Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Composition of marsupial zona pellucida: a molecular and phylogenetic approach

Carla Moros-Nicolás A G , Pascale Chevret B , María José Izquierdo-Rico A , William V. Holt C , Daniela Esteban-Díaz A , Manel López-Béjar D , Eva Martínez-Nevado E , Maria A. Nilsson F , José Ballesta A and Manuel Avilés A G
+ Author Affiliations
- Author Affiliations

A Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Campus Mare Nostrum and IMIB, Murcia 30100, Spain.

B Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne 69622, France.

C Institute of Zoology, Regent’s Park, London NW1 4RY, UK.

D Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Barcelona 08193, Spain.

E Veterinary Department, Zoo-Aquarium Madrid, Casa de Campo s/n., Madrid 28011, Spain.

F Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt am Main D-60325, Germany.

G Corresponding authors. Emails: carla.moros@um.es; maviles@um.es

Reproduction, Fertility and Development 30(5) 721-733 https://doi.org/10.1071/RD16519
Submitted: 23 December 2016  Accepted: 20 September 2017   Published: 22 November 2017

Abstract

The zona pellucida (ZP) is an extracellular matrix that surrounds mammalian oocytes. In eutherians it is formed from three or four proteins (ZP1, ZP2, ZP3, ZP4). In the few marsupials that have been studied, however, only three of these have been characterised (ZP2, ZP3, ZP4). Nevertheless, the composition in marsupials may be more complex, since a duplication of the ZP3 gene was recently described in one species. The aim of this work was to elucidate the ZP composition in marsupials and relate it to the evolution of the ZP gene family. For that, an in silico and molecular analysis was undertaken, focusing on two South American species (gray short-tailed opossum and common opossum) and five Australian species (brushtail possum, koala, Bennett’s wallaby, Tammar wallaby and Tasmanian devil). This analysis identified the presence of ZP1 mRNA and mRNA from two or three paralogues of ZP3 in marsupials. Furthermore, evidence for ZP1 and ZP4 pseudogenes in the South American subfamily Didelphinae and for ZP3 pseudogenes in two marsupials is provided. In conclusion, two different composition models are proposed for marsupials: a model with four proteins (ZP1, ZP2 and ZP3 (two copies)) for the South American species and a model with six proteins (ZP1, ZP2, ZP3 (three copies) and ZP4) for the Australasian species.

Additional keywords: evolution, fertilisation, oocyte, sperm–egg interaction.


References

Aplin, K. P., and Archer, M. (1987). Recent advances in marsupial systematics with a new syncretic classification. In ‘Possums and Opossums: Studies in Evolution’. (Ed. M. Archer.) pp. 15–72. (Surrey Beatty and Sons and the Royal Zoological Society of New South Wales: Sydney.)

Au, P. C. K., Whitley, J., Vaux, D., Selwood, L., and Familari, M. (2008). Identification of novel and known ovary-specific genes including ZP2, in a marsupial, the stripe-faced dunnart. Mol. Reprod. Dev. 75, 318–325.
Identification of novel and known ovary-specific genes including ZP2, in a marsupial, the stripe-faced dunnart.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVCqsA%3D%3D&md5=57bc7a28b7664f248862fb41f6b4b118CAS |

Beck, R. M. D. (2008). A dated phylogeny of marsupials using a molecular supermatrix and multiple fossil constraints. J. Mammal. 89, 175–189.
A dated phylogeny of marsupials using a molecular supermatrix and multiple fossil constraints.Crossref | GoogleScholarGoogle Scholar |

Bhat, R., Chakraborty, M., Mian, I. S., and Newman, S. A. (2014). Structural divergence in vertebrate phylogeny of a duplicated prototype galectin. Genome Biol. Evol. 6, 2721–2730.
Structural divergence in vertebrate phylogeny of a duplicated prototype galectin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFGiurbF&md5=876472354d8d5944d0cf5346874911e9CAS |

Bleil, J. D., and Wassarman, P. M. (1980). Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte’s zona pellucida. Dev. Biol. 76, 185–202.
Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte’s zona pellucida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhslOqt70%3D&md5=ab8d32e58cf8989f0802e6b5c6a1b1a1CAS |

Boja, E. S., Hoodbhoy, T., Fales, H. M., and Dean, J. (2003). Structural characterization of native mouse zona pellucida proteins using mass spectrometry. J. Biol. Chem. 278, 34189–34202.
Structural characterization of native mouse zona pellucida proteins using mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVCqs70%3D&md5=5ce4bfb918a802674a18d0be780c41d4CAS |

Boja, E. S., Hoodbhoy, T., Garfield, M., and Fales, H. M. (2005). Structural conservation of mouse and rat zona pellucida glycoproteins. Probing the native rat zona pellucida proteome by mass spectrometry. Biochemistry 44, 16445–16460.
Structural conservation of mouse and rat zona pellucida glycoproteins. Probing the native rat zona pellucida proteome by mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gju7%2FF&md5=3a9f7fb1a4a6a489612ab820bb6d29dcCAS |

Breed, W. G., Hope, R. M., Wiebkin, O. W., Spargo, S. C., and Chapman, J. A. (2002). Structural organization and evolution of the marsupial zona pellucida. Reproduction 123, 13–21.
Structural organization and evolution of the marsupial zona pellucida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtV2gs74%3D&md5=e422b1758b8becf8f6ebff0f5f6b7ed8CAS |

Cui, X., Duckworth, J. A., Molinia, F. C., and Cowan, P. E. (2010). Identification and evaluation of an infertility-associated ZP3 epitope from the marsupial brushtail possum (Trichosurus vulpecula). Vaccine 28, 1499–1505.
Identification and evaluation of an infertility-associated ZP3 epitope from the marsupial brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Gru78%3D&md5=d9031a4536e87efe6c5c60e8b32f6a62CAS |

Dean, J. (2004). Reassessing the molecular biology of sperm–egg recognition with mouse genetics. BioEssays 26, 29–38.
Reassessing the molecular biology of sperm–egg recognition with mouse genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1eitr4%3D&md5=83d6b7b6c87f5980890a6ad6263f6a68CAS |

Dean, J. (2007). The enigma of sperm–egg recognition in mice. Soc. Reprod. Fertil. Suppl. 63, 359–365.
| 1:CAS:528:DC%2BD1cXpvVyktb0%3D&md5=ea381865cb9f39da2adfe1ce8317aae5CAS |

Evsikov, A. V., Graber, J. H., Brockman, J. M., Hampl, A., Holbrook, A. E., Singh, P., Eppig, J. J., Solter, D., and Knowles, B. B. (2006). Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev. 20, 2713–2727.
Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2hsLjN&md5=594d5aa651d32e84b00f392780eed29eCAS |

Goudet, G., Mugnier, S., Callebaut, I., and Monget, P. (2008). Phylogenetic analysis and identification of pseudogenes reveal a progressive loss of zona pellucida genes during evolution of vertebrates. Biol. Reprod. 78, 796–806.
Phylogenetic analysis and identification of pseudogenes reveal a progressive loss of zona pellucida genes during evolution of vertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVOgu7s%3D&md5=2971bcde79551d3ce3db7b397306c850CAS |

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321.
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Kms7s%3D&md5=7531aa5a20d7e82ce5e069a23182e96aCAS |

Haines, B. P., Rathjen, P. D., Hope, R. M., Whyatt, L. M., Holland, M. K., and Breed, W. G. (1999). Isolation and characterisation of a cDNA encoding a zona pellucida protein (ZPB) from the marsupial Trichosurus vulpecula (brushtail possum). Mol. Reprod. Dev. 52, 174–182.
Isolation and characterisation of a cDNA encoding a zona pellucida protein (ZPB) from the marsupial Trichosurus vulpecula (brushtail possum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvValtw%3D%3D&md5=3863c32533ff85bb19d5b49de075a466CAS |

Harris, J. D., Hibler, D. W., Fontenot, G. K., Hsu, K. T., Yurewicz, E. C., and Sacco, A. G. (1994). Cloning and characterisation of the zona pellucida gene and cDNAs from a variety of mammalian species: the ZPA, ZPB and ZPC gene families. DNA Seq. 4, 361–393.
Cloning and characterisation of the zona pellucida gene and cDNAs from a variety of mammalian species: the ZPA, ZPB and ZPC gene families.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtlaqurY%3D&md5=a846adf5052f48d020ba309e89f7224fCAS |

Hedrick, J. L., and Wardrip, N. J. (1987). On the macromolecular composition of the zona pellucida from porcine oocytes. Dev. Biol. 121, 478–488.
On the macromolecular composition of the zona pellucida from porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitFWntbw%3D&md5=554d2096fc86a0a1ea40da91d4c852ddCAS |

Hoodbhoy, T., Joshi, S., Boja, E. S., Williams, S. A., Stanley, P., and Dean, J. (2005). Human sperm do not bind to rat zonae pellucidae despite the presence of four homologous glycoproteins. J. Biol. Chem. 280, 12721–12731.
Human sperm do not bind to rat zonae pellucidae despite the presence of four homologous glycoproteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislygsro%3D&md5=c4b5c62362f8b01151ab743bde20a854CAS |

Hughes, D. C., and Barratt, C. L. (1999). Identification of the true human orthologue of the mouse Zp1 gene: evidence for greater complexity in the mammalian zona pellucida. Biochim. Biophys. Acta 1447, 303–306.
Identification of the true human orthologue of the mouse Zp1 gene: evidence for greater complexity in the mammalian zona pellucida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntVGksbc%3D&md5=dde8c6eda94e32ee30830921d87728ffCAS |

Izquierdo-Rico, M. J., Jiménez-Movilla, M., Llop, E., Pérez-Oliva, A. B., Ballesta, J., Gutierrez-Gallego, R., Jimenez-Cervantes, C., and Avilés, M. (2009). Hamster zona pellucida is formed by four glycoproteins: ZP1, ZP2, ZP3 and ZP4. J. Proteome Res. 8, 926–941.
Hamster zona pellucida is formed by four glycoproteins: ZP1, ZP2, ZP3 and ZP4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1akug%3D%3D&md5=e71e6abd15a815229d3e05215625f9c4CAS |

Jansa, S. A., Barker, F. K., and Voss, R. S. (2014). The early diversification history of didelphid marsupials: a window into South America’s “Splendid Isolation”. Evolution 68, 684–695.
The early diversification history of didelphid marsupials: a window into South America’s “Splendid Isolation”.Crossref | GoogleScholarGoogle Scholar |

Jiménez-Movilla, M., Martínez-Alonso, E., Castells, M. T., Izquierdo-Rico, M. J., Saavedra, M. D., Gutiérrez-Gallego, R., Fayrer-Hosken, R., Ballesta, J., and Avilés, M. (2009). Cytochemical and biochemical evidences for a complex tridimensional structure of the hamster zona pellucida. Histol. Histopathol. 24, 599–609.

Jovine, L., Darie, C. C., Litscher, E. S., and Wassarman, P. M. (2005). Zona pellucida domain proteins. Annu. Rev. Biochem. 74, 83–114.
Zona pellucida domain proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsVensrc%3D&md5=be4988c8201174bffd51d77c66ec61a6CAS |

Kiefer, S. M., and Saling, P. (2002). Proteolytic processing of human zona pellucida proteins. Biol. Reprod. 66, 407–414.
Proteolytic processing of human zona pellucida proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVSksw%3D%3D&md5=2fb786c9f4ebdc305ab883f52e8338e0CAS |

Lefièvre, L., Conner, S. J., Salpekar, A., Olufowobi, O., Ashton, P., Pavlovic, B., Lenton, W., Afnan, M., Brewis, I. A., Monk, M., Hughes, D. C., and Barratt, C. L. (2004). Four zona pellucida glycoproteins are expressed in the human. Hum. Reprod. 19, 1580–1586.
Four zona pellucida glycoproteins are expressed in the human.Crossref | GoogleScholarGoogle Scholar |

Luo, Z. X., Yuan, C. X., Meng, Q. J., and Ji, Q. (2011). A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476, 442–445.
A Jurassic eutherian mammal and divergence of marsupials and placentals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOnu7jO&md5=3bd4e7fd8c23de414692f59dd60443a3CAS |

Mate, K. E., and McCartney, C. A. (1998). Sequence and analysis of zona pellucida 2 cDNA (ZP2) from a marsupial, the brushtail possum, Trichosurus vulpecula. Mol. Reprod. Dev. 51, 322–329.
Sequence and analysis of zona pellucida 2 cDNA (ZP2) from a marsupial, the brushtail possum, Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtlShtL0%3D&md5=1fda80413f375e0967ee44fff8e8ce1fCAS |

Mate, K. E., Buist, J. M., and Duckworth, J. A. (2003). Expression in Escherichia coli and immunological characterization of three zona pellucida proteins (ZP1, ZP2 and ZP3) from a marsupial, the brushtail possum (Trichosurus vulpecula). Mol. Reprod. Dev. 64, 136–143.
Expression in Escherichia coli and immunological characterization of three zona pellucida proteins (ZP1, ZP2 and ZP3) from a marsupial, the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1ymsQ%3D%3D&md5=09ccf7a62e1c3daac4b4ca722cf91094CAS |

McCartney, C. A., and Mate, K. E. (1999). Cloning and characterization of a zona pellucida 3 cDNA from a marsupial, the brushtail possum Trichosurus vulpecula. Zygote 7, 1–9.
Cloning and characterization of a zona pellucida 3 cDNA from a marsupial, the brushtail possum Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1Klt70%3D&md5=012d4b478aa178b729b2329bc0b2b491CAS |

McCartney, C. A., Harris, M. S., Rodger, J. C., and Mate, K. E. (2007). Towards a ZP-based contraceptive for marsupials: comparative analysis and developmental expression of marsupial ZP genes. Mol. Reprod. Dev. 74, 1581–1589.
Towards a ZP-based contraceptive for marsupials: comparative analysis and developmental expression of marsupial ZP genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12jt7%2FK&md5=4173f71ddd202a3f8c3e5c4478fc27c5CAS |

Meredith, R. W., Westerman, M., Case, J. A., and Springer, M. S. (2008). A phylogeny and timescale for marsupial evolution based on sequences for five nuclear genes. J. Mamm. Evol. 15, 1–36.
A phylogeny and timescale for marsupial evolution based on sequences for five nuclear genes.Crossref | GoogleScholarGoogle Scholar |

Meslin, C., Mugnier, S., Callebaut, I., Laurin, M., Pascal, G., Poupon, A., Goudet, G., and Monget, P. (2012). Evolution of genes involved in gamete interaction: evidence for positive selection, duplications and losses in vertebrates. PLoS One 7, e44548.
Evolution of genes involved in gamete interaction: evidence for positive selection, duplications and losses in vertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlCisLrI&md5=f1567d388c1bfe47f0e5b27028deba31CAS |

Mikkelsen, T. S., Wakefield, M. J., Aken, B., Amemiya, C. T., Chang, J. L., Duke, S., Garber, M., Gentles, A. J., Goodstadt, L., Heger, A., et al. (2007). Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447, 167–177.
Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVGrsLw%3D&md5=e814e0575bfb278c516e049e0e86895aCAS |

Mitchell, K. J., Pratt, R. C., Watson, L. N., Gibb, G. C., Llamas, B., Kasper, M., Edson, J., Hopwood, B., Male, D., Armstrong, K. N., Meyer, M., Hofreiter, M., Austin, J., Donnellan, S. C., Lee, M. S., Phillips, M. J., and Cooper, A. (2014). Molecular phylogeny, biogeography, and habitat preference evolution of marsupials. Mol. Biol. Evol. 31, 2322–2330.
Molecular phylogeny, biogeography, and habitat preference evolution of marsupials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1artL7F&md5=bde695938237b3b3e41c0befa5ae2b6cCAS |

Moros-Nicolás, C., Leza, A., Chevret, P., Guillén-Martínez, A., González-Brusi, L., Boué, F., Lopez-Bejar, M., Ballesta, J., Avilés, M., and Izquierdo-Rico, M. J. (2017). Analysis of ZP1 gene reveals differences in zona pellucida composition in carnivores. Reprod. Fertil. Dev10.1071/RD17022

Murchison, E. P., Schulz-Trieglaff, O. B., Ning, Z., Alexandrov, L. B., Bauer, M. J., Fu, B., Hims, M., Ding, Z., Ivakhno, S., Stewart, C., et al. (2012). Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148, 780–791.
Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtV2qsLs%3D&md5=9ec6638a0fc3283ffd445b1ebb84615aCAS |

Nilsson, M. A., Churakov, G., Sommer, M., Van Tran, N., Zemann, A., Brosius, J., and Schmitz, J. (2010). Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biol. 8, e1000436.
Tracking marsupial evolution using archaic genomic retroposon insertions.Crossref | GoogleScholarGoogle Scholar |

Noguchi, S., Yonezawa, N., Katsumata, T., Hashizume, K., Kuwayama, M., Hamano, S., Watanabe, S., and Nakano, M. (1994). Characterization of the zona pellucida glycoproteins from bovine ovarian and fertilized eggs. Biochim. Biophys. Acta 1201, 7–14.
Characterization of the zona pellucida glycoproteins from bovine ovarian and fertilized eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmslOht74%3D&md5=087e227200fdd80c2890b7edaae1b060CAS |

Posada, D., and Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818.
MODELTEST: testing the model of DNA substitution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=2249f79e1d385356db1c0de56bf34a43CAS |

Qi, H., Williams, Z., and Wassarman, P. M. (2002). Secretion and assembly of zona pellucida glycoproteins by growing mouse oocytes microinjected with epitope-tagged cDNAs for mZP2 and mZP3. Mol. Biol. Cell 13, 530–541.
Secretion and assembly of zona pellucida glycoproteins by growing mouse oocytes microinjected with epitope-tagged cDNAs for mZP2 and mZP3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVert7s%3D&md5=d13b06064c85cd7f249fb390d239f5b1CAS |

Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J. (2014). Tracer v1.6. Available at: http://tree.bio.ed.ac.uk/software/tracer/.

Renfree, M. B., Papenfuss, A. T., Deakin, J. E., Lindsay, J., Heider, T., Belov, K., Rens, W., Waters, P. D., Pharo, E. A., Shaw, G., et al. (2011). Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol. 12, R81.
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Selwood, L. (2000). Marsupial egg and embryo coats. Cell Tissues Organs 166, 208–219.
Marsupial egg and embryo coats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ps1WrtA%3D%3D&md5=83e5c92020ecf69dc15ad4a1755570bdCAS |

Spargo, S. C., and Hope, R. M. (2003). Evolution and nomenclature of the zona pellucida gene family. Biol. Reprod. 68, 358–362.
Evolution and nomenclature of the zona pellucida gene family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVeqtA%3D%3D&md5=1212472662c8c834e42776c293d196f7CAS |

Stetson, I., Izquierdo-Rico, M. J., Moros, C., Chevret, P., Lorenzo, P. L., Ballesta, J., Rebollar, P. G., Gutiérrez-Gallego, R., and Avilés, M. (2012). Rabbit zona pellucida composition: a molecular, proteomic and phylogenetic approach. J. Proteomics 75, 5920–5935.
Rabbit zona pellucida composition: a molecular, proteomic and phylogenetic approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOgs73J&md5=205ea8925da5268a7239b4ced7499e0bCAS |

Stetson, I., Avilés, M., Moros, C., García-Vázquez, F. A., Gimeno, L., Torrecillas, A., Aliaga, C., Bernardo-Pisa, M. V., Ballesta, J., and Izquierdo-Rico, M. J. (2015). Four glycoproteins are expressed in the cat zona pellucida. Theriogenology 83, 1162–1173.
Four glycoproteins are expressed in the cat zona pellucida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosFCntw%3D%3D&md5=8b13f8f63b4b8215548938ff67743aeeCAS |

Szalay, F. S. (1982). A new appraisal of marsupial phylogeny and classification. In ‘Carnivorous Marsupials’. (Ed. M. Archer.) p. 621–640. (Royal Zoological Society of New South Wales: Sydney.)

Voyle, R. B., Haines, B. P., Loffler, K. A., Hope, R. M., Rathjen, P. D., and Breed, W. G. (1999). Isolation and characterisation of zona pellucida A (ZPA) cDNAs from two species of marsupial: regulated oocyte-specific expression of ZPA transcripts. Zygote 7, 239–248.
Isolation and characterisation of zona pellucida A (ZPA) cDNAs from two species of marsupial: regulated oocyte-specific expression of ZPA transcripts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFaltrY%3D&md5=6764959c323fd2017c60445444ce8039CAS |

Warren, W. C., Hillier, L. W., Marshall Graves, J. A., Birney, E., Ponting, C. P., Grützner, F., Belov, K., Miller, W., Clarke, L., Chinwalla, A. T., et al. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175–183.
Genome analysis of the platypus reveals unique signatures of evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls12msLs%3D&md5=b1926f0d3fd899f79302db3364ffb552CAS |

Wassarman, P. M., and Litscher, E. S. (2009). The multifunctional zona pellucida and mammalian fertilization. J. Reprod. Immunol. 83, 45–49.
The multifunctional zona pellucida and mammalian fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyntrrO&md5=a8c729ceebffa74a5af27a867b977e54CAS |

Yanagimachi, R. (1994). Mammalian fertilization. In ‘Physiology of Reproduction’. (Eds E. Knobil and J. D. Neill.) pp. 189–317. (Raven Press: New York.)

Zhao, M., Gold, L., Ginsberg, A. M., Liang, L. F., and Dean, J. (2002). Conserved furin cleavage site not essential for secretion and integration of ZP3 into the extracellular egg coat of transgenic mice. Mol. Cell. Biol. 22, 3111–3120.
Conserved furin cleavage site not essential for secretion and integration of ZP3 into the extracellular egg coat of transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFyltro%3D&md5=61edee92a92f688f9172c919dc8c2962CAS |

Zhao, M., Gold, L., Dorward, H., Liang, L. F., Hoodbhoy, T., Boja, E., Fales, H. M., and Dean, J. (2003). Mutation of a conserved hydrophobic patch prevents incorporation of ZP3 into the zona pellucida surrounding mouse eggs. Mol. Cell. Biol. 23, 8982–8991.
Mutation of a conserved hydrophobic patch prevents incorporation of ZP3 into the zona pellucida surrounding mouse eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslGqtrs%3D&md5=3c83365da0ec64f835df2e8f7362526fCAS |