Analysis of ZP1 gene reveals differences in zona pellucida composition in carnivores
C. Moros-Nicolás A E , A. Leza A , P. Chevret B , A. Guillén-Martínez A , L. González-Brusi A , F. Boué C , M. Lopez-Bejar D , J. Ballesta A , M. Avilés A and M. J. Izquierdo-Rico A EA Department of Cell Biology and Histology, Faculty of Medicine, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia, 30100, Murcia, Spain.
B Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France.
C ANSES, Nancy Laboratory for Rabies and Wildlife, CS 40009, 54220 Malzéville, France.
D Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
E Corresponding authors. Emails: carla.moros@um.es; mjoseir@um.es
Reproduction, Fertility and Development 30(2) 272-285 https://doi.org/10.1071/RD17022
Submitted: 20 January 2017 Accepted: 3 June 2017 Published: 6 July 2017
Abstract
The zona pellucida (ZP) is an extracellular envelope that surrounds mammalian oocytes. This coat participates in the interaction between gametes, induction of the acrosome reaction, block of polyspermy and protection of the oviductal embryo. Previous studies suggested that carnivore ZP was formed by three glycoproteins (ZP2, ZP3 and ZP4), with ZP1 being a pseudogene. However, a recent study in the cat found that all four proteins were expressed. In the present study, in silico and molecular analyses were performed in several carnivores to clarify the ZP composition in this order of mammals. The in silico analysis demonstrated the presence of the ZP1 gene in five carnivores: cheetah, panda, polar bear, tiger and walrus, whereas in the Antarctic fur seal and the Weddell seal there was evidence of pseudogenisation. Molecular analysis showed the presence of four ZP transcripts in ferret ovaries (ZP1, ZP2, ZP3 and ZP4) and three in fox ovaries (ZP2, ZP3 and ZP4). Analysis of the fox ZP1 gene showed the presence of a stop codon. The results strongly suggest that all four ZP genes are expressed in most carnivores, whereas ZP1 pseudogenisation seems to have independently affected three families (Canidae, Otariidae and Phocidae) of the carnivore tree.
Additional keywords: carnivore phylogeny, pseudogene.
References
Agnarsson, I., Kuntner, M., and May-Collado, L. J. (2010). Dogs, cats, and kin: a molecular species-level phylogeny of Carnivora. Mol. Phylogenet. Evol. 54, 726–745.| Dogs, cats, and kin: a molecular species-level phylogeny of Carnivora.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Ggtro%3D&md5=9573b6add4249ae15a3bf7c99de8fb16CAS |
Artois, M. (1997). Managing problem wildlife in the ‘Old World’: a veterinary perspective. Reprod. Fertil. Dev. 9, 17–25.
| Managing problem wildlife in the ‘Old World’: a veterinary perspective.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3mt12rsQ%3D%3D&md5=fc48e699e2a11d394296ae5452c676feCAS |
Avella, M. A., Baibakov, B., and Dean, J. (2014). A single domain of the ZP2 zona pellucida protein mediates gamete recognition in mice and humans. J. Cell Biol. 205, 801–809.
| A single domain of the ZP2 zona pellucida protein mediates gamete recognition in mice and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWht77L&md5=f2acbaa8571363c2dc35ebefaa30fa58CAS |
Avella, M. A., Baibakov, B. A., Jiménez-Movilla, M., Sadusky, A. B., and Dean, J. (2016). ZP2 peptide beads select human sperm in vitro, decoy mouse sperm in vivo, and provide reversible contraception. Sci. Transl. Med. 8, 336ra60.
| ZP2 peptide beads select human sperm in vitro, decoy mouse sperm in vivo, and provide reversible contraception.Crossref | GoogleScholarGoogle Scholar |
Baibakov, B., Boggs, N. A., Yauger, B., Baibakov, G., and Dean, J. (2012). Human sperm bind to the N-terminal domain of ZP2 in humanized zonae pellucidae in transgenic mice. J. Cell Biol. 197, 897–905.
| Human sperm bind to the N-terminal domain of ZP2 in humanized zonae pellucidae in transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFOlsrw%3D&md5=19c1cee1ec46461a2daf5728756c30d8CAS |
Bausek, N., Waclawek, M., Schneider, W. J., and Wohlrab, F. (2000). The major chicken egg envelope protein ZP1 is different from ZPB and is synthesized in the liver. J. Biol. Chem. 275, 28866–28872.
| The major chicken egg envelope protein ZP1 is different from ZPB and is synthesized in the liver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Cqtr0%3D&md5=e74e03ab34e2992cee221f65c5dc6373CAS |
Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795.
| Improved prediction of signal peptides: SignalP 3.0.Crossref | GoogleScholarGoogle Scholar |
Benoff, S. (1997). Carbohydrates and fertilization: an overview. Mol. Hum. Reprod. 3, 599–637.
| Carbohydrates and fertilization: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1Wiu7Y%3D&md5=1f71c5ebb5f18892500c5c396f39e797CAS |
Berger, T., Turner, K. O., Meizel, S., and Hedrick, J. L. (1989). Zona pellucida-induced acrosome reaction in boar sperm. Biol. Reprod. 40, 525–530.
| Zona pellucida-induced acrosome reaction in boar sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktVCqtbo%3D&md5=8872c1e30a1d73de749e2a684d2c4204CAS |
Blackmore, D. G., Baillie, L. R., Holt, J. E., Dierkx, L., Aitken, R. J., and McLaughlin, E. A. (2004). Biosynthesis of the canine zona pellucida requires the integrated participation of both oocytes and granulosa cells. Biol. Reprod. 71, 661–668.
| Biosynthesis of the canine zona pellucida requires the integrated participation of both oocytes and granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWgu7o%3D&md5=3bc7d69c6c0a9e2b86a2f8ed44aa6d0eCAS |
Bleil, J. D., and Wassarman, P. M. (1980a). Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte’s zona pellucida. Dev. Biol. 76, 185–202.
| Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte’s zona pellucida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhslOqt70%3D&md5=ab8d32e58cf8989f0802e6b5c6a1b1a1CAS |
Bleil, J. D., and Wassarman, P. M. (1980b). Mammalian sperm–egg interaction: identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm. Cell 20, 873–882.
| Mammalian sperm–egg interaction: identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlt12ksbk%3D&md5=0097abe0d32e4a9a8b63807934570b07CAS |
Bradley, M. P. (1994). Experimental strategies for the development of an immunocontraceptive vaccine for the European red fox, Vulpes vulpes. Reprod. Fertil. Dev. 6, 307–317.
| Experimental strategies for the development of an immunocontraceptive vaccine for the European red fox, Vulpes vulpes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7jt1yntQ%3D%3D&md5=0ba59aad803d598b6e4841d10813d242CAS |
Cao, L., Huang, Q., Wu, Z., Cao, D.-D., Ma, Z., Xu, Q., Hu, P., Fu, Y., Shen, Y., Chan, J., Zhou, C. Z., Zhai, W., and Chen, L. (2016). Neofunctionalization of zona pellucida proteins enhances freeze-prevention in the eggs of Antarctic notothenioids. Nat. Commun. 7, 12987.
| Neofunctionalization of zona pellucida proteins enhances freeze-prevention in the eggs of Antarctic notothenioids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1ejsb7F&md5=6d4333043a0c1d6e4b3d022955d02a10CAS |
Dean, J. (2004). Reassessing the molecular biology of sperm–egg recognition with mouse genetics. BioEssays 26, 29–38.
| Reassessing the molecular biology of sperm–egg recognition with mouse genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1eitr4%3D&md5=83d6b7b6c87f5980890a6ad6263f6a68CAS |
Delsink, A. K., van Altena, J. J., Grobler, D., Bertschinger, H. J., Kirkpatrick, J. F., and Slotow, R. (2007). Implementing immunocontraception in free-ranging African elephants at Makalali conservancy. J. S. Afr. Vet. Assoc. 78, 25–30.
| Implementing immunocontraception in free-ranging African elephants at Makalali conservancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2svkvV2mtg%3D%3D&md5=af1f157f0f0f939501bcb0827fb449c1CAS |
Duckert, P., Brunak, S., and Blom, N. (2004). Prediction of proprotein convertase cleavage sites. Protein Eng. Des. Sel. 17, 107–112.
| Prediction of proprotein convertase cleavage sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlKgsbw%3D&md5=4bc63e6d3bfc17696f1ff62559ea2f97CAS |
Evsikov, A. V., Graber, J. H., Brockman, J. M., Hampl, A., Holbrook, A. E., Singh, P., Eppig, J. J., Solter, D., and Knowles, B. B. (2006). Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev. 20, 2713–2727.
| Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2hsLjN&md5=594d5aa651d32e84b00f392780eed29eCAS |
Fazeli, A., Hage, W. J., Cheng, F. P., Voorhout, W. F., Marks, A., Bevers, M. M., and Colenbrander, B. (1997). Acrosome-intact boar spermatozoa initiate binding to the homologous zona pellucida in vitro. Biol. Reprod. 56, 430–438.
| Acrosome-intact boar spermatozoa initiate binding to the homologous zona pellucida in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXos1Wqtg%3D%3D&md5=092a1d1775c5095d37c6e8959fad0001CAS |
Florman, H. M., and Storey, B. T. (1982). Mouse gamete interactions: the zona pellucida is the site of the acrosome reaction leading to fertilization in vitro. Dev. Biol. 91, 121–130.
| Mouse gamete interactions: the zona pellucida is the site of the acrosome reaction leading to fertilization in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL383js1GqsA%3D%3D&md5=086c59a904ea02881c40e576209702c5CAS |
Gilad, Y., Przeworski, M., and Lancet, D. (2004). Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biol. 2, E5.
Goudet, G., Mugnier, S., Callebaut, I., and Monget, P. (2008). Phylogenetic analysis and identification of pseudogenes reveal a progressive loss of zona pellucida genes during evolution of vertebrates. Biol. Reprod. 78, 796–806.
| Phylogenetic analysis and identification of pseudogenes reveal a progressive loss of zona pellucida genes during evolution of vertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVOgu7s%3D&md5=2971bcde79551d3ce3db7b397306c850CAS |
Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321.
| New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Kms7s%3D&md5=7531aa5a20d7e82ce5e069a23182e96aCAS |
Gupta, S. K., and Bhandari, B. (2011). Acrosome reaction: relevance of zona pellucida glycoproteins. Asian J. Androl. 13, 97–105.
| Acrosome reaction: relevance of zona pellucida glycoproteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlejsQ%3D%3D&md5=fd9a44b666eba56dc1e56fbbeb5070d3CAS |
Gupta, S. K., Srinivasan, V. A., Suman, P., Rajan, S., Nagendrakumar, S. B., Gupta, N., Shrestha, A., Joshi, P., and Panda, A. K. (2011). Contraceptive vaccines based on the zona pellucida glycoproteins for dogs and other wildlife population management. Am. J. Reprod. Immunol. 66, 51–62.
| Contraceptive vaccines based on the zona pellucida glycoproteins for dogs and other wildlife population management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVGms7o%3D&md5=06f230581ab23dfde2149e1b3b6134b1CAS |
Gupta, S. K., Bhandari, B., Shrestha, A., Biswal, B. K., Palaniappan, C., Malhotra, S. S., and Gupta, N. (2012). Mammalian zona pellucida glycoproteins: structure and function during fertilization. Cell Tissue Res. 349, 665–678.
| Mammalian zona pellucida glycoproteins: structure and function during fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yltb3I&md5=05b030a45222543ef409e3f66eed7814CAS |
Harris, J. D., Hibler, D. W., Fontenot, G. K., Hsu, K. T., Yurewicz, E. C., and Sacco, A. G. (1994). Cloning and characterization of zona pellucida genes and cDNAs from a variety of mammalian species: the ZPA, ZPB and ZPC gene families. DNA Seq. 4, 361–393.
| Cloning and characterization of zona pellucida genes and cDNAs from a variety of mammalian species: the ZPA, ZPB and ZPC gene families.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtlaqurY%3D&md5=a846adf5052f48d020ba309e89f7224fCAS |
Hedrick, J. L., and Wardrip, N. J. (1987). On the macromolecular composition of the zona pellucida from porcine oocytes. Dev. Biol. 121, 478–488.
| On the macromolecular composition of the zona pellucida from porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitFWntbw%3D&md5=554d2096fc86a0a1ea40da91d4c852ddCAS |
Hoodbhoy, T., Joshi, S., Boja, E. S., Williams, S. A., Stanley, P., and Dean, J. (2005). Human sperm do not bind to rat zonae pellucidae despite the presence of four homologous glycoproteins. J. Biol. Chem. 280, 12721–12731.
| Human sperm do not bind to rat zonae pellucidae despite the presence of four homologous glycoproteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislygsro%3D&md5=c4b5c62362f8b01151ab743bde20a854CAS |
Huang, H.-L., Lv, C., Zhao, Y.-C., Li, W., He, X.-M., Li, P., Sha, A.-G., Tian, X., Papasian, C. J., Deng, H.-W., Lu, G. X., and Xiao, H. M. (2014). Mutant ZP1 in familial infertility. N. Engl. J. Med. 370, 1220–1226.
| Mutant ZP1 in familial infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvVCitLg%3D&md5=013557d72cf1434f1e095416a50eca7cCAS |
Hughes, D. C., and Barratt, C. L. (1999). Identification of the true human orthologue of the mouse Zp1 gene: evidence for greater complexity in the mammalian zona pellucida? Biochim. Biophys. Acta 1447, 303–306.
| Identification of the true human orthologue of the mouse Zp1 gene: evidence for greater complexity in the mammalian zona pellucida?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntVGksbc%3D&md5=dde8c6eda94e32ee30830921d87728ffCAS |
Humble, E., Martinez-Barrio, A., Forcada, J., Trathan, P. N., Thorne, M. A. S., Hoffmann, M., Wolf, J. B. W., and Hoffman, J. I. (2016). A draft fur seal genome provides insights into factors affecting SNP validation and how to mitigate them. Mol. Ecol. Resour. 16, 909–921.
| A draft fur seal genome provides insights into factors affecting SNP validation and how to mitigate them.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVShs7zL&md5=01e497ad552def16cd89f3e2da15def6CAS |
Hyllner, S. J., Westerlund, L., Olsson, P. E., and Schopen, A. (2001). Cloning of rainbow trout egg envelope proteins: members of a unique group of structural proteins. Biol. Reprod. 64, 805–811.
| Cloning of rainbow trout egg envelope proteins: members of a unique group of structural proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVKjsbs%3D&md5=b7fd23402d421dea24674997f36e04b0CAS |
Izquierdo-Rico, M. J., Jimenez-Movilla, M., Llop, E., Perez-Oliva, A. B., Ballesta, J., Gutierrez-Gallego, R., Jimenez-Cervantes, C., and Aviles, M. (2009). Hamster zona pellucida is formed by four glycoproteins: ZP1, ZP2, ZP3, and ZP4. J. Proteome Res. 8, 926–941.
| Hamster zona pellucida is formed by four glycoproteins: ZP1, ZP2, ZP3, and ZP4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1akug%3D%3D&md5=e71e6abd15a815229d3e05215625f9c4CAS |
Jackson, R. J., Beaton, S., and Dall, D. J. (2007). ‘Stoat Zona Pellucida Genes with Potential for Immunocontraceptive Biocontrol in New Zealand.’ (Department of Conservation: Wellington.)
Jewgenow, K., and Fickel, J. (1999). Sequential expression of zona pellucida protein genes during the oogenesis of domestic cats. Biol. Reprod. 60, 522–526.
| Sequential expression of zona pellucida protein genes during the oogenesis of domestic cats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotlymsw%3D%3D&md5=c9290072f9aea11c51a706f2eaf0138fCAS |
Jiménez-Movilla, M., Martínez-Alonso, E., Castells, M. T., Izquierdo-Rico, M. J., Saavedra, M. D., Gutiérrez-Gallego, R., Fayrer-Hosken, R., Ballesta, J., and Avilés, M. (2009). Cytochemical and biochemical evidences for a complex tridimensional structure of the hamster zona pellucida. Histol. Histopathol. 24, 599–609.
Joonè, C. J., Bertschinger, H. J., Gupta, S. K., Fosgate, G. T., Arukha, A. P., Minhas, V., Dieterman, E., and Schulman, M. L. (2017). Ovarian function and pregnancy outcome in pony mares following immunocontraception with native and recombinant porcine zona pellucida vaccines. Equine Vet. J. 49, 189–195.
| Ovarian function and pregnancy outcome in pony mares following immunocontraception with native and recombinant porcine zona pellucida vaccines.Crossref | GoogleScholarGoogle Scholar |
Kitchener, A. L., Harman, A., Kay, D. J., McCartney, C. A., Mate, K. E., and Rodger, J. C. (2009a). Immunocontraception of eastern grey kangaroos (Macropus giganteus) with recombinant brushtail possum (Trichosurus vulpecula) ZP3 protein. J. Reprod. Immunol. 79, 156–162.
| Immunocontraception of eastern grey kangaroos (Macropus giganteus) with recombinant brushtail possum (Trichosurus vulpecula) ZP3 protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFKitLc%3D&md5=bdeb5155dc64070163c5c25ef419a480CAS |
Kitchener, A. L., Kay, D. J., Walters, B., Menkhorst, P., McCartney, C. A., Buist, J. A., Mate, K. E., and Rodger, J. C. (2009b). The immune response and fertility of koalas (Phascolarctos cinereus) immunised with porcine zonae pellucidae or recombinant brushtail possum ZP3 protein. J. Reprod. Immunol. 82, 40–47.
| The immune response and fertility of koalas (Phascolarctos cinereus) immunised with porcine zonae pellucidae or recombinant brushtail possum ZP3 protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGltbnK&md5=55a594e064025fb143c5bd62b1048e9bCAS |
Kozak, M. (1991). Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266, 19867–19870.
| 1:CAS:528:DyaK3MXlslOmsL4%3D&md5=242a0ee2f319a2c6df8ba0d138ecaf9aCAS |
Lefièvre, L., Conner, S. J., Salpekar, A., Olufowobi, O., Ashton, P., Pavlovic, B., Lenton, W., Afnan, M., Brewis, I. A., Monk, M., Hughes, D. C., and Barratt, C. L. (2004). Four zona pellucida glycoproteins are expressed in the human. Hum. Reprod. 19, 1580–1586.
| Four zona pellucida glycoproteins are expressed in the human.Crossref | GoogleScholarGoogle Scholar |
Levy, J. K. (2011). Contraceptive vaccines for the humane control of community cat populations. Am. J. Reprod. Immunol. 66, 63–70.
| Contraceptive vaccines for the humane control of community cat populations.Crossref | GoogleScholarGoogle Scholar |
Levy, J. K., Mansour, M., Crawford, P. C., Pohajdak, B., and Brown, R. G. (2005). Survey of zona pellucida antigens for immunocontraception of cats. Theriogenology 63, 1334–1341.
| Survey of zona pellucida antigens for immunocontraception of cats.Crossref | GoogleScholarGoogle Scholar |
Liu, C., Litscher, E. S., Mortillo, S., Sakai, Y., Kinloch, R. A., Stewart, C. L., and Wassarman, P. M. (1996). Targeted disruption of the mZP3 gene results in production of eggs lacking a zona pellucida and infertility in female mice. Proc. Natl Acad. Sci. USA 93, 5431–5436.
| Targeted disruption of the mZP3 gene results in production of eggs lacking a zona pellucida and infertility in female mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjt1Ojs7k%3D&md5=b4c807e0aac7cb00a41dd369932f22aeCAS |
Maenhoudt, C., Santos, N. R., and Fontbonne, A. (2014). Suppression of fertility in adult dogs. Reprod. Domest. Anim. 49, 58–63.
| Suppression of fertility in adult dogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVentbfN&md5=d5092cbcf1e3aac7664c54e97df86d56CAS |
Mahi-Brown, C. A., Huang, T. T., and Yanagimachi, R. (1982). Infertility in bitches induced by active immunization with porcine zonae pellucidae. J. Exp. Zool. 222, 89–95.
| Infertility in bitches induced by active immunization with porcine zonae pellucidae.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s%2FgvV2jsQ%3D%3D&md5=b0d41a043393d8e118f656d103bc3787CAS |
Mahi-Brown, C. A., Yanagimachi, R., Hoffman, J. C., and Huang, T. T. (1985). Fertility control in the bitch by active immunization with porcine zonae pellucidae: use of different adjuvants and patterns of estradiol and progesterone levels in estrous cycles. Biol. Reprod. 32, 761–772.
| Fertility control in the bitch by active immunization with porcine zonae pellucidae: use of different adjuvants and patterns of estradiol and progesterone levels in estrous cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktVSkur8%3D&md5=678205fab5fbff1237da3e9891befa92CAS |
Mahi-Brown, C. A., Yanagimachi, R., Nelson, M. L., Yanagimachi, H., and Palumbo, N. (1988). Ovarian histopathology of bitches immunized with porcine zonae pellucidae. Am. J. Reprod. Immunol. Microbiol. 18, 94–103.
| Ovarian histopathology of bitches immunized with porcine zonae pellucidae.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7jt12jtQ%3D%3D&md5=e6ec9c4e93a404ffc06d37560d69383cCAS |
McLennan, J. A., Potter, M. A., Robertson, H. A., Wake, G. C., Colbourne, R., Dew, L., Joyce, L., McCann, A. J., Miles, J., Miller, P. J., and Redi, J. (1996). Role of predation in the decline of the kiwi, Apteryx spp., in New Zealand. N. Z. J. Ecol. 20, 27–35.
Modliński, J. A. (1970). The role of the zona pellucida in the development of mouse eggs in vivo. J. Embryol. Exp. Morphol. 23, 539–547.
Monné, M., and Jovine, L. (2011). A structural view of egg coat architecture and function in fertilization. Biol. Reprod. 85, 661–669.
| A structural view of egg coat architecture and function in fertilization.Crossref | GoogleScholarGoogle Scholar |
Noguchi, S., Yonezawa, N., Katsumata, T., Hashizume, K., Kuwayama, M., Hamano, S., Watanabe, S., and Nakano, M. (1994). Characterization of the zona pellucida glycoproteins from bovine ovarian and fertilized eggs. Biochim. Biophys. Acta 1201, 7–14.
| Characterization of the zona pellucida glycoproteins from bovine ovarian and fertilized eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmslOht74%3D&md5=087e227200fdd80c2890b7edaae1b060CAS |
Nyakatura, K., and Bininda-Emonds, O. R. P. (2012). Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biol. 10, 12.
| Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates.Crossref | GoogleScholarGoogle Scholar |
Pedersen, A. G., and Nielsen, H. (1997). Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 226–233.
| 1:STN:280:DyaK2svmtlamtQ%3D%3D&md5=c07af8195eb5765ba31a3bd8bac5f887CAS |
Prada, D., Veale, A., Duckworth, J., Murphy, E., Treadgold, S., Howitt, R., Hunter, S., and Gleeson, D. (2014). Unwelcome visitors: employing forensic methodologies to inform the stoat (Mustela erminea) incursion response plan on Kapiti Island. N.Z. J. Zool. 41, 1–9.
| Unwelcome visitors: employing forensic methodologies to inform the stoat (Mustela erminea) incursion response plan on Kapiti Island.Crossref | GoogleScholarGoogle Scholar |
Rankin, T., Familari, M., Lee, E., Ginsberg, A., Dwyer, N., Blanchette-Mackie, J., Drago, J., Westphal, H., and Dean, J. (1996). Mice homozygous for an insertional mutation in the Zp3 gene lack a zona pellucida and are infertile. Development 122, 2903–2910.
| 1:CAS:528:DyaK28XlvFCktLo%3D&md5=29385d40664da2e57fde6368d45b60beCAS |
Rankin, T., Talbot, P., Lee, E., and Dean, J. (1999). Abnormal zonae pellucidae in mice lacking ZP1 result in early embryonic loss. Development 126, 3847–3855.
| 1:CAS:528:DyaK1MXmtlOitrc%3D&md5=138bc5793cca35acb37e5a830c6759f5CAS |
Rankin, T. L., O’Brien, M., Lee, E., Wigglesworth, K., Eppig, J., and Dean, J. (2001). Defective zonae pellucidae in Zp2-null mice disrupt folliculogenesis, fertility and development. Development 128, 1119–1126.
| 1:CAS:528:DC%2BD3MXjtFOlt7k%3D&md5=bc77cb8c310c937be5bbdfad0e3e42d6CAS |
Reubel, G. H., Beaton, S., Venables, D., Pekin, J., Wright, J., French, N., and Hardy, C. M. (2005). Experimental inoculation of European red foxes with recombinant vaccinia virus expressing zona pellucida C proteins. Vaccine 23, 4417–4426.
| Experimental inoculation of European red foxes with recombinant vaccinia virus expressing zona pellucida C proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFOjsL4%3D&md5=f80ef4f6d6b14f284e2f39e0d5131304CAS |
Robinson, A. J., and Holland, M. K. (1995). Testing the concept of virally vectored immunosterilisation for the control of wild rabbit and fox populations in Australia. Aust. Vet. J. 72, 65–68.
| Testing the concept of virally vectored immunosterilisation for the control of wild rabbit and fox populations in Australia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M3psl2ksg%3D%3D&md5=46c4372df4002cdf660f94191d67d6a1CAS |
Rutberg, A. T., Naugle, R. E., and Verret, F. (2013). Single-treatment porcine zona pellucida immunocontraception associated with reduction of a population of white-tailed deer (Odocoileus virginianus). J. Zoo Wildl. Med. 44, S75–S83.
| Single-treatment porcine zona pellucida immunocontraception associated with reduction of a population of white-tailed deer (Odocoileus virginianus).Crossref | GoogleScholarGoogle Scholar |
Sasanami, T., Pan, J., Doi, Y., Hisada, M., Kohsaka, T., and Toriyama, M. (2002). Secretion of egg envelope protein ZPC after C-terminal proteolytic processing in quail granulosa cells. Eur. J. Biochem. 269, 2223–2231.
| Secretion of egg envelope protein ZPC after C-terminal proteolytic processing in quail granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFWltbY%3D&md5=d1ceb7abcce8e4ced697e79f11270a01CAS |
Smith, G. C., and Wilkinson, D. (2003). Modeling control of rabies outbreaks in red fox populations to evaluate culling, vaccination, and vaccination combined with fertility control. J. Wildl. Dis. 39, 278–286.
| Modeling control of rabies outbreaks in red fox populations to evaluate culling, vaccination, and vaccination combined with fertility control.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3szns1Gksg%3D%3D&md5=ee9c666bdc2b9716587251306d7799f8CAS |
Stetson, I., Izquierdo-Rico, M. J., Moros, C., Chevret, P., Lorenzo, P. L., Ballesta, J., Rebollar, P. G., Gutiérrez-Gallego, R., and Avilés, M. (2012). Rabbit zona pellucida composition: a molecular, proteomic and phylogenetic approach. J. Proteomics 75, 5920–5935.
| Rabbit zona pellucida composition: a molecular, proteomic and phylogenetic approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOgs73J&md5=205ea8925da5268a7239b4ced7499e0bCAS |
Stetson, I., Avilés, M., Moros, C., García-Vázquez, F. A., Gimeno, L., Torrecillas, A., Aliaga, C., Bernardo-Pisa, M. V., Ballesta, J., and Izquierdo-Rico, M. J. (2015). Four glycoproteins are expressed in the cat zona pellucida. Theriogenology 83, 1162–1173.
| Four glycoproteins are expressed in the cat zona pellucida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosFCntw%3D%3D&md5=8b13f8f63b4b8215548938ff67743aeeCAS |
Suppo, C., Naulin, J. M., Langlais, M., and Artois, M. (2000). A modelling approach to vaccination and contraception programmes for rabies control in fox populations. Proc. Biol. Sci. 267, 1575–1582.
| A modelling approach to vaccination and contraception programmes for rabies control in fox populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MrgslCgug%3D%3D&md5=f81b9c531791d3ca1137eb1f4b167a25CAS |
Tanihara, F., Nakai, M., Kaneko, H., Noguchi, J., Otoi, T., and Kikuchi, K. (2013). Evaluation of zona pellucida function for sperm penetration during in vitro fertilization in pigs. J. Reprod. Dev. 59, 385–392.
| Evaluation of zona pellucida function for sperm penetration during in vitro fertilization in pigs.Crossref | GoogleScholarGoogle Scholar |
Tian, J., Gong, H., Thomsen, G. H., and Lennarz, W. J. (1997). Gamete interactions in Xenopus laevis: identification of sperm binding glycoproteins in the egg vitelline envelope. J. Cell Biol. 136, 1099–1108.
| Gamete interactions in Xenopus laevis: identification of sperm binding glycoproteins in the egg vitelline envelope.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVaktL0%3D&md5=823adc1d78f5fea66e0e0865b9d335c7CAS |
Wassarman, P. M. (1988). Fertilization in mammals. Sci. Am. 259, 78–84.
| Fertilization in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXnt1ymsw%3D%3D&md5=8564177c5d741cd5f2d0c6cded847045CAS |
Wilson, P. R., Karl, B. J., Toft, R. J., Beggs, J. R., and Taylor, R. H. (1998). The role of introduced predators and competitors in the decline of kaka (Nestor meridionalis) populations in New Zealand. Biol. Conserv. 83, 175–185.
| The role of introduced predators and competitors in the decline of kaka (Nestor meridionalis) populations in New Zealand.Crossref | GoogleScholarGoogle Scholar |
Zhang, G., Cowled, C., Shi, Z., Huang, Z., Bishop-Lilly, K. A., Fang, X., Wynne, J. W., Xiong, Z., Baker, M. L., Zhao, W., et al. (2013). Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339, 456–460.
| Comparative analysis of bat genomes provides insight into the evolution of flight and immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFyntLg%3D&md5=603faff2bc664231e443d7d0baaf4d5cCAS |