712100, China.
B College of Veterinary Medicine, Northwest A&F University, #22, Xinong Road, Yangling 712100, China.
C School of Life Science and Technology, ShanghaiTech University, #100, Haike Road, Shanghai 201210, China.
D Corresponding authors. Emails: chenyulin@nwafu.edu.cn; xiaolongwang@nwafu.edu.cn
Reproduction, Fertility and Development 30(2) 307-312 https://doi.org/10.1071/RD17068
Submitted: 22 February 2017 Accepted: 9 June 2017 Published: 11 July 2017
Abstract
The recent emergence of the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9 system has attracted significant attention for its potential to improve traits of agricultural importance. However, most applications in livestock species to date have depended on aberrant DNA repair to generate frameshifting indels. Whether this genomic engineering technique involving homology-dependent repair (HDR) can be used to introduce defined point mutations has been less explored. Previously, we reported a G→A point mutation (g.231A>G, p.Val397Ile) in the growth differentiation factor 9 (GDF9) gene that has a large effect on the litter size of cashmere goats. In the present study we report that by co-injecting synthesised RNAs and single-stranded oligo deoxynucleotide (ssODN) donor sequences into goat zygotes, we successfully introduced defined point mutations resulting in single amino acid substitutions in the proteins as expected. The efficiency of this precise single-nucleotide substitution in newborn kids was as high as 24% (4/17), indicating that ssODN-directed HDR via zygote injection is efficient at introducing point mutations in the goat genome. The findings of the present study further highlight the complex genome modifications facilitated by the CRISPR/Cas9 system, which is able to introduce defined point mutations. This represents a significant development for the improvement of reproduction traits in goats, as well as for validating the roles of specific nucleotides in functional genetic elements in large animals.
Additional keywords: genome editing.
References
Armstrong, G. A., Liao, M., You, Z., Lissouba, A., Chen, B. E., and Drapeau, P. (2016). Homology directed knockin of point mutations in the zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system. PLoS One 11, e0150188.| Homology directed knockin of point mutations in the zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system.Crossref | GoogleScholarGoogle Scholar |
Bedell, V. M., Wang, Y., Campbell, J. M., Poshusta, T. L., Starker, C. G., Krug, R. G., Tan, W., Penheiter, S. G., Ma, A. C., Leung, A. Y., Fahrenkrug, S. C., Carlson, D. F., Voytas, D. F., Clark, K. J., Essner, J. J., and Ekker, S. C. (2012). In vivo genome editing using a high-efficiency TALEN system. Nature 491, 114–118.
| In vivo genome editing using a high-efficiency TALEN system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlylsr3K&md5=f2c9b80d02103f4ebf634f98f7d2ed0cCAS |
Carlson, D. F., Lancto, C. A., Zang, B., Kim, E. S., Walton, M., Oldeschulte, D., Seabury, C., Sonstegard, T. S., and Fahrenkrug, S. C. (2016). Production of hornless dairy cattle from genome-edited cell lines. Nat. Biotechnol. 34, 479–481.
| Production of hornless dairy cattle from genome-edited cell lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnsVahtbs%3D&md5=a4307bd659363d1cda63a853cf097bedCAS |
Dong, J., Albertini, D. F., Nishimori, K., Kumar, T. R., Lu, N., and Matzuk, M. M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531–535.
| Growth differentiation factor-9 is required during early ovarian folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1GrsL0%3D&md5=d240d08e74519a6d010c340e99b578c9CAS |
Gupta, A., Christensen, R. G., Rayla, A. L., Lakshmanan, A., Stormo, G. D., and Wolfe, S. A. (2012). An optimized two-finger archive for ZFN-mediated gene targeting. Nat. Methods 9, 588–590.
| An optimized two-finger archive for ZFN-mediated gene targeting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1GrsL4%3D&md5=fe240a10bac99a8f177434103df12668CAS |
Hanrahan, J. P., Gregan, S. M., Mulsant, P., Mullen, M., Davis, G. H., Powell, R., and Galloway, S. M. (2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 70, 900–909.
| Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Sitb0%3D&md5=87fe5c1faaf8636d5f3849d2853b3859CAS |
Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C., and Schmid, B. (2013). Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140, 4982–4987.
| Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFCrtQ%3D%3D&md5=b035c175854c5a54258373ab9d851e1cCAS |
Inui, M., Miyado, M., Igarashi, M., Tamano, M., Kubo, A., Yamashita, S., Asahara, H., Fukami, M., and Takada, S. (2014). Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci. Rep. 4, 5396.
| Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktlSgsr4%3D&md5=cad35598761bf89fa954b29a7f5d2334CAS |
Li, T., Liu, B., Spalding, M. H., Weeks, D. P., and Yang, B. (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 30, 390–392.
| High-efficiency TALEN-based gene editing produces disease-resistant rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFyjs7g%3D&md5=8af356c4c5ce3d16e5cdc06e561cb3bcCAS |
Mashimo, T., Takizawa, A., Voigt, B., Yoshimi, K., Hiai, H., Kuramoto, T., and Serikawa, T. (2010). Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One 5, e8870.
| Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases.Crossref | GoogleScholarGoogle Scholar |
Ni, W., Qiao, J., Hu, S., Zhao, X., Regouski, M., Yang, M., Polejaeva, I. A., and Chen, C. (2014). Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One 9, e106718.
| Efficient gene knockout in goats using CRISPR/Cas9 system.Crossref | GoogleScholarGoogle Scholar |
Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si, W., Li, W., Xiang, A. P., and Zhou, J. (2014). Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843.
| Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ajtLY%3D&md5=17691edcb557d665af0ad414acb01094CAS |
Paquet, D., Kwart, D., Chen, A., Sproul, A., Jacob, S., Teo, S., Olsen, K. M., Gregg, A., Noggle, S., and Tessier-Lavigne, M. (2016). Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125–129.
| Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmvVGnt70%3D&md5=c3c4cf354618df560a7021300dcb5a61CAS |
Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A., and Liu, D. R. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843.
| High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1CgsLjP&md5=2f476c1662e7a862e5d245060a4ec543CAS |
Sander, J. D., and Joung, J. K. (2014). CRISPR–Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355.
| CRISPR–Cas systems for editing, regulating and targeting genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtlyrsLo%3D&md5=08855841f699651a2cc6ad94fb77b1fdCAS |
Sealover, N. R., Davis, A. M., Brooks, J. K., George, H. J., Kayser, K. J., and Lin, N. (2013). Engineering Chinese hamster ovary (CHO) cells for producing recombinant proteins with simple glycoforms by zinc-finger nuclease (ZFN)-mediated gene knockout of mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (Mgat1). J. Biotechnol. 167, 24–32.
| Engineering Chinese hamster ovary (CHO) cells for producing recombinant proteins with simple glycoforms by zinc-finger nuclease (ZFN)-mediated gene knockout of mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (Mgat1).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCktbvL&md5=4fc251dbb1a2f29897d6164ecbc4c5ebCAS |
Shen, B., Zhang, J., Wu, H., Wang, J., Ma, K., Li, Z., Zhang, X., Zhang, P., and Huang, X. (2013). Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 23, 720–723.
| Generation of gene-modified mice via Cas9/RNA-mediated gene targeting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFymtrc%3D&md5=c2222a77b0bd405c845616f29cece7deCAS |
Souza, C. J., McNeilly, A. S., Benavides, M. V., Melo, E. O., and Moraes, J. C. (2014). Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Anim. Genet. 45, 732–739.
| Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2ns7%2FE&md5=9add4f8dd0d86100e6fc80590657dd3bCAS |
Turan, S., Farruggio, A. P., Srifa, W., Day, J. W., and Calos, M. P. (2016). Precise correction of disease mutations in induced pluripotent stem cells derived from patients with limb girdle muscular dystrophy. Mol. Ther. 24, 685–696.
| Precise correction of disease mutations in induced pluripotent stem cells derived from patients with limb girdle muscular dystrophy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktlChu7w%3D&md5=a6d03e831a0a4a0983cbfba21910fe20CAS |
Wang, T., Wei, J. J., Sabatini, D. M., and Lander, E. S. (2014). Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84.
| Genetic screens in human cells using the CRISPR–Cas9 system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslOq&md5=a85126ad4b8041a7f5218f89b5db3980CAS |
Wang, K., Ouyang, H., Xie, Z., Yao, C., Guo, N., Li, M., Jiao, H., and Pang, D. (2015a). Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci. Rep. 5, 16623.
| Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVOrurjP&md5=279f73bbded1e6002766a51a29c25431CAS |
Wang, X., Yu, H., Lei, A., Zhou, J., Zeng, W., Zhu, H., Dong, Z., Niu, Y., Shi, B., Cai, B., et al. (2015b). Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci. Rep. 5, 13878.
| Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system.Crossref | GoogleScholarGoogle Scholar |
Wang, X., Niu, Y., Zhou, J., Yu, H., Kou, Q., Lei, A., Zhao, X., Yan, H., Cai, B., Shen, Q., Zhou, S., and Zhu, H. (2016). Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Sci. Rep. 6, 32271.
| Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVCht73L&md5=493eea1e130ccfb0c3a21fb7da7da9bdCAS |
Yang, Y., Wang, K., Wu, H., Jin, Q., Ruan, D., Ouyang, Z., Zhao, B., Liu, Z., Zhao, Y., Zhang, Q., Fan, N., and Liu, Q. (2016). Genetically humanized pigs exclusively expressing human insulin are generated through custom endonuclease-mediated seamless engineering. J. Mol. Cell Biol. 8, 174–177.
| Genetically humanized pigs exclusively expressing human insulin are generated through custom endonuclease-mediated seamless engineering.Crossref | GoogleScholarGoogle Scholar |
Zhang, Y., Schmid, B., Nielsen, T. T., Nielsen, J. E., Clausen, C., Hyttel, P., Holst, B., and Freude, K. K. (2016). Generation of a human induced pluripotent stem cell line via CRISPR–Cas9 mediated integration of a site-specific homozygous mutation in CHMP2B. Stem Cell Res. 17, 151–153.
| Generation of a human induced pluripotent stem cell line via CRISPR–Cas9 mediated integration of a site-specific homozygous mutation in CHMP2B.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFSqsLjE&md5=905d71571b7f54bb1847932e24dbaa9cCAS |
Zhao, J., Liu, S., Zhou, X., Zhang, R., Li, Y., Wang, X., and Chen, Y. (2016). A non-synonymous mutation in GDF9 is highly associated with litter size in cashmere goats. Anim. Genet. 47, 630–631.
| A non-synonymous mutation in GDF9 is highly associated with litter size in cashmere goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVGisL%2FI&md5=52f260b8e0a5f5fc3cbf8692e03ec26eCAS |
Zhou, X., Wang, L., Du, Y., Xie, F., Li, L., Liu, Y., Liu, C., Wang, S., Zhang, S., Huang, X., Wang, Y., and Wei, H. (2016). Efficient generation of gene-modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes. Hum. Mutat. 37, 110–118.
| Efficient generation of gene-modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVGiu7jP&md5=a373dea82508727f3936fc81866e674cCAS |