Modulation of adiponectin system expression in the porcine uterus during early pregnancy by prostaglandin E2 and F2α
Kamil Dobrzyn A , Nina Smolinska A B , Karol Szeszko A , Marta Kiezun A , Anna Maleszka A and Tadeusz Kaminski AA Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland.
B Corresponding author. Email: nina.smolinska@uwm.edu.pl
Reproduction, Fertility and Development 29(9) 1832-1845 https://doi.org/10.1071/RD16181
Submitted: 2 May 2016 Accepted: 6 October 2016 Published: 12 December 2016
Abstract
Studies have demonstrated that adiponectin could be a link between reproductive functions and energy metabolism in animals. The aim of the present study was to investigate the effects of prostaglandin (PG) E2 and PGF2α (10, 50, 100, 250 and 500 ng mL–1) on the expression and secretion of adiponectin and its receptor genes and proteins by cultured in vitro porcine endometrial and myometrial tissues on Days 10–28 of pregnancy and Days 10–11 of the oestrous cycle. The gene expression was analysed using the real-time PCR method. Adiponectin protein secretion was determined by ELISA, whereas the receptors proteins content was defined using Western Blot analysis. Both PGE2 and PGF2α modulated the expression of adiponectin system genes and proteins in the uterus during early pregnancy. PGE2 and PGF2α had similar effects on the adiponectin system, which differed between the stages of gestation and between pregnancy and the oestrous cycle. On Days 10–11 of gestation, PGE2 and PGF2α generally increased adiponectin secretion by endometrial and myometrial tissues. Both PGs decreased levels of endometrial adiponectin receptor type 1 (AdipoR1), whereas only PGF2α decreased myometrial levels of AdipoR1. Both PGs increased myometrial adiponectin receptor type 2 (AdipoR2) levels. On Days 12–13 of gestation, PGE2 decreased AdipoR1 concentrations in both tissues and AdipoR2 levels in the endometrium. PGF2α decreased myometrial concentrations of both receptors. On Days 15–16 of gestation, both PGE2 and PGF2α increased concentrations of AdipoR1 and AdipoR2 in the endometrium and myometrium. PGE2 stimulated the secretion of adiponectin in the endometrium, but not in the myometrium. On Days 27–28 of pregnancy, both PGE2 and PGF2α inhibited the expression of AdipoR1 and AdipoR2 in endometrial and myometrial tissues and decreased the secretion of endometrial adiponectin. Both PGE2 and PGF2α had tissue-specific and dose-dependent effects on the adiponectin system.
Additional keywords: adiponectin receptors.
References
Akinlosotu, B. A., Diehl, J. R., and Gimenez, T. (1988). Prostaglandin E2 counteracts the effects of PGF2 alpha in indomethacin treated cycling gilts. Prostaglandins 35, 81–93.| Prostaglandin E2 counteracts the effects of PGF2 alpha in indomethacin treated cycling gilts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvVSrtr4%3D&md5=d486696c98e668613ebe8edae70548e5CAS |
Akins, E. L., and Morrissette, M. C. (1968). Gross ovarian changes during estrous cycle of swine. Am. J. Vet. Res. 29, 1953–1957.
| 1:STN:280:DyaF1M%2FgsVGqsg%3D%3D&md5=030b0b36f3c85deabcb61397010ed057CAS |
Anuradha, , and Krishna, A. (2014). Modulation of ovarian steroidogenesis by adiponectin during delayed embryonic development of Cynopterus sphinx. J. Steroid. Biochem. Mol. Biol. 143, 291–305.
| Modulation of ovarian steroidogenesis by adiponectin during delayed embryonic development of Cynopterus sphinx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVaksrfN&md5=ce6cbb6d02ab4ad56b63f72bac224b61CAS |
Bazer, F. W., and Thatcher, W. W. (1977). Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2 alpha by the uterine endometrium. Prostaglandins 14, 397–401.
| Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2 alpha by the uterine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXls1WrtL8%3D&md5=c802c62b9dd55495540d01d9bc598e0eCAS |
Bazer, F. W., Geisert, R. D., Thatcher, W. W., and Roberts, R. M. (1982). The establishment and maintenance of pregnancy. In ‘Control of Pig Reproduction’. (Eds D. S. A. Cole and G. R. Foxcraft.) pp. 227–252. (Butterworth Scientific: London.)
Brochu-Gaudreau, K., Beaudry, D., Blouin, R., Bordignon, V., Murphy, B. D., and Palin, M. F. (2008). Adiponectin regulates gene expression in the porcine uterus. Biol. Reprod. 78, 210–211.
Burghardt, R. C., Johnson, G. A., Jaeger, L. A., Ka, H., Garlow, J. E., Spencer, T. E., and Bazer, F. W. (2002). Integrins and extracellular matrix proteins at the maternal–fetal interface in domestic animals. Cells Tissues Organs 172, 202–217.
| Integrins and extracellular matrix proteins at the maternal–fetal interface in domestic animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVSjur8%3D&md5=9350abc501c5a7cbeb22e4fde82b8610CAS |
Chabrolle, C., Tosca, L., Ramé, C., Lecomte, P., Royère, D., and Dupont, J. (2009). Adiponectin increases insulin-like growth factor I-induced progesterone and oestradiol secretion in human granulosa cells. Fertil. Steril. 92, 1988–1996.
| Adiponectin increases insulin-like growth factor I-induced progesterone and oestradiol secretion in human granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFGisLs%3D&md5=2c7c25f26f78e961f1ab68b6855e842cCAS |
Chappaz, E., Albornoz, M. S., Campos, D., Che, L., Palin, M. F., Murphy, B. D., and Bordignon, V. (2008). Adiponectin enhances in vitro development of swine embryos. Domest. Anim. Endocrinol. 35, 198–207.
| Adiponectin enhances in vitro development of swine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslWlsLc%3D&md5=32b525beac7ae963b82e737ccf994435CAS |
Chen, H. L., Yang, Y. P., Hu, X. L., Yelavarthi, K. K., Fishback, J. L., and Hunt, J. S. (1991). Tumor necrosis factor alpha mRNA and protein are present in human placental and uterine cells at early and late stages of gestation. Am. J. Pathol. 139, 327–335.
| 1:CAS:528:DyaK3MXmslOltrY%3D&md5=8490212e6bd349d91e1592a44faa1052CAS |
de Sousa Abreu, R., Penalva, L. O., Marcotte, E. M., and Vogel, C. (2009). Global signatures of protein and mRNA expression levels. Mol. Biosyst. 5, 1512–1526.
Deepa, S. S., and Dong, L. Q. (2009). APPL1: role in adiponectin signaling and beyond. Am. J. Physiol. Endocrinol. Metab. 296, E22–E36.
| APPL1: role in adiponectin signaling and beyond.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFChug%3D%3D&md5=dab39a4e0ecf68bca2fef2f9940e1db7CAS |
Dobrzyn, K., Smolinska, N., Szeszko, K., Kiezun, M., Maleszka, A., Rytelewska, E., and Kaminski, T. (2017a). Effect of progesterone on adiponectin system in the porcine uterus during early pregnancy. J. Anim. Sci. 95, 1–15.
| Effect of progesterone on adiponectin system in the porcine uterus during early pregnancy.Crossref | GoogleScholarGoogle Scholar |
Dobrzyn, K., Smolinska, N., Kiezun, M., Szeszko, K., Maleszka, A., and Kaminski, T. (2017b). The effect of estrone and estradiol on the expression of the adiponectin system in the porcine uterus during early pregnancy. Theriogenology 88, 183–196.
| The effect of estrone and estradiol on the expression of the adiponectin system in the porcine uterus during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1aksbjN&md5=fdf7a56d71ca3d55dae3ba544d398bd2CAS |
Dos Santos, E., Serazin, V., Morvan, C., Torre, A., Wainer, R., and de Mazancourt, P. (2012). Adiponectin and leptin systems in human endometrium during window of implantation. Fertil. Steril. 97, 771–778.e1.
| Adiponectin and leptin systems in human endometrium during window of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Ggs78%3D&md5=b6a4ba30f8d191655c2a1ec37c740d30CAS |
Franczak, A., and Kotwica, G. (2008). Secretion of estradiol-17β by porcine endometrium and myometrium during early pregnancy and luteolysis. Theriogenology 69, 283–289.
| Secretion of estradiol-17β by porcine endometrium and myometrium during early pregnancy and luteolysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvV2itA%3D%3D&md5=b8891477a327b16a0583ca4007f04c5aCAS |
Fruebis, J., Tsao, T.-S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R. S., Yen, F. T., Bihain, B. E., and Lodish, H. F. (2001). Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA 98, 2005–2010.
| Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVWit78%3D&md5=72e00843879b31ab966b3b663243a8adCAS |
Gadsby, J. E., Lovdal, J. A., Britt, J. H., and Fitz, T. A. (1993). Prostaglandin F2 alpha receptor concentrations in corpora lutea of cycling, pregnant, and pseudopregnant pigs. Biol. Reprod. 49, 604–608.
| Prostaglandin F2 alpha receptor concentrations in corpora lutea of cycling, pregnant, and pseudopregnant pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1ehurw%3D&md5=97df03b5cf46511c84950684edbe98faCAS |
Gamundi-Segura, S., Serna, J., Oehninger, S., Horcajadas, J. A., and Arbones-Mainar, J. M. (2015). Effects of adipocyte-secreted factors on decidualized endometrial cells: modulation of endometrial receptivity in vitro. J. Physiol. Biochem. 71, 537–546.
| Effects of adipocyte-secreted factors on decidualized endometrial cells: modulation of endometrial receptivity in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXivVSqurc%3D&md5=48a6a62741ffc31d88668e70f0f285b9CAS |
Geisert, R. D., and Yelich, J. V. (1997). Regulation of conceptus development and attachment in pigs. J. Reprod. Fertil. Suppl. 52, 133–149.
| 1:STN:280:DyaK1c3msFCgtw%3D%3D&md5=1d737b8a92a00111ad501cb8c67afb67CAS |
Gregoraszczuk, E. L., and Michas, N. (1999). Progesterone and estradiol secretion by porcine luteal cells is influenced by individual and combined treatment with prostaglandins E2 and F2 alpha throughout the estrus cycle. Prostaglandins Other Lipid Mediat. 57, 231–241.
| Progesterone and estradiol secretion by porcine luteal cells is influenced by individual and combined treatment with prostaglandins E2 and F2 alpha throughout the estrus cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt12msr8%3D&md5=948404783b4a1ae83d46708ce854a329CAS |
Gry, M., Rimini, R., Strömberg, S., Asplund, A., Pontén, F., Uhlén, M., and Nilsson, P. (2009). Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 10, 365.
| Correlations between RNA and protein expression profiles in 23 human cell lines.Crossref | GoogleScholarGoogle Scholar |
Hensby, C. N. (1975). Distribution studies on the reduction of prostaglandin E-2 to prostaglandin F-2α by tissue homogenates. Biochim. Biophys. Acta 409, 225–234.
| Distribution studies on the reduction of prostaglandin E-2 to prostaglandin F-2α by tissue homogenates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XivVGjsQ%3D%3D&md5=26b7c983b768c9db50f6990caef24220CAS |
Hunt, J. S., Soares, M. J., Lei, M. G., Smith, R. N., Wheaton, D., Atherton, R. A., and Morrison, D. C. (1989). Products of lipopolysaccharide-activated macrophages (tumor necrosis factor-α, transforming growth factor-β) but not lipopolysaccharidemodify DNA synthesis by rat trophoblast cells exhibitingthe 80-kDa lipopolysaccharide-binding protein. J. Immunol. 143, 1606–1613.
| 1:CAS:528:DyaL1MXlsFWrtLg%3D&md5=0be4a3fa8d7e619d97234665d5a2b0fbCAS |
Johnson, G. A., Bazer, F. W., Jaeger, L. A., Ka, H., Garlow, J. E., Pfarrer, C., Spencer, T. E., and Burghardt, R. C. (2001). Muc-1, integrin, and osteopontin expression during the implantation cascade in sheep. Biol. Reprod. 65, 820–828.
| Muc-1, integrin, and osteopontin expression during the implantation cascade in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFems7k%3D&md5=88eb5bd0d30d93b9b81a537dd0d6acbeCAS |
Kaminski, T., Smolinska, N., Maleszka, A., Kiezun, M., Dobrzyn, K., Czerwinska, J., Szeszko, K., and Nitkiewicz, A. (2014). Expression of adiponectin and its receptors in the porcine hypothalamus during the oestrous cycle. Reprod. Domest. Anim. 49, 378–386.
| Expression of adiponectin and its receptors in the porcine hypothalamus during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXns12ls7Y%3D&md5=40868bbcfb6cccada7035f42d62680fcCAS |
Kennedy, T. G., and Lukash, L. A. (1982). Induction of decidualization in rats by the intrauterine infusion of prostaglandins. Biol. Reprod. 27, 253–260.
| Induction of decidualization in rats by the intrauterine infusion of prostaglandins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xlt1Wis7c%3D&md5=abd8de9dfc9ca24c1d994c9ec84b96e4CAS |
Kiezun, M., Maleszka, A., Smolinska, N., Nitkiewicz, A., and Kaminski, T. (2013). Expression of adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2) in the porcine pituitary during the oestrous cycle. Reprod. Biol. Endocrinol. 11, 18.
| 1:CAS:528:DC%2BC3sXot1Wnsrg%3D&md5=dd40f598bd42e921e72ac69ec6d6c89bCAS |
Kim, S. T., Marquard, K., Stephens, S., Louden, E., Allsworth, J., and Moley, K. H. (2011). Adiponectin and adiponectin receptors in the mouse preimplantation embryo and uterus. Hum. Reprod. 26, 82–95.
| Adiponectin and adiponectin receptors in the mouse preimplantation embryo and uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Wqu7%2FN&md5=56ef9c5e70eb12f30458c448c7e536eeCAS |
Kraeling, R. R., Rampacek, G. B., and Fiorello, N. A. (1985). Inhibition of pregnancy with indomethacin in mature gilts and prepuberal gilts induced to ovulate. Biol. Reprod. 32, 105–110.
| Inhibition of pregnancy with indomethacin in mature gilts and prepuberal gilts induced to ovulate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXptVGksA%3D%3D&md5=3e70f33250f834525521722551f7986bCAS |
Lord, E., Ledoux, S., Murphy, B. D., Beaudry, D., and Palin, M. F. (2005). Expression of Adipoq and its receptors in swine. J. Anim. Sci. 83, 565–578.
| Expression of Adipoq and its receptors in swine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVSltbg%3D&md5=0380f6ff8526c69921cc459262e993e3CAS |
Maeda, K., Okubo, K., Shimomura, I., Funahashi, T., Matsuzawa, Y., and Matsubara, K. (1996). cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221, 286–289.
| cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisVaht7s%3D&md5=39dab6f97f71543120fa928c51500208CAS |
Maillard, V., Uzbekova, S., Guignot, F., Perreau, C., Rame, C., Coyral-Castel, S., and Dupont, J. (2010). Effect of Adipoq on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development. Reprod. Biol. Endocrinol. 8, 23.
| Effect of Adipoq on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development.Crossref | GoogleScholarGoogle Scholar |
Maleszka, A., Smolinska, N., Nitkiewicz, A., Kiezun, M., Chojnowska, K., Dobrzyn, K., Szwaczek, H., and Kaminski, T. (2014a). Adiponectin expression in the porcine ovary during the oestrous cycle and its effect on ovarian steroidogenesis. Int. J. Endocrinol. 2014, 957076.
| Adiponectin expression in the porcine ovary during the oestrous cycle and its effect on ovarian steroidogenesis.Crossref | GoogleScholarGoogle Scholar |
Maleszka, A., Smolinska, N., Nitkiewicz, A., Kiezun, M., Dobrzyn, K., Czerwinska, J., Szeszko, K., and Kaminski, T. (2014b). Expression of adiponectin receptors 1 and 2 in the ovary and concentration of plasma adiponectin during the oestrous cycle of the pig. Acta Vet. Hung. 62, 386–396.
| Expression of adiponectin receptors 1 and 2 in the ovary and concentration of plasma adiponectin during the oestrous cycle of the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFWrsrjL&md5=b0e05b195dfb71f4c4d04b69500505f0CAS |
Morgan, G. L., Geisert, R. D., Zavy, M. T., Shawley, R. V., and Fazleabas, A. T. (1987). Development of pig blastocysts in a uterine environment advanced by exogenous oestrogen. J. Reprod. Fertil. 80, 125–131.
| Development of pig blastocysts in a uterine environment advanced by exogenous oestrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlensr4%3D&md5=a7bc660ec143b644a0c9dc7d10e0f487CAS |
Palin, M. F., Bordignon, V. V., and Murphy, B. D. (2012). Adiponectin and the control of female reproductive functions. Vitam. Horm. 90, 239–287.
| Adiponectin and the control of female reproductive functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVGqsA%3D%3D&md5=8eac3d627b1df4e38f814d304b6fbeeaCAS |
Pharriss, B. B. (1971). Prostaglandins in fertility. Proc. R. Soc. Med. 64, 10.
| 1:STN:280:DyaE3M7ls1yksQ%3D%3D&md5=e4369334ec1aed9c50e569b197b06424CAS |
Richards, J. S., Liu, Z., Kawai, T., Tabata, K., Watanabe, H., Suresh, D., Kuo, F. T., Pisarska, M. D., and Shimada, M. (2012). Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human. Fertil. Steril. 98, 471–479.e1.
| Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslOhs7w%3D&md5=7f5821c467e70008363ae56dfc80e1e5CAS |
Smolinska, N., Kaminski, T., Siawrys, G., and Przala, J. (2007). Long form of leptin receptor gene and protein expression in the porcine ovary during the estrous cycle and early pregnancy. Reprod. Biol. 7, 17–39.
Smolinska, N., Maleszka, A., Dobrzyn, K., Kiezun, M., Szeszko, K., and Kaminski, T. (2014a). Expression of adiponectin and adiponectin receptors 1 and 2 in the porcine uterus, conceptus, and trophoblast during early pregnancy. Theriogenology 82, 951–965.
| Expression of adiponectin and adiponectin receptors 1 and 2 in the porcine uterus, conceptus, and trophoblast during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlCjtrvM&md5=6d5b7eec0edc0879979e43a06e33ce2cCAS |
Smolinska, N., Dobrzyn, K., Maleszka, A., Kiezun, M., Szeszko, K., and Kaminski, T. (2014b). Expression of adiponectin and adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2) in the porcine uterus during the oestrous cycle. Anim. Reprod. Sci. 146, 42–54.
| Expression of adiponectin and adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2) in the porcine uterus during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjsF2isLk%3D&md5=635ebdd0ebf041fe8ae9246e060b143bCAS |
Smolinska, N., Dobrzyn, K., Kiezun, M., Szeszko, K., Maleszka, A., and Kaminski, T. (2016). Effect of adiponectin on the steroidogenic acute regulatory protein, P450 side chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase genes expression, progesterone and androstenedione production by the porcine uterus during early pregnancy. J. Physiol. Pharmacol. 67, 443–456.
| 1:STN:280:DC%2BC2s3pvVaksw%3D%3D&md5=40797780595d2982934652104e8a93b2CAS |
Spagnuolo-Weaver, M., Fuerst, R., Campbell, S. T., Meehan, B. M., McNeilly, F., Adair, B., and Allan, G. (1999). A fluorimeter-based RT-PCR method for the detection and quantitation of porcine cytokines. J. Immunol. Methods 230, 19–27.
| A fluorimeter-based RT-PCR method for the detection and quantitation of porcine cytokines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnslynsbk%3D&md5=042920c1f5c81a52fbb962567c7cc6c6CAS |
Takemura, Y., Osuga, Y., Harada, M., Hirata, T., Koga, K., Morimoto, C., Hirota, Y., Yoshino, O., Yano, T., and Taketani, Y. (2005). Serum adiponectin concentrations are decreased in women with endometriosis. Hum. Reprod. 20, 3510–3513.
| Serum adiponectin concentrations are decreased in women with endometriosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gltr3K&md5=f4e45da6f9fbe3ecf1d97a5129beeb9fCAS |
Takemura, Y., Osuga, Y., Yamauchi, T., Kobayashi, M., Harada, M., Hirata, T., Morimoto, C., Hirota, Y., Yoshino, O., Koga, K., Yano, T., Kadowaki, T., and Taketani, Y. (2006). Expression of adiponectin receptors and its possible implication in the human endometrium. Endocrinology 147, 3203–3210.
| Expression of adiponectin receptors and its possible implication in the human endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlOku7Y%3D&md5=a465f12b9c4a4f5f131c774971e999e5CAS |
Tobert, J. A. (1976). A study of the possible role of prostaglandins in decidualization using a nonsurgical method for the instillation of fluids into the rat uterine lumen. J. Reprod. Fertil. 47, 391–393.
| A study of the possible role of prostaglandins in decidualization using a nonsurgical method for the instillation of fluids into the rat uterine lumen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XkvFWnsrs%3D&md5=1dd558de5d8a7d22bf2ed0db7c6daf6cCAS |
Tsujii, H. (1996). Effect of prostaglandin E2, F2α and indomethacin on the incorporation of 3H-methionine in rat blastocysts development. J. Mamm. Ova Res. 13, 8–11.
| Effect of prostaglandin E2, F2α and indomethacin on the incorporation of 3H-methionine in rat blastocysts development.Crossref | GoogleScholarGoogle Scholar |
Waclawik, A., and Ziecik, A. J. (2007). Differential expression of prostaglandin (PG) synthesis enzymes in conceptus during peri-implantation period and endometrial expression of carbonyl reductase/PG 9-ketoreductase in the pig. J. Endocrinol. 194, 499–510.
| Differential expression of prostaglandin (PG) synthesis enzymes in conceptus during peri-implantation period and endometrial expression of carbonyl reductase/PG 9-ketoreductase in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKms7vE&md5=e0eb54da0843b1346c4242e42fd0c4c0CAS |
Wang, Y., Wang, X., Lau, W. B., Yuan, Y., Booth, D., Li, J. J., Scalia, R., Preston, K., Gao, E., Koch, W., and Ma, X. L. (2014). Adiponectin inhibits tumor necrosis factor-α-induced vascular inflammatory response via caveolin-mediated ceramidase recruitment and activation. Circ. Res. 114, 792–805.
| Adiponectin inhibits tumor necrosis factor-α-induced vascular inflammatory response via caveolin-mediated ceramidase recruitment and activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtlSiurs%3D&md5=33a38c0cf6b442262979553050eaf1e0CAS |
Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., Ezaki, O., Akanuma, Y., Gavrilova, O., Vinson, C., Reitman, M. L., Kagechika, H., Shudo, K., Yoda, M., Nakano, Y., Tobe, K., Nagai, R., Kimura, S., Tomita, M., Froguel, P., and Kadowaki, T. (2001). The fat-derived hormone Adipoq reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946.
| The fat-derived hormone Adipoq reverses insulin resistance associated with both lipoatrophy and obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVOkt7o%3D&md5=1b61548dd1062b9cf0a0afaf62128f33CAS |
Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N. H., Shibata, Y., Terauchi, Y., Froguel, P., Tobe, K., Koyasu, S., Taira, K., Kitamura, T., Shimizu, T., Nagai, R., and Kadowaki, T. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769.
| Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksV2itL8%3D&md5=8a4b6d1d816f43f380f8cb15e2bb3517CAS |
Yokota, T., Oritani, K., Takahashi, I., Ishikawa, J., Matsuyama, A., Ouchi, N., Kihara, S., Funahashi, T., Tenner, A. J., Tomiyama, Y., and Matsuzawa, Y. (2000). Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96, 1723–1732.
| 1:CAS:528:DC%2BD3cXmt1OmtLY%3D&md5=a745ec1456463386a9500511694342b6CAS |