Effect and possible mechanisms of melatonin treatment on the quality and developmental potential of aged bovine oocytes
Shuang Liang A , Jing Guo A , Jeong-Woo Choi A , Nam-Hyung Kim A B and Xiang-Shun Cui A BA Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea.
B Corresponding authors. Emails: xscui@cbnu.ac.kr; nhkim@chungbuk.ac.kr
Reproduction, Fertility and Development 29(9) 1821-1831 https://doi.org/10.1071/RD16223
Submitted: 6 January 2016 Accepted: 27 September 2016 Published: 26 October 2016
Abstract
After reaching the metaphase II (MII) stage, unfertilised oocytes undergo a time-dependent process of quality deterioration referred to as oocyte aging. The associated morphological and cellular changes lead to decreased oocyte developmental potential. This study investigated the effect of exogenous melatonin supplementation on in vitro aged bovine oocytes and explored its underlying mechanisms. The levels of cytoplasmic reactive oxygen species and DNA damage response in bovine oocytes increased during in vitro aging. Meanwhile, maturation promoting factor activity significantly decreased and the proportion of morphologically abnormal oocytes significantly increased. Melatonin supplementation significantly decreased quality deterioration in aged bovine MII oocytes (P < 0.05). Additionally, it decreased the frequency of aberrant spindle organisation and cortical granule release during oocyte aging (P < 0.05). In the melatonin-supplemented group, mitochondrial membrane potential and ATP production were significantly increased compared with control. Furthermore, melatonin treatment significantly increased the speed of development of bovine oocytes to the blastocyst stage after in vitro fertilisation and significantly decreased the apoptotic rate in the blastocysts (P < 0.05). The expression of Bax and Casp3 in the blastocysts was significantly reduced after treatment with melatonin, whereas expression of Bcl2 significantly increased (P < 0.05). In conclusion, these findings suggest that supplementation of aged bovine oocytes with exogenous melatonin improves oocyte quality, thereby enhancing the developmental capacity of early embryos.
Additional keywords: embryo development, fertilisation, oocyte aging.
References
Abecia, J. A., Forcada, F., and Zúñiga, O. (2002). The effect of melatonin on the secretion of progesterone in sheep and on the development of ovine embryos in vitro. Vet. Res. Commun. 26, 151–158.| The effect of melatonin on the secretion of progesterone in sheep and on the development of ovine embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD387ovFamug%3D%3D&md5=1adf93937b8536717a7e65caa1b776d7CAS | 11922484PubMed |
Agung, B., Otoi, T., Wongsrikeao, P., Taniguchi, M., Shimizu, R., Watari, H., and Nagai, T. (2006). Effect of maturation culture period of oocytes on the sex ratio of in vitro fertilized bovine embryos. J. Reprod. Dev. 52, 123–127.
| Effect of maturation culture period of oocytes on the sex ratio of in vitro fertilized bovine embryos.Crossref | GoogleScholarGoogle Scholar | 16276038PubMed |
Alikani, M., Calderon, G., Tomkin, G., Garrisi, J., Kokot, M., and Cohen, J. (2000). Cleavage anomalies in early human embryos and survival after prolonged culture in vitro. Hum. Reprod. 15, 2634–2643.
| Cleavage anomalies in early human embryos and survival after prolonged culture in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FoslWmug%3D%3D&md5=5746ab2655d0d6232acacd2a61d7392aCAS | 11098037PubMed |
Arlotto, T., Schwartz, J., First, N., and Leibfried-Rutledge, M. (1996). Aspects of follicle and oocyte stage that affect in vitro maturation and development of bovine oocytes. Theriogenology 45, 943–956.
| Aspects of follicle and oocyte stage that affect in vitro maturation and development of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVKisA%3D%3D&md5=4e7e6c35af37ae7ab8506a773435778bCAS | 16727855PubMed |
Asano, Y. (2012). Age-related accumulation of non-heme ferric and ferrous iron in mouse ovarian stroma visualized by sensitive non-heme iron histochemistry. J. Histochem. Cytochem. 60, 229–242.
| Age-related accumulation of non-heme ferric and ferrous iron in mouse ovarian stroma visualized by sensitive non-heme iron histochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Ojur0%3D&md5=f7d7e15fc9dbc74ef1cc8ed802f67282CAS | 22108647PubMed |
Bai, Z. D., Liu, K., and Wang, X. Y. (2006). Developmental potential of aged oocyte rescued by nuclear transfer following parthenogenetic activation and in vitro fertilization. Mol. Reprod. Dev. 73, 1448–1453.
| Developmental potential of aged oocyte rescued by nuclear transfer following parthenogenetic activation and in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSksb%2FI&md5=fafa4d0ed4e52220fdd8f77ca0498930CAS | 16894546PubMed |
Ben‐Meir, A., Burstein, E., Borrego‐Alvarez, A., Chong, J., Wong, E., Yavorska, T., Naranian, T., Chi, M., Wang, Y., and Bentov, Y. (2015). Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging. Aging Cell 14, 887–895.
| Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOhtbfE&md5=7a1f798404d616ebc3ff0951c8cf43e2CAS | 26111777PubMed |
Bogliolo, L., Murrone, O., Di Emidio, G., Piccinini, M., Ariu, F., Ledda, S., and Tatone, C. (2013). Raman spectroscopy-based approach to detect aging-related oxidative damage in the mouse oocyte. J. Assist. Reprod. Genet. 30, 877–882.
| Raman spectroscopy-based approach to detect aging-related oxidative damage in the mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 23860776PubMed |
Brzezinski, A., Seibel, M. M., Lynch, H. J., Deng, M.-H., and Wurtman, R. J. (1987). Melatonin in human preovulatory follicular fluid. J. Clin. Endocrinol. Metab. 64, 865–867.
| Melatonin in human preovulatory follicular fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhvV2mtrY%3D&md5=ea1b510bf9adbc13fefa77062e7467daCAS | 3818907PubMed |
Chi, M. M., Manchester, J. K., Yang, V. C., Curato, A. D., Strickler, R. C., and Lowry, O. H. (1988). Contrast in levels of metabolic enzymes in human and mouse ova. Biol. Reprod. 39, 295–307.
| Contrast in levels of metabolic enzymes in human and mouse ova.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXls1Oku7Y%3D&md5=8b5954784b478d3440d6e8210729acc4CAS | 2902884PubMed |
Choi, W.-J., Banerjee, J., Falcone, T., Bena, J., Agarwal, A., and Sharma, R. K. (2007). Oxidative stress and tumor necrosis factor-α-induced alterations in metaphase II mouse oocyte spindle structure. Fertil. Steril. 88, 1220–1231.
| Oxidative stress and tumor necrosis factor-α-induced alterations in metaphase II mouse oocyte spindle structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlShsLnL&md5=504b3b311317d41b074b455e52fb17e3CAS | 17601599PubMed |
Choi, J., Park, S. M., Lee, E., Kim, J. H., Jeong, Y. I., Lee, J. Y., Park, S. W., Kim, H. S., Hossein, M. S., and Jeong, Y. W. (2008). Anti‐apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Mol. Reprod. Dev. 75, 1127–1135.
| Anti‐apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFWgt7w%3D&md5=3d3bde780cb4aae859e70f02d367412cCAS | 18324672PubMed |
Djahanbakhch, O., Ezzati, M., and Zosmer, A. (2007). Reproductive ageing in women. J. Pathol. 211, 219–231.
| Reproductive ageing in women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisFyktrg%3D&md5=dafa73e14095faf2c4cfd5931551252aCAS | 17200943PubMed |
El-Raey, M., and Nagai, T. (2014). Different aspects of cattle oocyte in vitro maturation: review. J. Reprod. Infertil. 5, 1–13.
| Different aspects of cattle oocyte in vitro maturation: review.Crossref | GoogleScholarGoogle Scholar |
Fadini, R., Renzini, M. M., Guarnieri, T., Dal Canto, M., De Ponti, E., Sutcliffe, A., Shevlin, M., Comi, R., and Coticchio, G. (2012). Comparison of the obstetric and perinatal outcomes of children conceived from in vitro or in vivo matured oocytes in in vitro maturation treatments with births from conventional ICSI cycles. Hum. Reprod. 27, 3601–3608.
| Comparison of the obstetric and perinatal outcomes of children conceived from in vitro or in vivo matured oocytes in in vitro maturation treatments with births from conventional ICSI cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKrsLvO&md5=170c953ffd079d199e089f1f5919f1a2CAS | 23042796PubMed |
Fissore, R. A., Kurokawa, M., Knott, J., Zhang, M., and Smyth, J. (2002). Mechanisms underlying oocyte activation and postovulatory ageing. Reproduction 124, 745–754.
| Mechanisms underlying oocyte activation and postovulatory ageing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVWitw%3D%3D&md5=0a72f1d0f8944597e33ccd84a42bdc78CAS | 12530912PubMed |
Fu, J., Zhao, S. D., Liu, H. J., Yuan, Q. H., Liu, S. M., Zhang, Y. M., Ling, E. A., and Hao, A. J. (2011). Melatonin promotes proliferation and differentiation of neural stem cells subjected to hypoxia in vitro. J. Pineal Res. 51, 104–112.
| Melatonin promotes proliferation and differentiation of neural stem cells subjected to hypoxia in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslKqsb8%3D&md5=9602d0a0b71d90e5f7701f9e0f75305fCAS | 21392094PubMed |
Gao, C., Han, H. B., Tian, X. Z., Tan, D. X., Wang, L., Zhou, G. B., Zhu, S. E., and Liu, G. S. (2012). Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2‐cell embryos. J. Pineal Res. 52, 305–311.
| Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2‐cell embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFylt7c%3D&md5=9ea046e723783a20c0ac3f4b5d439d22CAS | 22225541PubMed |
García, J. J., López‐Pingarrón, L., Almeida‐Souza, P., Tres, A., Escudero, P., García‐Gil, F. A., Tan, D. X., Reiter, R. J., Ramírez, J. M., and Bernal‐Pérez, M. (2014). Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J. Pineal Res. 56, 225–237.
| Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review.Crossref | GoogleScholarGoogle Scholar | 24571249PubMed |
Heggeness, M. H., Simon, M., and Singer, S. (1978). Association of mitochondria with microtubules in cultured cells. Proc. Natl. Acad. Sci. USA 75, 3863–3866.
| Association of mitochondria with microtubules in cultured cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlvFClt7w%3D&md5=f5ed1b021207e0c4f367d2701ed7387cCAS |
Hooper, L. M., Payton, R. R., Rispoli, L. A., Saxton, A. M., and Edwards, J. L. (2015). Impact of heat stress on germinal vesicle breakdown and lipolytic changes during in vitro maturation of bovine oocytes. J. Reprod. Dev. 61, 459–464.
| Impact of heat stress on germinal vesicle breakdown and lipolytic changes during in vitro maturation of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 26120041PubMed |
Huo, L.-J., Fan, H.-Y., Liang, C.-G., Yu, L.-Z., Zhong, Z.-S., Chen, D.-Y., and Sun, Q.-Y. (2004). Regulation of ubiquitin-proteasome pathway on pig oocyte meiotic maturation and fertilization. Biol. Reprod. 71, 853–862.
| Regulation of ubiquitin-proteasome pathway on pig oocyte meiotic maturation and fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFejurw%3D&md5=3b3b5085e572920742d6e909f9562696CAS | 15115724PubMed |
Ishizuka, B., Kuribayashi, Y., Murai, K., Amemiya, A., and Itoh, M. T. (2000). The effect of melatonin on in vitro fertilization and embryo development in mice. J. Pineal Res. 28, 48–51.
| The effect of melatonin on in vitro fertilization and embryo development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1Ogtw%3D%3D&md5=8c1e79a69422a9aa5836c7b2cbd1269aCAS | 10626601PubMed |
Juetten, J., and Bavister, B. D. (1983). Effects of egg aging on in vitro fertilization and first cleavage division in the hamster. Gamete Res. 8, 219–230.
| Effects of egg aging on in vitro fertilization and first cleavage division in the hamster.Crossref | GoogleScholarGoogle Scholar |
Kang, J. T., Koo, O. J., Kwon, D. K., Park, H. J., Jang, G., Kang, S. K., and Lee, B. C. (2009). Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J. Pineal Res. 46, 22–28.
| Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsV2rtQ%3D%3D&md5=a45b09848aa9f08062e0af0c247089b3CAS | 18494781PubMed |
Khalili, M. A., Nottola, S. A., Shahedi, A., and Macchiarelli, G. (2013). Contribution of human oocyte architecture to success of in vitro maturation technology. Iran. J. Reprod. Med. 11, 1.
| 1:CAS:528:DC%2BC3sXpsFCnsr8%3D&md5=037af923933a5356d924f68c97269447CAS | 24639686PubMed |
Kikuchi, K., Naito, K., Noguchi, J., Shimada, A., Kaneko, H., Yamashita, M., Aoki, F., Tojo, H., and Toyoda, Y. (2000). Maturation/M-phase promoting factor: a regulator of aging in porcine oocytes. Biol. Reprod. 63, 715–722.
| Maturation/M-phase promoting factor: a regulator of aging in porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCitbc%3D&md5=48b0fc6b8831339c148ca22314664dcbCAS | 10952912PubMed |
Koyama, K., Kang, S.-S., Huang, W., Yanagawa, Y., Takahashi, Y., and Nagano, M. (2014a). Aging-related changes in in vitro-matured bovine oocytes: oxidative stress, mitochondrial activity and ATP content after nuclear maturation. J. Reprod. Dev. 60, 136–142.
| Aging-related changes in in vitro-matured bovine oocytes: oxidative stress, mitochondrial activity and ATP content after nuclear maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslWmsLw%3D&md5=0420623f4530e51256e794a8fe5ae588CAS | 24492658PubMed |
Koyama, K., Sung-Sik, K., Huang, W., Yanagawa, Y., Takahashi, Y., and Nagano, M. (2014b). Aging-related changes in in vitro-matured bovine oocytes: oxidative stress, mitochondrial activity and ATP content after nuclear maturation. J. Reprod. Dev. 60, 136.
| Aging-related changes in in vitro-matured bovine oocytes: oxidative stress, mitochondrial activity and ATP content after nuclear maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslWmsLw%3D&md5=0420623f4530e51256e794a8fe5ae588CAS | 24492658PubMed |
Kujjo, L. L., and Perez, G. I. (2012). Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction 143, 1–10.
| Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1yht7g%3D&md5=da22a802c1799a1aedc9f812f0c888ddCAS | 22046054PubMed |
Lacham-Kaplan, O., and Trounson, A. (2008). Reduced developmental competence of immature, in vitro matured and postovulatory aged mouse oocytes following IVF and ICSI. Reprod. Biol. Endocrinol. 6, 58.
| Reduced developmental competence of immature, in vitro matured and postovulatory aged mouse oocytes following IVF and ICSI.Crossref | GoogleScholarGoogle Scholar | 19040764PubMed |
Lee, S. E., Kim, E. Y., Choi, H. Y., Moon, J. J., Park, M. J., Lee, J. B., Jeong, C. J., and Park, S. P. (2014). Rapamycin rescues the poor developmental capacity of aged porcine oocytes. Asian-australas. J. Anim. Sci. 27, 635.
| Rapamycin rescues the poor developmental capacity of aged porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps1Crtb4%3D&md5=ec6f7c6d4fc6d777e80aee9d6633d36aCAS | 25049998PubMed |
Liang, S., Zhao, M.-H., Guo, J., Choi, J.-w., Kim, N.-H., and Cui, X.-S. (2016). Polo-like kinase 4 regulates spindle and actin assembly in meiosis and influence of early embryonic development in bovine oocytes. Theriogenology 85, 754–761.e1.
| Polo-like kinase 4 regulates spindle and actin assembly in meiosis and influence of early embryonic development in bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslKgtrvJ&md5=8c14d5c9b6d7325a598cd94bdcb77c6aCAS | 26549124PubMed |
Liu, M. (2011). The biology and dynamics of mammalian cortical granules. Reprod. Biol. Endocrinol. 9, 149.
| The biology and dynamics of mammalian cortical granules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Gg&md5=be3654392acb9ef4a979b36a2e284fc9CAS | 22088197PubMed |
Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2– ΔΔCT method. methods 25, 402–408.
| Analysis of relative gene expression data using real-time quantitative PCR and the 2– ΔΔCT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=3d53b7f31b0c4fa91bfc79f22f87effaCAS | 11846609PubMed |
Lord, T., Nixon, B., Jones, K. T., and Aitken, R. J. (2013). Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biol. Reprod. 88, 67.
| Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro.Crossref | GoogleScholarGoogle Scholar | 23365415PubMed |
Lu, F., Jiang, J., Li, N., Zhang, S., Sun, H., Luo, C., Wei, Y., and Shi, D. (2011). Effects of recipient oocyte age and interval from fusion to activation on development of buffalo (Bubalus bubalis) nuclear transfer embryos derived from fetal fibroblasts. Theriogenology 76, 967–974.
| Effects of recipient oocyte age and interval from fusion to activation on development of buffalo (Bubalus bubalis) nuclear transfer embryos derived from fetal fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MjmsVOjsA%3D%3D&md5=3f453c86295a1011499b0cdb30bee72bCAS | 21752448PubMed |
Luo, J., McGinnis, L. K., and Kinsey, W. H. (2009). Fyn kinase activity is required for normal organization and functional polarity of the mouse oocyte cortex. Mol. Reprod. Dev. 76, 819.
| Fyn kinase activity is required for normal organization and functional polarity of the mouse oocyte cortex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptleht7k%3D&md5=6db83cc79102e40021a46b968f158edbCAS | 19363790PubMed |
McGinnis, L. K., Pelech, S., and Kinsey, W. H. (2014). Post‐ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis. Mol. Reprod. Dev. 81, 928–945.
| Post‐ovulatory aging of oocytes disrupts kinase signaling pathways and lysosome biogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslelsrnN&md5=70102a2b17b13f0225dfcfc33584c691CAS | 25242074PubMed |
Miao, Y.-L., Kikuchi, K., Sun, Q.-Y., and Schatten, H. (2009). Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum. Reprod. Update 15, 573–585.
| Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility.Crossref | GoogleScholarGoogle Scholar | 19429634PubMed |
Nasr-Esfahani, M. H., Aitken, J. R., and Johnson, M. H. (1990). Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development 109, 501–507.
| 1:CAS:528:DyaK3cXlsV2nsbo%3D&md5=0597f6d78029372dfb168169ef6acc5dCAS | 2401209PubMed |
Niwa, K. (1993). Effectiveness of in vitro maturation and in vitro fertilization techniques in pigs. J. Reprod. Fertil. Suppl. 48, 49–59.
| 1:STN:280:DyaK2c7psVCktA%3D%3D&md5=c1b38ec0d1434f0793fa0a6ef736a63cCAS | 8145214PubMed |
Papis, K., Poleszczuk, O., Wenta‐Muchalska, E., and Modlinski, J. A. (2007). Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. J. Pineal Res. 43, 321–326.
| Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Knu73M&md5=2a067f97200aa0c014615170dbf9ade9CAS | 17910599PubMed |
Park, Y.-S., Kim, S.-S., Kim, J.-M., Park, H.-D., and Byun, M.-D. (2005). The effects of duration of in vitro maturation of bovine oocytes on subsequent development, quality and transfer of embryos. Theriogenology 64, 123–134.
| The effects of duration of in vitro maturation of bovine oocytes on subsequent development, quality and transfer of embryos.Crossref | GoogleScholarGoogle Scholar | 15935848PubMed |
Picton, H. M. (2002). Oocyte maturation in vitro. Curr. Opin. Obstet. Gynecol. 14, 295–302.
| Oocyte maturation in vitro.Crossref | GoogleScholarGoogle Scholar | 12032386PubMed |
Pieri, C., Moroni, F., Marra, M., Marcheselli, F., and Recchioni, R. (1995). Melatonin is an efficient antioxidant. Arch. Gerontol. Geriatr. 20, 159–165.
| Melatonin is an efficient antioxidant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1CqtLc%3D&md5=285e7c6ac4c5e4ed308dbbed97847eb0CAS | 15374244PubMed |
Ptak, G., Lopes, F., Matsukawa, K., Tischner, M., and Loi, P. (2006). Leukaemia inhibitory factor enhances sheep fertilization in vitro via an influence on the oocyte. Theriogenology 65, 1891–1899.
| Leukaemia inhibitory factor enhances sheep fertilization in vitro via an influence on the oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVCksbY%3D&md5=be429bb5965297227e0e93309674b896CAS | 16316680PubMed |
Reiter, R. J., Tan, D.-X., and Fuentes-Broto, L. (2010). Melatonin: a multitasking molecule. Prog. Brain Res. 181, 127–151.
| Melatonin: a multitasking molecule.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVajtb7J&md5=d3cfe7848d3c0f65dfb5c9f0907b4096CAS | 20478436PubMed |
Rivara, S., Lorenzi, S., Mor, M., Plazzi, P. V., Spadoni, G., Bedini, A., and Tarzia, G. (2005). Analysis of structure–activity relationships for MT2 selective antagonists by melatonin MT1 and MT2 receptor models. J. Med. Chem. 48, 4049–4060.
| Analysis of structure–activity relationships for MT2 selective antagonists by melatonin MT1 and MT2 receptor models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlKjur4%3D&md5=6f438b5c3a825ff9210d7414ee848141CAS | 15943478PubMed |
Romero, A., Ramos, E., Los Ríos, C., Egea, J., Pino, J., and Reiter, R. J. (2014). A review of metal‐catalyzed molecular damage: protection by melatonin. J. Pineal Res. 56, 343–370.
| A review of metal‐catalyzed molecular damage: protection by melatonin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtl2nsrg%3D&md5=8e43dc0e4085a3efe96a67cb2417f63cCAS | 24628077PubMed |
Roth, Z., and Hansen, P. (2005). Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. Reproduction 129, 235–244.
| Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1yrsrg%3D&md5=d30cc4b67c963dc59f4d453be9711243CAS | 15695618PubMed |
Ruder, E. H., Hartman, T. J., Blumberg, J., and Goldman, M. B. (2008). Oxidative stress and antioxidants: exposure and impact on female fertility. Hum. Reprod. Update 14, 345–357.
| Oxidative stress and antioxidants: exposure and impact on female fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Sksb4%3D&md5=cf157d29cdd7d12cf40f1e8e6c7e5876CAS | 18535004PubMed |
Shojo, A., Tatemoto, H., and Terada, T. (2000). Effect of oocyte aging on parthenogenetic activation with cycloheximide and alteration of the activity of maturation promoting factor during aging of bovine oocytes. J. Mamm. Ova Res. 17, 35–41.
| Effect of oocyte aging on parthenogenetic activation with cycloheximide and alteration of the activity of maturation promoting factor during aging of bovine oocytes.Crossref | GoogleScholarGoogle Scholar |
Slotte, H., Gustafson, O., Nylund, L., and Pousette, Å. (1990). ATP and ADP in human pre-embryos. Hum. Reprod. 5, 319–322.
| 1:CAS:528:DyaK3MXltV2mu7s%3D&md5=c56d96f8f1ec3c384f9b3249227de661CAS | 2351715PubMed |
Somfai, T., Kikuchi, K., Kaneda, M., Akagi, S., Watanabe, S., Mizutani, E., Haraguchi, S., Dang‐Nguyen, T., Inaba, Y., and Geshi, M. (2011). Cytoskeletal abnormalities in relation with meiotic competence and ageing in porcine and bovine oocytes during in vitro maturation. Anat. Histol. Embryol. 40, 335–344.
| Cytoskeletal abnormalities in relation with meiotic competence and ageing in porcine and bovine oocytes during in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MfktFKjtQ%3D%3D&md5=dbba682218961fb0baf9e0a0560ca39aCAS | 21539596PubMed |
Stojkovic, M., Machado, S. A., Stojkovic, P., Zakhartchenko, V., Hutzler, P., Gonçalves, P. B., and Wolf, E. (2001). Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol. Reprod. 64, 904–909.
| Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVKjtrk%3D&md5=3faf9abcc57c7bc8b4b76b3cd340653aCAS | 11207207PubMed |
Sun, S.-C., Gao, W.-W., Xu, Y.-N., Jin, Y.-X., Wang, Q.-L., Yin, X.-J., Cui, X.-S., and Kim, N.-H. (2012). Degradation of actin nucleators affects cortical polarity of aged mouse oocytes. Fertil. Steril. 97, 984–990.
| Degradation of actin nucleators affects cortical polarity of aged mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvF2jtL4%3D&md5=1f574087c88792b6c8ec7d5d130f8777CAS | 22306711PubMed |
Takahashi, T., Igarashi, H., Kawagoe, J., Amita, M., Hara, S., and Kurachi, H. (2009). Poor embryo development in mouse oocytes aged in vitro is associated with impaired calcium homeostasis. Biol. Reprod. 80, 493–502.
| Poor embryo development in mouse oocytes aged in vitro is associated with impaired calcium homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1amtLk%3D&md5=658a00f0c8869ad77c98a917cf587ef0CAS | 19038861PubMed |
Tamura, H., Takasaki, A., Miwa, I., Taniguchi, K., Maekawa, R., Asada, H., Taketani, T., Matsuoka, A., Yamagata, Y., and Shimamura, K. (2008). Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J. Pineal Res. 44, 280–287.
| Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1ansLk%3D&md5=f233d6d20d18c04ad81eb6c0e1d3de8dCAS | 18339123PubMed |
Tamura, H., Takasaki, A., Taketani, T., Tanabe, M., Kizuka, F., Lee, L., Tamura, I., Maekawa, R., Aasada, H., and Yamagata, Y. (2012). The role of melatonin as an antioxidant in the follicle. J. Ovarian Res. 5, 5.
| The role of melatonin as an antioxidant in the follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFertLk%3D&md5=0468c403be12de19b4bf49123e14a3bcCAS | 22277103PubMed |
Tang, D.-W., Fang, Y., Liu, Z.-X., Wu, Y., Wang, X.-L., Zhao, S., Han, G.-C., and Zeng, S.-M. (2013). The disturbances of endoplasmic reticulum calcium homeostasis caused by increased intracellular reactive oxygen species contributes to fragmentation in aged porcine oocytes. Biol. Reprod. 89, 124.
| The disturbances of endoplasmic reticulum calcium homeostasis caused by increased intracellular reactive oxygen species contributes to fragmentation in aged porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 24089204PubMed |
Tarín, J. J., Pérez-Albalá, S., and Cano, A. (2000). Consequences on offspring of abnormal function in ageing gametes. Hum. Reprod. Update 6, 532–549.
| Consequences on offspring of abnormal function in ageing gametes.Crossref | GoogleScholarGoogle Scholar | 11129687PubMed |
Tian, X., Wang, F., He, C., Zhang, L., Tan, D., Reiter, R. J., Xu, J., Ji, P., and Liu, G. (2014). Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach. J. Pineal Res. 57, 239–247.
| Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsF2ntbjE&md5=0bf7c1736c90edc161abd045152d534dCAS | 25070516PubMed |
Tiwari, M., Prasad, S., Tripathi, A., Pandey, A. N., Singh, A. K., Shrivastav, T. G., and Chaube, S. K. (2016). Involvement of reactive oxygen species in meiotic cell cycle regulation and apoptosis in mammalian oocytes. Reactive Oxygen Species 1, 110–116.
| Involvement of reactive oxygen species in meiotic cell cycle regulation and apoptosis in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar |
Tripathi, A., Kumar, K., and Chaube, S. K. (2010). Meiotic cell cycle arrest in mammalian oocytes. J. Cell. Physiol. 223, 592–600.
| 1:CAS:528:DC%2BC3cXktFyqt78%3D&md5=6d1d2b812c831e9e640f0d65e405a62bCAS | 20232297PubMed |
Wang, F., Tian, X., Zhang, L., Gao, C., He, C., Fu, Y., Ji, P., Li, Y., Li, N., and Liu, G. (2014). Beneficial effects of melatonin on in vitro bovine embryonic development are mediated by melatonin receptor 1. J. Pineal Res. 56, 333–342.
| Beneficial effects of melatonin on in vitro bovine embryonic development are mediated by melatonin receptor 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktV2hsL4%3D&md5=d2efb28dc5852f50328259d3365ca235CAS | 24666110PubMed |
Ward, F., Enright, B., Rizos, D., Boland, M., and Lonergan, P. (2002). Optimization of in vitro bovine embryo production: effect of duration of maturation, length of gamete co-incubation, sperm concentration and sire. Theriogenology 57, 2105–2117.
| Optimization of in vitro bovine embryo production: effect of duration of maturation, length of gamete co-incubation, sperm concentration and sire.Crossref | GoogleScholarGoogle Scholar | 12066869PubMed |
Wignall, S. M., and Villeneuve, A. M. (2009). Lateral microtubule bundles promote chromosome alignment during acentrosomal oocyte meiosis. Nat. Cell Biol. 11, 839–844.
| Lateral microtubule bundles promote chromosome alignment during acentrosomal oocyte meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvF2rsL4%3D&md5=6aac2145aec55f36118e56f243e81dfeCAS | 19525937PubMed |
Wilding, M., Dale, B., Marino, M., di Matteo, L., Alviggi, C., Pisaturo, M. L., Lombardi, L., and De Placido, G. (2001). Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum. Reprod. 16, 909–917.
| Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvitlCktw%3D%3D&md5=228bf47a7e429ffe2b4f7914389ca64bCAS | 11331637PubMed |
Yűce, Ő., and Sadler, K. C. (2001). Postmeiotic unfertilized starfish eggs die by apoptosis. Dev. Biol. 237, 29–44.
| Postmeiotic unfertilized starfish eggs die by apoptosis.Crossref | GoogleScholarGoogle Scholar |
Zhao, X.-M., Du, W.-H., Wang, D., Hao, H.-S., Liu, Y., Qin, T., and Zhu, H.-B. (2011). Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes. Fertil. Steril. 95, 2786–2788.
| Effect of cyclosporine pretreatment on mitochondrial function in vitrified bovine mature oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1aku70%3D&md5=54067a1b90383b56b68cb36b5c9715d6CAS | 21641592PubMed |