Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Molecular cloning and epigenetic change detection of Kiss1 during seasonal reproduction in Chinese indigenous sheep

Xiaoyun He A , Qiuyue Liu A , Xiaoyu Li A , Xiaofei Guo A , Xiangyu Wang A , Wenping Hu A , Ran Di A B and Mingxing Chu A B
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

B Corresponding authors. Email: dirangirl@163.com; mxchu@263.net

Reproduction, Fertility and Development 30(5) 734-743 https://doi.org/10.1071/RD17028
Submitted: 27 January 2017  Accepted: 23 September 2017   Published: 15 November 2017

Abstract

Like most seasonal domesticated species, sheep are short-day breeders, which means that the reproduction axis is activated by short days. The annual photoperiodic cycle affects the amount of daylength information that is transmitted to the hypothalamic–pituitary–gonadal (HPG) axis by regulating pulsatile secretion of gonadotrophin-releasing hormone from the hypothalamus. Kisspeptin, which is encoded by Kiss1, plays a major role in reproductive seasonality. Based on results from our previous Solexa sequencing data obtained from Tan (T) and Small Tail Han (STH) sheep during anoestrus and the breeding season, full-length mRNA information for ovine Kiss1 was obtained; 894 bp in T sheep and 1145 bp in STH sheep. Both encode 135 amino acids. Additionally, T and STH sheep have different transcription start sites of Kiss1. Kiss1 expression during oestrus was significantly higher than that during dioestrus, both in T and STH sheep (P < 0.01). We also found a strong relationship between Kiss1 mRNA levels and histone H3 acetylation status in the 5′ promoter region of ovine Kiss1. These data indicated that epigenetic modification occurs during reproduction in sheep, and this is the first report that histone H3 deacetylation occurs in the hypothalamus of seasonal sheep breeders during the transition from dioestrus to oestrus.

Additional keywords: epigenetics, expression, histone acetylation, seasonal breeding.


References

Barrell, G. K., Moenter, S. M., Caraty, A., and Karsch, F. J. (1992). Seasonal changes of gonadotropin-releasing hormone secretion in the ewe. Biol. Reprod. 46, 1130–1135.
Seasonal changes of gonadotropin-releasing hormone secretion in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktVWgtLg%3D&md5=8c58d6e821d925991aadd920973b48b4CAS |

Bosch, M. A., Xue, C., and Ronnekleiv, O. K. (2012). Kisspeptin expression in guinea pig hypothalamus: effects of 17beta-estradiol. J. Comp. Neurol. 520, 2143–2162.
Kisspeptin expression in guinea pig hypothalamus: effects of 17beta-estradiol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltlKgsrY%3D&md5=d11a4697d5ccd14050b974c9b77ed054CAS |

Clarke, I. J., and Caraty, A. (2013). Kisspeptin and seasonality of reproduction. Adv. Exp. Med. Biol. 784, 411–430.
Kisspeptin and seasonality of reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslyhsL7O&md5=1acfc1798317268093b0ef2e59ab037dCAS |

Clarke, I. J., and Smith, J. T. (2010). The role of kisspeptin and gonadotropin inhibitory hormone (GnIH) in the seasonality of reproduction in sheep. Soc. Reprod. Fertil. Suppl. 67, 159–169.
| 1:STN:280:DC%2BC3MnosFensg%3D%3D&md5=795bb5bbd594af8f52290d09921d50c5CAS |

Clarkson, J., d’Anglemont de Tassigny, X., Colledge, W. H., Caraty, A., and Herbison, A. E. (2009). Distribution of kisspeptin neurones in the adult female mouse brain. J. Neuroendocrinol. 21, 673–682.
Distribution of kisspeptin neurones in the adult female mouse brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFCntLo%3D&md5=554f679f5726079f89ed4df43848939dCAS |

Colledge, W. H. (2009). Transgenic mouse models to study Gpr54/kisspeptin physiology. Peptides 30, 34–41.
Transgenic mouse models to study Gpr54/kisspeptin physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCmsbfP&md5=3a29c3d63fbc799513399d68dbe2c4b7CAS |

d’Anglemont de Tassigny, X., Fagg, L. A., Dixon, J. P. C., Day, K., Leitch, H. G., Hendrick, A. G., Zahn, D., Franceschini, I., Caraty, A., Carlton, M. B. L., Aparicio, A. J. R., and Colledge, W. H. (2007). Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc. Natl. Acad. Sci. USA 104, 10714–10719.
Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1yhtrk%3D&md5=1cc035fe77ccc8d96a6ca8d53f42308bCAS |

Dardente, H. (2012). Melatonin-dependent timing of seasonal reproduction by the Pars tuberalis: pivotal roles for long daylengths and thyroid hormones. J. Neuroendocrinol. 24, 249–266.
Melatonin-dependent timing of seasonal reproduction by the Pars tuberalis: pivotal roles for long daylengths and thyroid hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFKhtr8%3D&md5=9a65cf09f291e538488dd97dc533a652CAS |

de Roux, N., Genin, E., Carel, J. C., Matsuda, F., Chaussain, J. L., and Milgrom, E. (2003). Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. USA 100, 10972–10976.
Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslyntbc%3D&md5=9a42515628d9f64963320715adbac19cCAS |

Di, R., He, J., Song, S., Tian, D., Liu, Q., Liang, X., Ma, Q., Sun, M., Wang, J., and Zhao, W. (2014). Characterization and comparative profiling of ovarian microRNAs during ovine anestrus and the breeding season. BMC Genomics 15, 899.
Characterization and comparative profiling of ovarian microRNAs during ovine anestrus and the breeding season.Crossref | GoogleScholarGoogle Scholar |

Goodman, R. L., Bittman, E. L., Foster, D. L., and Karsch, F. J. (1982). Alterations in the control of luteinizing hormone pulse frequency underlie the seasonal variation in estradiol negative feedback in the ewe. Biol. Reprod. 27, 580–589.
Alterations in the control of luteinizing hormone pulse frequency underlie the seasonal variation in estradiol negative feedback in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XmtVyrtLc%3D&md5=3309c09ce2241ca794db2c428e024411CAS |

Goto, T., Tomikawa, J., Ikegami, K., Minabe, S., Abe, H., Fukanuma, T., Imamura, T., Takase, K., Sanbo, M., Tomita, K., Hirabayashi, M., Maeda, K., Tsukamura, H., and Uenoyama, Y. (2015). Identification of hypothalamic arcuate nucleus-specific enhancer region of Kiss1 gene in mice. Mol. Endocrinol. 29, 121–129.
Identification of hypothalamic arcuate nucleus-specific enhancer region of Kiss1 gene in mice.Crossref | GoogleScholarGoogle Scholar |

Herbison, A. E., and Theodosis, D. T. (1992). Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat. Neuroscience 50, 283–298.
Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtVGnsLs%3D&md5=ef3d33b0c694933a06c77273df0d10ddCAS |

Hrabovszky, E., Ciofi, P., Vida, B., Horvath, M. C., Keller, E., Caraty, A., Bloom, S. R., Ghatei, M. A., Dhillo, W. S., Liposits, Z., and Kallo, I. (2010). The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur. J. Neurosci. 31, 1984–1998.
The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cnkvF2ksQ%3D%3D&md5=75625bad8106bdf66aae6010a5251452CAS |

Karsch, F. J., and Moenter, S. M. (1990). Neuroendocrine regulation of seasonal breeding cycles in the ewe. J. Exp. Zool. Suppl. 256, 17–21.
Neuroendocrine regulation of seasonal breeding cycles in the ewe.Crossref | GoogleScholarGoogle Scholar |

Karsch, F. J., Cummins, J. T., Thomas, G. B., and Clarke, I. J. (1987). Steroid feedback inhibition of pulsatile secretion of gonadotropin-releasing hormone in the ewe. Biol. Reprod. 36, 1207–1218.
Steroid feedback inhibition of pulsatile secretion of gonadotropin-releasing hormone in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksFagsbo%3D&md5=40af5844cabfa7db7b9a0c910da4bd79CAS |

Karsch, F. J., Dahl, G. E., Evans, N. P., Manning, J. M., Mayfield, K. P., Moenter, S. M., and Foster, D. L. (1993). Seasonal changes in gonadotropin-releasing hormone secretion in the ewe: alteration in response to the negative feedback action of estradiol. Biol. Reprod. 49, 1377–1383.
Seasonal changes in gonadotropin-releasing hormone secretion in the ewe: alteration in response to the negative feedback action of estradiol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXosFw%3D&md5=f859ced3f821a408ee69859abaf60413CAS |

Kurian, J. R., Keen, K. L., and Terasawa, E. (2010). Epigenetic changes coincide with in vitro primate GnRH neuronal maturation. Endocrinology 151, 5359–5368.
Epigenetic changes coincide with in vitro primate GnRH neuronal maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKks7nF&md5=a2243c33f1e2e282c5120737a7426746CAS |

Laird, D. J. (2013). Humans put their eggs in more than one basket. Nat. Cell Biol. 15, 13–15.
Humans put their eggs in more than one basket.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOqsrbM&md5=996981f36693f745c8721436ab0014a4CAS |

Lee, J. H., and Welch, D. R. (1997a). Identification of highly expressed genes in metastasis-suppressed chromosome 6/human malignant melanoma hybrid cells using subtractive hybridization and differential display. Int. J. Cancer 71, 1035–1044.
Identification of highly expressed genes in metastasis-suppressed chromosome 6/human malignant melanoma hybrid cells using subtractive hybridization and differential display.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktVyrsLg%3D&md5=02bc8fbdb41a0a302c5c3ae68425c022CAS |

Lee, J. H., and Welch, D. R. (1997b). Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res. 57, 2384–2387.
| 1:CAS:528:DyaK2sXjvFKitLw%3D&md5=87bde1a632d260073f62f03b1d3b71c5CAS |

Lee, J. H., Miele, M. E., Hicks, D. J., Phillips, K. K., Trent, J. M., Weissman, B. E., and Welch, D. R. (1996). KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl. Cancer Inst. 88, 1731–1737.
KiSS-1, a novel human malignant melanoma metastasis-suppressor gene.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s%2FpvFChtA%3D%3D&md5=e5140c0fe3b988e588615795ccb63a94CAS |

Lomniczi, A., and Ojeda, S. R. (2016). The emerging role of epigenetics in the regulation of female puberty. Endocr. Dev. 29, 1–16.

Lomniczi, A., Loche, A., Castellano, J. M., Ronnekleiv, O. K., Bosch, M., Kaidar, G., Knoll, J. G., Wright, H., Pfeifer, G. P., and Ojeda, S. R. (2013). Epigenetic control of female puberty. Nat. Neurosci. 16, 281–289.
Epigenetic control of female puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVejsbw%3D&md5=4701f62529d3ddd0d8f934e0df9ec356CAS |

Luan, X., Zhou, Y., Wang, W., Yu, H., Li, P., Gan, X., Wei, D., and Xiao, J. (2007). Association study of the polymorphisms in the KISS1 gene with central precocious puberty in Chinese girls. Eur. J. Endocrinol. 157, 113–118.
Association study of the polymorphisms in the KISS1 gene with central precocious puberty in Chinese girls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVKru70%3D&md5=87368ad930ec590cf3e3f54f2d26eda7CAS |

Migaud, M., Butrille, L., and Batailler, M. (2015). Seasonal regulation of structural plasticity and neurogenesis in the adult mammalian brain: focus on the sheep hypothalamus. Front. Neuroendocrinol. 37, 146–157.
Seasonal regulation of structural plasticity and neurogenesis in the adult mammalian brain: focus on the sheep hypothalamus.Crossref | GoogleScholarGoogle Scholar |

Mikkelsen, J. D., and Simonneaux, V. (2009). The neuroanatomy of the kisspeptin system in the mammalian brain. Peptides 30, 26–33.
The neuroanatomy of the kisspeptin system in the mammalian brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCmsbfO&md5=53f3a18b75de257486c33581567447e3CAS |

Mooez, S., Malik, F. A., Kayani, M. A., Rashid, R., Zahid, A., and Khan, A. (2011). Expressional alterations and transcript isoforms of metastasis suppressor genes (KAI1 and KiSS1) in breast cancer patients. Asian Pac. J. Cancer Prev. 12, 2785–2791.
| 1:STN:280:DC%2BC383itVegtw%3D%3D&md5=002237ce7bf4f52bde495c82ea8f2ddbCAS |

Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., Terao, Y., Kumano, S., Takatsu, Y., Masuda, Y., et al. (2001). Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411, 613–617.
Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVSgs7o%3D&md5=32a42a290adff706f1105c44997c7ee1CAS |

Penzias, A. S. (2003). Reproductive medicine: molecular, cellular and genetic fundamentals. JAMA 290, 3005.
Reproductive medicine: molecular, cellular and genetic fundamentals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVKgsbo%3D&md5=4f8f4fbe7ce401b2511554358379a0ffCAS |

Pinilla, L., Aguilar, E., Dieguez, C., Millar, R. P., and Tena-Sempere, M. (2012). Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol. Rev. 92, 1235–1316.
Kisspeptins and reproduction: physiological roles and regulatory mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1KmtbnO&md5=79035a33dcf1e2f22f7eebd0f5732482CAS |

Robinson, J. E., Radford, H. M., and Karsch, F. J. (1985). Seasonal changes in pulsatile luteinizing hormone (LH) secretion in the ewe: relationship of frequency of LH pulses to day length and response to estradiol negative feedback. Biol. Reprod. 33, 324–334.
Seasonal changes in pulsatile luteinizing hormone (LH) secretion in the ewe: relationship of frequency of LH pulses to day length and response to estradiol negative feedback.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltlGnt78%3D&md5=498d5950583acf62b3164520560fa62aCAS |

Schwartz, N. B. (2000). Chapter 8. In ‘Neuroendocrine Regulation of Reproductive Cyclicity’. (Eds P. Michael, C. E. Freeman.) pp. 135–145. (Humana Press: Totowa, NJ.)

Seminara, S. B., Messager, S., Chatzidaki, E. E., Thresher, R. R., Acierno, J. S., Shagoury, J. K., Bo-Abbas, Y., Kuohung, W., Schwinof, K. M., Hendrick, A. G., et al. (2003). The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627.
The GPR54 gene as a regulator of puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFWrsr8%3D&md5=190a0f3b4d09478a87c18655a517e83cCAS |

Smith, J. T. (2009). Sex steroid control of hypothalamic Kiss1 expression in sheep and rodents: comparative aspects. Peptides 30, 94–102.
Sex steroid control of hypothalamic Kiss1 expression in sheep and rodents: comparative aspects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCmtr7N&md5=47be4d2855026774140ac0f7b4234305CAS |

Smith, J. T. (2012). The role of kisspeptin and gonadotropin inhibitory hormone in the seasonal regulation of reproduction in sheep. Domest. Anim. Endocrinol. 43, 75–84.
The role of kisspeptin and gonadotropin inhibitory hormone in the seasonal regulation of reproduction in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFOqsLY%3D&md5=5431a10de97236d4b7caa750f02efad8CAS |

Smith, J. T., Clay, C. M., Caraty, A., and Clarke, I. J. (2007). KiSS-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology 148, 1150–1157.
KiSS-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlWnsL4%3D&md5=02baeea88ed8c0ae902aee87329b43a5CAS |

Smith, J. T., Coolen, L. M., Kriegsfeld, L. J., Sari, I. P., Jaafarzadehshirazi, M. R., Maltby, M., Bateman, K., Goodman, R. L., Tilbrook, A. J., Ubuka, T., Bentley, G. E., Clarke, I. J., and Lehman, M. N. (2008). Variation in kisspeptin and RFamide-related peptide (RFRP) expression and terminal connections to gonadotropin-releasing hormone neurons in the brain: a novel medium for seasonal breeding in the sheep. Endocrinology 149, 5770–5782.
Variation in kisspeptin and RFamide-related peptide (RFRP) expression and terminal connections to gonadotropin-releasing hormone neurons in the brain: a novel medium for seasonal breeding in the sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWnsrbP&md5=6f3da94bc3c6fcfb9fe8c870b6173f52CAS |

Tomikawa, J., Uenoyama, Y., Ozawa, M., Fukanuma, T., Takase, K., Goto, T., Abe, H., Ieda, N., Minabe, S., Deura, C., et al. (2012). Epigenetic regulation of Kiss1 gene expression mediating estrogen-positive feedback action in the mouse brain. Proc. Natl. Acad. Sci. USA 109, E1294–E1301.
Epigenetic regulation of Kiss1 gene expression mediating estrogen-positive feedback action in the mouse brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1Knurc%3D&md5=acb2ca0a1dad0afda4e4b107f495e29dCAS |

Uenoyama, Y., Pheng, V., Tsukamura, H., and Maeda, K. I. (2016a). The roles of kisspeptin revisited: inside and outside the hypothalamus. J. Reprod. Dev. 62, 537–545.
The roles of kisspeptin revisited: inside and outside the hypothalamus.Crossref | GoogleScholarGoogle Scholar |

Uenoyama, Y., Tomikawa, J., Inoue, N., Goto, T., Minabe, S., Ieda, N., Nakamura, S., Watanabe, Y., Ikegami, K., and Matsuda, F. (2016b). Molecular and epigenetic mechanism regulating hypothalamic Kiss1 gene expression in mammals. Neuroendocrinology 103, 640–649.
Molecular and epigenetic mechanism regulating hypothalamic Kiss1 gene expression in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFyksb7J&md5=15f9b38e7a60a9ba6cd0b0307f669220CAS |

Wagner, G. C., Johnston, J. D., Clarke, I. J., Lincoln, G. A., and Hazlerigg, D. G. (2008). Redefining the limits of day length responsiveness in a seasonal mammal. Endocrinology 149, 32–39.
Redefining the limits of day length responsiveness in a seasonal mammal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVyjsg%3D%3D&md5=88105e1a87e38774fb5cb71b00c8065dCAS |

Wyatt, A. K., Zavodna, M., Viljoen, J. L., Stanton, J.-A. L., Gemmell, N. J., and Jasoni, C. L. (2013). Changes in methylation patterns of Kiss1 and Kiss1r gene promoters across puberty. Genet. Epigenet. 5, 51–61.
Changes in methylation patterns of Kiss1 and Kiss1r gene promoters across puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWgtr7O&md5=de86caaf2b99c7234892364552d30fe7CAS |