Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Determinant molecular markers for peri-gastrulating bovine embryo development

Isabelle Hue
+ Author Affiliations
- Author Affiliations

INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France. Email: isabelle.hue@jouy.inra.fr

Reproduction, Fertility and Development 28(2) 51-65 https://doi.org/10.1071/RD15355
Published: 3 December 2015

Abstract

Peri-gastrulation defines the time frame between blastocyst formation and implantation that also corresponds in cattle to elongation, pregnancy recognition and uterine secretion. Optimally, this developmental window prepares the conceptus for implantation, placenta formation and fetal development. However, this is a highly sensitive period, as evidenced by the incidence of embryo loss or early post-implantation mortality after AI, embryo transfer or somatic cell nuclear transfer. Elongation markers have often been used within this time frame to assess developmental defects or delays, originating either from the embryo, the uterus or the dam. Comparatively, gastrulation markers have not received great attention, although elongation and gastrulation are linked by reciprocal interactions at the molecular and cellular levels. To make this clearer, this peri-gastrulating period is described herein with a focus on its main developmental landmarks, and the resilience of the landmarks in the face of biotechnologies is questioned.

Additional keywords: elongation, epiblast, embryo transfer, extraembryonic, somatic cell nuclear transfer, stages, trophoblast, uterus.


References

Alev, C., Wu, Y., Kasukawa, T., Jakt, L. M., Ueda, H. R., and Sheng, G. (2010). Transcriptomic landscape of the primitive streak. Development 137, 2863–2874.
Transcriptomic landscape of the primitive streak.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaku7jJ&md5=31e89fdeea912ef74e5a0977c25a857bCAS | 20667916PubMed |

Alexopoulos, N. I., Maddox-Hyttel, P., Tveden-Nyborg, P., D’Cruz, N. T., Tecirlioglu, T. R., Cooney, M. A., Schauser, K., Holland, M. K., and French, A. J. (2008). Developmental disparity between in vitro-produced and somatic cell nuclear transfer bovine Days 14 and 21 embryos: implications for embryonic loss. Reproduction 136, 433–445.
Developmental disparity between in vitro-produced and somatic cell nuclear transfer bovine Days 14 and 21 embryos: implications for embryonic loss.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSrtr%2FP&md5=5c692fd991636d45bf03f0e276206b04CAS | 18606825PubMed |

Ang, S. L., and Constam, D. B. (2004). A gene network establishing polarity in the early mouse embryo. Semin. Cell Dev. Biol. 15, 555–561.
A gene network establishing polarity in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVaitbo%3D&md5=fa090f140f1fe2a4332f3ecf878187e1CAS | 15271301PubMed |

Arnold, S. J., and Robertson, E. J. (2009). Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10, 91–103.
Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlGntw%3D%3D&md5=3050a617f7d48545f9b36bb75698caf0CAS | 19129791PubMed |

Arnold, D. R., Bordignon, V., Lefebvre, R., Murphy, B. D., and Smith, L. C. (2006a). Somatic cell nuclear transfer alters peri-implantation trophoblast differentiation in bovine embryos. Reproduction 132, 279–290.
Somatic cell nuclear transfer alters peri-implantation trophoblast differentiation in bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjs74%3D&md5=1ed52ed204c0f217acfac99d26e8fe9bCAS | 16885536PubMed |

Arnold, D. R., Lefebvre, R., and Smith, L. C. (2006b). Characterization of the placenta specific bovine mammalian achaete scute-like homologue 2 (Mash2) gene. Placenta 27, 1124–1131.
Characterization of the placenta specific bovine mammalian achaete scute-like homologue 2 (Mash2) gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFGhurs%3D&md5=c9a4ae4f6e41d7b18a74860e7bdacc9cCAS | 16503349PubMed |

Bai, H., Sakurai, T., Kim, M. S., Muroi, Y., Ideta, A., Aoyagi, Y., Nakajima, H., Takahashi, M., Nagaoka, K., and Imakawa, K. (2009). Involvement of GATA transcription factors in the regulation of endogenous bovine interferon-tau gene transcription. Mol. Reprod. Dev. 76, 1143–1152.
Involvement of GATA transcription factors in the regulation of endogenous bovine interferon-tau gene transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12msbvP&md5=3156a288a3b7314973a5fce766a4ec4cCAS | 19598245PubMed |

Bai, H., Sakurai, T., Someya, Y., Konno, T., Ideta, A., Aoyagi, Y., and Imakawa, K. (2011). Regulation of trophoblast-specific factors by GATA2 and GATA3 in bovine trophoblast CT-1 cells. J. Reprod. Dev. 57, 518–525.
Regulation of trophoblast-specific factors by GATA2 and GATA3 in bovine trophoblast CT-1 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GksLnK&md5=5e1b0f372e654291270cc201e1cd4aedCAS | 21606631PubMed |

Bauersachs, S., and Wolf, E. (2012). Transcriptome analyses of bovine, porcine and equine endometrium during the pre-implantation phase. Anim. Reprod. Sci. 134, 84–94.
Transcriptome analyses of bovine, porcine and equine endometrium during the pre-implantation phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ekurrP&md5=7c279178f2a3af8e05b2c5f2c3a873c7CAS | 22917876PubMed |

Bauersachs, S., Ulbrich, S. E., Zakhartchenko, V., Minten, M., Reichenbach, M., Reichenbach, H. D., Blum, H., Spencer, T. E., and Wolf, E. (2009). The endometrium responds differently to cloned versus fertilized embryos. Proc. Natl Acad. Sci. USA 106, 5681–5686.
The endometrium responds differently to cloned versus fertilized embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGhurk%3D&md5=5ceee190c3790ff9887da7cd8326f3d1CAS | 19307558PubMed |

Bazer, F. W., Song, G., Kim, J., Dunlap, K. A., Satterfield, M. C., Johnson, G. A., Burghardt, R. C., and Wu, G. (2012). Uterine biology in pigs and sheep. J. Anim. Sci. Biotechnol. 3, 23.
Uterine biology in pigs and sheep.Crossref | GoogleScholarGoogle Scholar | 22958877PubMed |

Beaujean, N. (2015). Epigenetics, embryo quality and developmental potential. Reprod. Fertil. Dev. 27, 53–62.
Epigenetics, embryo quality and developmental potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVylt7jP&md5=1ed6470449cf51083ce61130297207f0CAS |

Berg, D. K., van Leeuwen, J., Beaumont, S., Berg, M., and Pfeffer, P. L. (2010). Embryo loss in cattle between Days 7 and 16 of pregnancy. Theriogenology 73, 250–260.
Embryo loss in cattle between Days 7 and 16 of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MfhvVWguw%3D%3D&md5=2dbe48bad6daf7e6a981e48b2089b471CAS | 19880168PubMed |

Berg, D. K., Smith, C. S., Pearton, D. J., Wells, D. N., Broadhurst, R., Donnison, M., and Pfeffer, P. L. (2011). Trophectoderm lineage determination in cattle. Dev. Cell 20, 244–255.
Trophectoderm lineage determination in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFeit7Y%3D&md5=00d6ecfe9d0c886e8153cc10498f409bCAS | 21316591PubMed |

Bermejo-Alvarez, P., Rizos, D., Lonergan, P., and Gutierrez-Adan, A. (2011). Transcriptional sexual dimorphism in elongating bovine embryos: implications for XCI and sex determination genes. Reproduction 141, 801–808.
Transcriptional sexual dimorphism in elongating bovine embryos: implications for XCI and sex determination genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVCktLg%3D&md5=56c7c1ef8b18508a375b8654937b06a0CAS | 21411694PubMed |

Bertocchini, F., and Stern, C. D. (2002). The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling. Dev. Cell 3, 735–744.
The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptF2rtLs%3D&md5=4a60a1abaa26947cced732a156b31021CAS | 12431379PubMed |

Bessonnard, S., De Mot, L., Gonze, D., Barriol, M., Dennis, C., Goldbeter, A., Dupont, G., and Chazaud, C. (2014). Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development 141, 3637–3648.
Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFWhtr7J&md5=a9fd1a642f27050711231e8a48690e2dCAS | 25209243PubMed |

Betsha, S., Hoelker, M., Salilew-Wondim, D., Held, E., Rings, F., Grosse-Brinkhause, C., Cinar, M. U., Havlicek, V., Besenfelder, U., Tholen, E., Looft, C., Schellander, K., and Tesfaye, D. (2013). Transcriptome profile of bovine elongated conceptus obtained from SCNT and IVP pregnancies. Mol. Reprod. Dev. 80, 315–333.
Transcriptome profile of bovine elongated conceptus obtained from SCNT and IVP pregnancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFOkt70%3D&md5=f8dc982b5ce5980dd2d7680ed7fa7855CAS | 23426952PubMed |

Betteridge, K., and Flechon, J. (1988). The anatomy and physiology of pre-attachment bovine embryos. Theriogenology 29, 155–187.
The anatomy and physiology of pre-attachment bovine embryos.Crossref | GoogleScholarGoogle Scholar |

Biase, F. H., Rabel, C., Guillomot, M., Sandra, O., Andropolis, K., Olmstead, C., Oliveira, R., Wallace, R., Le Bourhis, D., Richard, C., Campion, E., Chaulot-Talmon, A., Giraud-Delville, C., Taghouti, G., Jammes, H., Hue, I., Renard, J. P., and Lewin, H. A. (2013). Changes in WNT signaling-related gene expression associated with development and cloning in bovine extra-embryonic and endometrial tissues during the peri-implantation period. Mol. Reprod. Dev. 80, 977–987.
Changes in WNT signaling-related gene expression associated with development and cloning in bovine extra-embryonic and endometrial tissues during the peri-implantation period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ersb3N&md5=4b04e121560112c682fed4073eec41a4CAS | 24038527PubMed |

Black, S. G., Arnaud, F., Burghardt, R. C., Satterfield, M. C., Fleming, J. A., Long, C. R., Hanna, C., Murphy, L., Biek, R., Palmarini, M., and Spencer, T. E. (2010). Viral particles of endogenous betaretroviruses are released in the sheep uterus and infect the conceptus trophectoderm in a transspecies embryo transfer model. J. Virol. 84, 9078–9085.
Viral particles of endogenous betaretroviruses are released in the sheep uterus and infect the conceptus trophectoderm in a transspecies embryo transfer model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WgtLjK&md5=b87bb49269522480084f2c8d98b9141eCAS | 20610723PubMed |

Blomberg, L., Hashizume, K., and Viebahn, C. (2008). Blastocyst elongation, trophoblastic differentiation, and embryonic pattern formation. Reproduction 135, 181–195.
Blastocyst elongation, trophoblastic differentiation, and embryonic pattern formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrtL8%3D&md5=722c06528a19ac7b8c945fb2ab629395CAS | 18239048PubMed |

Bridges, G. A., Day, M. L., Geary, T. W., and Cruppe, L. H. (2013). Deficiencies in the uterine environment and failure to support embryonic development. J. Anim. Sci. 91, 3002–3013.
Deficiencies in the uterine environment and failure to support embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFChsLzM&md5=849b47e13bce79a5a7df46f007ff2fabCAS | 23798511PubMed |

Brooks, K., and Spencer, T. E. (2015). Biological roles of interferon tau (IFNT) and type I IFN receptors in elongation of the ovine conceptus. Biol. Reprod. 92, 47.
Biological roles of interferon tau (IFNT) and type I IFN receptors in elongation of the ovine conceptus.Crossref | GoogleScholarGoogle Scholar | 25505203PubMed |

Brooks, K., Burns, G., and Spencer, T. E. (2014). Conceptus elongation in ruminants: roles of progesterone, prostaglandin, interferon tau and cortisol. J. Anim. Sci. Biotechnol. 5, 53.
Conceptus elongation in ruminants: roles of progesterone, prostaglandin, interferon tau and cortisol.Crossref | GoogleScholarGoogle Scholar | 25810904PubMed |

Brooks, K., Burns, G., and Spencer, T. E. (2015a). Biological Roles of hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1), HSD11B2, and glucocorticoid receptor (NR3C1) in sheep conceptus elongation. Biol. Reprod. 93, 38.
Biological Roles of hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1), HSD11B2, and glucocorticoid receptor (NR3C1) in sheep conceptus elongation.Crossref | GoogleScholarGoogle Scholar | 26085523PubMed |

Brooks, K. E., Burns, G. W., and Spencer, T. E. (2015b). Peroxisome proliferator activator receptor gamma (PPARG) regulates conceptus elongation in sheep. Biol. Reprod. 92, 42.
Peroxisome proliferator activator receptor gamma (PPARG) regulates conceptus elongation in sheep.Crossref | GoogleScholarGoogle Scholar | 25519185PubMed |

Brosens, J. J., Salker, M. S., Teklenburg, G., Nautiyal, J., Salter, S., Lucas, E. S., Steel, J. H., Christian, M., Chan, Y. W., Boomsma, C. M., Moore, J. D., Hartshorne, G. M., Sucurovic, S., Mulac-Jericevic, B., Heijnen, C. J., Quenby, S., Koerkamp, M. J., Holstege, F. C., Shmygol, A., and Macklon, N. S. (2014). Uterine selection of human embryos at implantation. Sci. Rep. 4, 3894.
Uterine selection of human embryos at implantation.Crossref | GoogleScholarGoogle Scholar | 24503642PubMed |

Burns, G., Brooks, K., Wildung, M., Navakanitworakul, R., Christenson, L. K., and Spencer, T. E. (2014). Extracellular vesicles in luminal fluid of the ovine uterus. PLoS One 9, e90913.
Extracellular vesicles in luminal fluid of the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 24614226PubMed |

Cammas, L., Reinaud, P., Bordas, N., Dubois, O., Germain, G., and Charpigny, G. (2006). Developmental regulation of prostacyclin synthase and prostacyclin receptors in the ovine uterus and conceptus during the peri-implantation period. Reproduction 131, 917–927.
Developmental regulation of prostacyclin synthase and prostacyclin receptors in the ovine uterus and conceptus during the peri-implantation period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtV2it78%3D&md5=45783e66288dbfcc8f9a5b96a496235dCAS | 16672356PubMed |

Carter, F., Forde, N., Duffy, P., Wade, M., Fair, T., Crowe, M. A., Evans, A. C., Kenny, D. A., Roche, J. F., and Lonergan, P. (2008). Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod. Fertil. Dev. 20, 368–375.
Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVKksLg%3D&md5=acdd7ec4fe72e8f052d77761a2e2cdb8CAS | 18402756PubMed |

Carthy, T. R., Berry, D. P., Fitzgerald, A., McParland, S., Williams, E. J., Butler, S. T., Cromie, A. R., and Ryan, D. (2014). Risk factors associated with detailed reproductive phenotypes in dairy and beef cows. Animal 8, 695–703.
Risk factors associated with detailed reproductive phenotypes in dairy and beef cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2cnktlyitQ%3D%3D&md5=3e5b1daa798984e656dd26661709c042CAS | 24739348PubMed |

Chakrabarti, R., Hwang, J., Andres Blanco, M., Wei, Y., Lukacisin, M., Romano, R. A., Smalley, K., Liu, S., Yang, Q., Ibrahim, T., Mercatali, L., Amadori, D., Haffty, B. G., Sinha, S., and Kang, Y. (2012a). Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat. Cell Biol. 14, 1212–1222.
Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFeqsrbO&md5=085a16df93cffb1047e255328efa8119CAS | 23086238PubMed |

Chakrabarti, R., Wei, Y., Romano, R. A., DeCoste, C., Kang, Y., and Sinha, S. (2012b). Elf5 regulates mammary gland stem/progenitor cell fate by influencing notch signaling. Stem Cells 30, 1496–1508.
Elf5 regulates mammary gland stem/progenitor cell fate by influencing notch signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOhtLjP&md5=a5e12eacc31985cf4049950f6267635fCAS | 22523003PubMed |

Chang, M. C. (1952). Development of bovine blastocyst with a note on implantation. Anat. Rec. 113, 143–161.
Development of bovine blastocyst with a note on implantation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG38%2Fmtl2itQ%3D%3D&md5=af3ea5e3aa14b8f504751a45e8469ee4CAS | 14933807PubMed |

Chavatte-Palmer, P., Camous, S., Jammes, H., Le Cleac’h, N., Guillomot, M., and Lee, R. S. (2012). Review: placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer. Placenta 33, S99–S104.
Review: placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 22000472PubMed |

Claverie, T., and Wainwright, P. C. (2014). A morphospace for reef fishes: elongation is the dominant axis of body shape evolution. PLoS One 9, e112732.
A morphospace for reef fishes: elongation is the dominant axis of body shape evolution.Crossref | GoogleScholarGoogle Scholar | 25409027PubMed |

Clemente, M., Lopez-Vidriero, I., O’Gaora, P., Mehta, J. P., Forde, N., Gutierrez-Adan, A., Lonergan, P., and Rizos, D. (2011). Transcriptome changes at the initiation of elongation in the bovine conceptus. Biol. Reprod. 85, 285–295.
Transcriptome changes at the initiation of elongation in the bovine conceptus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslOnurg%3D&md5=331789df4189a3c1aadc671c79f881a0CAS | 21508349PubMed |

Cornelis, G., Heidmann, O., Degrelle, S. A., Vernochet, C., Lavialle, C., Letzelter, C., Bernard-Stoecklin, S., Hassanin, A., Mulot, B., Guillomot, M., Hue, I., Heidmann, T., and Dupressoir, A. (2013). Captured retroviral envelope syncytin gene associated with the unique placental structure of higher ruminants. Proc. Natl Acad. Sci. USA 110, E828–E837.
Captured retroviral envelope syncytin gene associated with the unique placental structure of higher ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvVyrtLs%3D&md5=af135c0a333736bb72a7e33099d5ba2fCAS | 23401540PubMed |

Degrelle, S. A., Campion, E., Cabau, C., Piumi, F., Reinaud, P., Richard, C., Renard, J. P., and Hue, I. (2005). Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts. Dev. Biol. 288, 448–460.
Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlaitrjN&md5=34a9bf57a4b684b0f53b3bb0697c9266CAS | 16289134PubMed |

Degrelle, S. A., Le Cao, K. A., Heyman, Y., Everts, R. E., Campion, E., Richard, C., Ducroix-Crepy, C., Tian, X. C., Lewin, H. A., Renard, J. P., Robert-Granie, C., and Hue, I. (2011). A small set of extra-embryonic genes defines a new landmark for bovine embryo staging. Reproduction 141, 79–89.
A small set of extra-embryonic genes defines a new landmark for bovine embryo staging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVehs7s%3D&md5=80905d184f0fad46d18cbf4c1dcd09dbCAS | 20926692PubMed |

Degrelle, S. A., Jaffrezic, F., Campion, E., Le Cao, K. A., Le Bourhis, D., Richard, C., Rodde, N., Fleurot, R., Everts, R. E., Lecardonnel, J., Heyman, Y., Vignon, X., Yang, X., Tian, X. C., Lewin, H. A., Renard, J. P., and Hue, I. (2012). Uncoupled embryonic and extra-embryonic tissues compromise blastocyst development after somatic cell nuclear transfer. PLoS One 7, e38309.
Uncoupled embryonic and extra-embryonic tissues compromise blastocyst development after somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1KntrY%3D&md5=da1587eff2219e94307a37054dea59edCAS | 22701625PubMed |

Deutsch, D. R., Fröhlich, T., Otte, K. A., Beck, A., Habermann, F. A., Wolf, E., and Arnold, G. J. (2014). Stage-specific proteome signatures in early bovine embryo development. J. Proteome Res. 13, 4363–4376.
Stage-specific proteome signatures in early bovine embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlWgsbfM&md5=01baa3bd95fb49af4e32cbfee5cabfbaCAS | 25102770PubMed |

Dobbs, K. B., Khan, F. A., Sakatani, M., Moss, J. I., Ozawa, M., Ealy, A. D., and Hansen, P. J. (2013). Regulation of pluripotency of inner cell mass and growth and differentiation of trophectoderm of the bovine embryo by colony stimulating factor 2. Biol. Reprod. 89, 141.
Regulation of pluripotency of inner cell mass and growth and differentiation of trophectoderm of the bovine embryo by colony stimulating factor 2.Crossref | GoogleScholarGoogle Scholar | 24198123PubMed |

Dorniak, P., Bazer, F. W., Wu, G., and Spencer, T. E. (2012). Conceptus-derived prostaglandins regulate endometrial function in sheep. Biol. Reprod. 87, 9.
Conceptus-derived prostaglandins regulate endometrial function in sheep.Crossref | GoogleScholarGoogle Scholar | 22517622PubMed |

Dorniak, P., Bazer, F. W., and Spencer, T. E. (2013). Physiology and Endocrinology Symposium: biological role of interferon tau in endometrial function and conceptus elongation. J. Anim. Sci. 91, 1627–1638.
Physiology and Endocrinology Symposium: biological role of interferon tau in endometrial function and conceptus elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFWrtb4%3D&md5=477d961abcaf071a4cf05e005c38a709CAS | 23097402PubMed |

Dunlap, K. A., Palmarini, M., Varela, M., Burghardt, R. C., Hayashi, K., Farmer, J. L., and Spencer, T. E. (2006). Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc. Natl Acad. Sci. USA 103, 14 390–14 395.
Endogenous retroviruses regulate periimplantation placental growth and differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOgsrzJ&md5=f661d93c0e273357cab35ec0f74cd152CAS |

Dyck, M. K., Zhou, C., Tsoi, S., Grant, J., Dixon, W. T., and Foxcroft, G. R. (2014). Reproductive technologies and the porcine embryonic transcriptome. Anim. Reprod. Sci. 149, 11–18.
Reproductive technologies and the porcine embryonic transcriptome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVamsrbN&md5=a01af5da6fc53b585a5f9d2a2864efa0CAS | 24953007PubMed |

Eakin, G. S., and Behringer, R. R. (2004). Diversity of germ layer and axis formation among mammals. Semin. Cell Dev. Biol. 15, 619–629.
Diversity of germ layer and axis formation among mammals.Crossref | GoogleScholarGoogle Scholar | 15271307PubMed |

Eozenou, C., Vitorino Carvalho, A., Forde, N., Giraud-Delville, C., Gall, L., Lonergan, P., Auguste, A., Charpigny, G., Richard, C., Pannetier, M., and Sandra, O. (2012). FOXL2 is regulated during the bovine estrous cycle and its expression in the endometrium is independent of conceptus-derived interferon tau. Biol. Reprod. 87, 32.
FOXL2 is regulated during the bovine estrous cycle and its expression in the endometrium is independent of conceptus-derived interferon tau.Crossref | GoogleScholarGoogle Scholar | 22623620PubMed |

Ezashi, T., Ealy, A. D., Ostrowski, M. C., and Roberts, R. M. (1998). Control of interferon-tau gene expression by Ets-2. Proc. Natl Acad. Sci. USA 95, 7882–7887.
Control of interferon-tau gene expression by Ets-2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXks1SnsL0%3D&md5=0ec24144285fef88d779eea63b4c4b79CAS | 9653109PubMed |

Farin, P. W., Piedrahita, J. A., and Farin, C. E. (2006). Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 65, 178–191.
Errors in development of fetuses and placentas from in vitro-produced bovine embryos.Crossref | GoogleScholarGoogle Scholar | 16266745PubMed |

Fléchon, J. E., Guillomot, M., Charlier, M., Fléchon, B., and Martal, J. (1986). Experimental studies on the elongation of the ewe blastocyst. Reprod. Nutr. Dev. 26, 1017–1024.
Experimental studies on the elongation of the ewe blastocyst.Crossref | GoogleScholarGoogle Scholar | 3775097PubMed |

Fléchon, J. E., Fléchon, B., Degrouard, J., and Guillomot, M. (2007). Cellular features of the extra-embryonic endoderm during elongation in the ovine conceptus. Genesis 45, 709–715.
Cellular features of the extra-embryonic endoderm during elongation in the ovine conceptus.Crossref | GoogleScholarGoogle Scholar | 17987664PubMed |

Forde, N., and Lonergan, P. (2012). Transcriptomic analysis of the bovine endometrium: what is required to establish uterine receptivity to implantation in cattle? J. Reprod. Dev. 58, 189–195.
Transcriptomic analysis of the bovine endometrium: what is required to establish uterine receptivity to implantation in cattle?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVKju7Y%3D&md5=cc0cb8b2b87283073b66dabe33bc6c4cCAS | 22738902PubMed |

Forde, N., Beltman, M. E., Duffy, G. B., Duffy, P., Mehta, J. P., O’Gaora, P., Roche, J. F., Lonergan, P., and Crowe, M. A. (2011a). Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation. Biol. Reprod. 84, 266–278.
Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVeltr4%3D&md5=0edc0fdf9020edc126202a59d5bcdf71CAS | 20881316PubMed |

Forde, N., Carter, F., Spencer, T. E., Bazer, F. W., Sandra, O., Mansouri-Attia, N., Okumu, L. A., McGettigan, P. A., Mehta, J. P., McBride, R., O’Gaora, P., Roche, J. F., and Lonergan, P. (2011b). Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant? Biol. Reprod. 85, 144–156.
Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOlsL4%3D&md5=f72f2579f7206315fe155fea0de513fdCAS | 21349821PubMed |

Forde, N., Duffy, G. B., McGettigan, P. A., Browne, J. A., Mehta, J. P., Kelly, A. K., Mansouri-Attia, N., Sandra, O., Loftus, B. J., Crowe, M. A., Fair, T., Roche, J. F., Lonergan, P., and Evans, A. C. (2012). Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau. Physiol. Genomics 44, 799–810.
Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslamuw%3D%3D&md5=1ccaf9ba21f6e914cf4b94c5342c23d1CAS | 22759920PubMed |

Forde, N., McGettigan, P. A., Mehta, J. P., O’Hara, L., Mamo, S., Bazer, F. W., Spencer, T. E., and Lonergan, P. (2014a). Proteomic analysis of uterine fluid during the pre-implantation period of pregnancy in cattle. Reproduction 147, 575–587.
Proteomic analysis of uterine fluid during the pre-implantation period of pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFGntbo%3D&md5=3c0674e2dbed02efac5e3b107b6347f8CAS | 24478148PubMed |

Forde, N., Simintiras, C. A., Sturmey, R., Mamo, S., Kelly, A. K., Spencer, T. E., Bazer, F. W., and Lonergan, P. (2014b). Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle. PLoS One 9, e100010.
Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar | 24960174PubMed |

Forde, N., Bazer, F. W., Spencer, T. E., and Lonergan, P. (2015). ‘Conceptualizing’ the endometrium: identification of conceptus-derived proteins during early pregnancy in cattle. Biol. Reprod. 92, 156.
‘Conceptualizing’ the endometrium: identification of conceptus-derived proteins during early pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar | 25947061PubMed |

Gaivão, M. M. F., Rambags, B. P. B., and Stout, T. A. E. (2014). Gastrulation and the establishment of the three germ layers in the early horse conceptus. Theriogenology 82, 354–365.
Gastrulation and the establishment of the three germ layers in the early horse conceptus.Crossref | GoogleScholarGoogle Scholar |

Gao, Y., Hyttel, P., and Hall, V. J. (2011a). Dynamic changes in epigenetic marks and gene expression during porcine epiblast specification. Cell. Reprogram. 13, 345–360.
Dynamic changes in epigenetic marks and gene expression during porcine epiblast specification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOqurzJ&md5=c1d422a51846ad962aa85c3af77e5ba8CAS | 21718109PubMed |

Gao, Y., Jammes, H., Rasmussen, M. A., Oestrup, O., Beaujean, N., Hall, V., and Hyttel, P. (2011b). Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells. Epigenetics 6, 1149–1161.
Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlGks74%3D&md5=cc579b3e8f48ebbe8322c4b09b00ae32CAS | 21975513PubMed |

Gómez, E., and Muñoz, M. (2015). Multiple-embryo transfer for studying very early maternal–embryo interactions in cattle. Reproduction 150, R35–R43.
Multiple-embryo transfer for studying very early maternal–embryo interactions in cattle.Crossref | GoogleScholarGoogle Scholar | 25918434PubMed |

Graf, A., Krebs, S., Heininen-Brown, M., Zakhartchenko, V., Blum, H., and Wolf, E. (2014a). Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Anim. Reprod. Sci. 149, 46–58.
Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVymu7bF&md5=15ee4fa5e714aef756805eaea687603aCAS | 24975847PubMed |

Graf, A., Krebs, S., Zakhartchenko, V., Schwalb, B., Blum, H., and Wolf, E. (2014b). Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc. Natl Acad. Sci. USA 111, 4139–4144.
Fine mapping of genome activation in bovine embryos by RNA sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtlyhsrs%3D&md5=50561fbd860a5c6259ac26b9cf295190CAS | 24591639PubMed |

Gray, C. A., Burghardt, R. C., Johnson, G. A., Bazer, F. W., and Spencer, T. E. (2002). Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation. Reproduction 124, 289–300.
Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVCitL8%3D&md5=99d2efe70c6bbdec1809d34d42889deaCAS | 12141942PubMed |

Gray, C. A., Abbey, C. A., Beremand, P. D., Choi, Y., Farmer, J. L., Adelson, D. L., Thomas, T. L., Bazer, F. W., and Spencer, T. E. (2006). Identification of endometrial genes regulated by early pregnancy, progesterone, and interferon tau in the ovine uterus. Biol. Reprod. 74, 383–394.
Identification of endometrial genes regulated by early pregnancy, progesterone, and interferon tau in the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kktg%3D%3D&md5=e11cd511056222db8b74745527742010CAS | 16251498PubMed |

Groebner, A. E., Zakhartchenko, V., Bauersachs, S., Rubio-Aliaga, I., Daniel, H., Buttner, M., Reichenbach, H. D., Meyer, H. H., Wolf, E., and Ulbrich, S. E. (2011). Reduced amino acids in the bovine uterine lumen of cloned versus in vitro fertilized pregnancies prior to implantation. Cell. Reprogram. 13, 403–410.
| 1:CAS:528:DC%2BC3MXhtlCgt73F&md5=c89807a02a2f071e788ea43f1f516ddeCAS | 21774685PubMed |

Guillomot, M. (1995). Cellular interactions during implantation in domestic ruminants. J. Reprod. Fertil. Suppl. 49, 39–51.
| 1:CAS:528:DyaK2MXmslWit7g%3D&md5=fe3843ef2cd1b3d2b3694f7dc00b7047CAS | 7623329PubMed |

Guillomot, M., Turbe, A., Hue, I., and Renard, J. P. (2004). Staging of ovine embryos and expression of the T-box genes Brachyury and Eomesodermin around gastrulation. Reproduction 127, 491–501.
Staging of ovine embryos and expression of the T-box genes Brachyury and Eomesodermin around gastrulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Oltrg%3D&md5=e6ac68969ae73f8da40229e41e3eff6cCAS | 15047940PubMed |

Guillomot, M., Campion, E., Prezelin, A., Sandra, O., Hue, I., Le Bourhis, D., Richard, C., Biase, F. H., Rabel, C., Wallace, R., Lewin, H., Renard, J. P., and Jammes, H. (2014). Spatial and temporal changes of decorin, type I collagen and fibronectin expression in normal and clone bovine placenta. Placenta 35, 737–747.
Spatial and temporal changes of decorin, type I collagen and fibronectin expression in normal and clone bovine placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWiu73K&md5=fc2513a5037f22e34136cb736dcbccceCAS | 25012297PubMed |

Gutierrez-Adan, A., White, C. R., Van Soom, A., and Mann, M. R. (2014). Why we should not select the faster embryo: lessons from mice and cattle. Reprod. Fertil. Dev , .
Why we should not select the faster embryo: lessons from mice and cattle.Crossref | GoogleScholarGoogle Scholar | 25322142PubMed |

Hailemariam, D., Ibrahim, S., Hoelker, M., Drillich, M., Heuwieser, W., Looft, C., Cinar, M. U., Tholen, E., Schellander, K., and Tesfaye, D. (2014). MicroRNA-regulated molecular mechanism underlying bovine subclinical endometritis. Reprod. Fertil. Dev. 26, 898–913.
MicroRNA-regulated molecular mechanism underlying bovine subclinical endometritis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFynsbjI&md5=7d74eabb6f76972d398d88a342b1630dCAS | 23890539PubMed |

Hall, V. J. (2013). Early development of the porcine embryo: the importance of cell signalling in development of pluripotent cell lines. Reprod. Fertil. Dev. 25, 94–102.
Early development of the porcine embryo: the importance of cell signalling in development of pluripotent cell lines.Crossref | GoogleScholarGoogle Scholar |

Hall, V., Hinrichs, K., Lazzari, G., Betts, D. H., and Hyttel, P. (2013). Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals. Vet. J. 197, 128–142.
Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sjms12htQ%3D%3D&md5=63eaa824925fe4256a11ba0c15bc9a97CAS | 23810186PubMed |

Hasler, J. F. (2006). The Holstein cow in embryo transfer today as compared to 20 years ago. Theriogenology 65, 4–16.
The Holstein cow in embryo transfer today as compared to 20 years ago.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MnjtFSltw%3D%3D&md5=f4aaae7ca49159c620501c1810aff434CAS | 16289326PubMed |

Hasler, J. F. (2014). Forty years of embryo transfer in cattle: a review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces. Theriogenology 81, 152–169.
Forty years of embryo transfer in cattle: a review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces.Crossref | GoogleScholarGoogle Scholar | 24274419PubMed |

Hassoun, R., Schwartz, P., Feistel, K., Blum, M., and Viebahn, C. (2009). Axial differentiation and early gastrulation stages of the pig embryo. Differentiation 78, 301–311.
Axial differentiation and early gastrulation stages of the pig embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGht77O&md5=64d0bf4f7d530f9ad0a34eb420bc5aacCAS | 19683851PubMed |

Hemberger, M. (2010). Genetic–epigenetic intersection in trophoblast differentiation: implications for extraembryonic tissue function. Epigenetics 5, 24–29.
Genetic–epigenetic intersection in trophoblast differentiation: implications for extraembryonic tissue function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1Cjtbk%3D&md5=d3d5c69abbccf73d69ab5a1581addf7cCAS | 20083894PubMed |

Hempstalk, K., McParland, S., and Berry, D. P. (2015). Machine learning algorithms for the prediction of conception success to a given insemination in lactating dairy cows. J. Dairy Sci. 98, 5262–5273.
Machine learning algorithms for the prediction of conception success to a given insemination in lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVeiu7vL&md5=0bcc79916cc9b824e773816de5af661aCAS | 26074247PubMed |

Hermitte, S., and Chazaud, C. (2014). Primitive endoderm differentiation: from specification to epithelium formation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130537.
Primitive endoderm differentiation: from specification to epithelium formation.Crossref | GoogleScholarGoogle Scholar | 25349446PubMed |

Heyman, Y. (2005). Nuclear transfer: a new tool for reproductive biotechnology in cattle. Reprod. Nutr. Dev. 45, 353–361.
Nuclear transfer: a new tool for reproductive biotechnology in cattle.Crossref | GoogleScholarGoogle Scholar | 15982460PubMed |

Heyman, Y., Camous, S., Fevre, J., Meziou, W., and Martal, J. (1984). Maintenance of the corpus luteum after uterine transfer of trophoblastic vesicles to cyclic cows and ewes. J. Reprod. Fertil. 70, 533–540.
Maintenance of the corpus luteum after uterine transfer of trophoblastic vesicles to cyclic cows and ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhsFWhsbk%3D&md5=1cde3e5724425fd8b9cd92c2fa010e2dCAS | 6699815PubMed |

Hirasawa, R., Matoba, S., Inoue, K., and Ogura, A. (2013). Somatic donor cell type correlates with embryonic, but not extra-embryonic, gene expression in postimplantation cloned embryos. PLoS One 8, e76422.
Somatic donor cell type correlates with embryonic, but not extra-embryonic, gene expression in postimplantation cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OisL%2FK&md5=25b1dfe55d8c49b10ee2c35076c1e600CAS | 24146866PubMed |

Hoelker, M., Salilew-Wondim, D., Drillich, M., Christine, G. B., Ghanem, N., Goetze, L., Tesfaye, D., Schellander, K., and Heuwieser, W. (2012). Transcriptional response of the bovine endometrium and embryo to endometrial polymorphonuclear neutrophil infiltration as an indicator of subclinical inflammation of the uterine environment. Reprod. Fertil. Dev. 24, 778–793.
Transcriptional response of the bovine endometrium and embryo to endometrial polymorphonuclear neutrophil infiltration as an indicator of subclinical inflammation of the uterine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFKlsLY%3D&md5=150929a3307b9230ae18cf54f1d0fcebCAS | 22781929PubMed |

Hoelker, M., Held, E., Salilew-Wondim, D., Schellander, K., and Tesfaye, D. (2014). Molecular signatures of bovine embryo developmental competence. Reprod. Fertil. Dev. 26, 22–36.
Molecular signatures of bovine embryo developmental competence.Crossref | GoogleScholarGoogle Scholar |

Huang, X., Han, X., Uyunbilig, B., Zhang, M., Duo, S., Zuo, Y., Zhao, Y., Yun, T., Tai, D., Wang, C., Li, J., Li, X., and Li, R. (2014). Establishment of bovine trophoblast stem-like cells from in vitro-produced blastocyst-stage embryos using two inhibitors. Stem Cells Dev. 23, 1501–1514.
Establishment of bovine trophoblast stem-like cells from in vitro-produced blastocyst-stage embryos using two inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKhs7jL&md5=be1355014e786c91346f7509ace2b480CAS | 24605918PubMed |

Hue, I., Renard, J. P., and Viebahn, C. (2001). Brachyury is expressed in gastrulating bovine embryos well ahead of implantation. Dev. Genes Evol. 211, 157–159.
Brachyury is expressed in gastrulating bovine embryos well ahead of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslyitbo%3D&md5=e7a3950b0fb89f7276fc0e8d8b282e05CAS | 11455429PubMed |

Hue, I., Degrelle, S. A., Campion, E., and Renard, J. P. (2007). Gene expression in elongating and gastrulating embryos from ruminants. Soc. Reprod. Fertil. Suppl. 64, 365–377.
| 1:CAS:528:DC%2BD1cXpvVyrsLk%3D&md5=63167afb1e50092cf1e33d03321a0a86CAS | 17491159PubMed |

Hue, I., Degrelle, S. A., and Turenne, N. (2012). Conceptus elongation in cattle: genes, models and questions. Anim. Reprod. Sci. 134, 19–28.
Conceptus elongation in cattle: genes, models and questions.Crossref | GoogleScholarGoogle Scholar | 22921267PubMed |

Hue, I., Evain-Brion, D., Fournier, T., and Degrelle, S. A. (2015). Primary bovine extra-embryonic cultured cells: a new resource for the study of in vivo peri-implanting phenotypes and mesoderm formation. PLoS One 10, e0127330.
Primary bovine extra-embryonic cultured cells: a new resource for the study of in vivo peri-implanting phenotypes and mesoderm formation.Crossref | GoogleScholarGoogle Scholar | 26070137PubMed |

Ideta, A., Urakawa, M., Aoyagi, Y., and Saeki, K. (2007). Early development in utero of bovine nuclear transfer embryos using early G1 and G0 phase cells. Cloning Stem Cells 9, 571–580.
Early development in utero of bovine nuclear transfer embryos using early G1 and G0 phase cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKktw%3D%3D&md5=0f250b4637b81a04dae4ac3e5710096fCAS | 18154517PubMed |

Idkowiak, J., Weisheit, G., Plitzner, J., and Viebahn, C. (2004a). Hypoblast controls mesoderm generation and axial patterning in the gastrulating rabbit embryo. Dev. Genes Evol. 214, 591–605.
Hypoblast controls mesoderm generation and axial patterning in the gastrulating rabbit embryo.Crossref | GoogleScholarGoogle Scholar | 15480760PubMed |

Idkowiak, J., Weisheit, G., and Viebahn, C. (2004b). Polarity in the rabbit embryo. Semin. Cell Dev. Biol. 15, 607–617.
Polarity in the rabbit embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVaitbk%3D&md5=1503cebe5e56bd93fa9efb0303e34593CAS | 15271306PubMed |

Isom, S. C., Spollen, W. G., Blake, S. M., Bauer, B. K., Springer, G. K., and Prather, R. S. (2010). Transcriptional profiling of Day 12 porcine embryonic disc and trophectoderm samples using ultra-deep sequencing technologies. Mol. Reprod. Dev. 77, 812–819.
Transcriptional profiling of Day 12 porcine embryonic disc and trophectoderm samples using ultra-deep sequencing technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyhurjN&md5=1adcc45e7dd7778a1702eff3abbf6a8dCAS | 20722012PubMed |

Isom, S. C., Stevens, J. R., Li, R., Spollen, W. G., Cox, L., Spate, L. D., Murphy, C. N., and Prather, R. S. (2013). Transcriptional profiling by RNA-Seq of peri-attachment porcine embryos generated by a variety of assisted reproductive technologies. Physiol. Genomics 45, 577–589.
Transcriptional profiling by RNA-Seq of peri-attachment porcine embryos generated by a variety of assisted reproductive technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1OmtLjE&md5=f8fe49358f39672f362b15b7b20ebdc6CAS | 23695885PubMed |

Johnson, A. D., and Alberio, R. (2015). Primordial germ cells: the first cell lineage or the last cells standing? Development 142, 2730–2739.
Primordial germ cells: the first cell lineage or the last cells standing?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1enu77E&md5=12b9cfc9d57cac80c21f958c59b5a058CAS | 26286941PubMed |

Koh, S., and Piedrahita, J. A. (2014). From ‘ES-like’ cells to induced pluripotent stem cells: a historical perspective in domestic animals. Theriogenology 81, 103–111.
From ‘ES-like’ cells to induced pluripotent stem cells: a historical perspective in domestic animals.Crossref | GoogleScholarGoogle Scholar | 24274415PubMed |

Koshi, K., Ushizawa, K., Kizaki, K., Takahashi, T., and Hashizume, K. (2011). Expression of endogenous retrovirus-like transcripts in bovine trophoblastic cells. Placenta 32, 493–499.
Expression of endogenous retrovirus-like transcripts in bovine trophoblastic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1Kmsb8%3D&md5=dab5842c17ab9d22625bc8a3649b1f4bCAS | 21571366PubMed |

Kropp, J., and Khatib, H. (2015). Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development. J. Dairy Sci. 98, 6552–6563.
Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFehsL7P&md5=214ecc9183317492a61e0aa852edecd4CAS | 26142856PubMed |

Kuijk, E. W., van Tol, L. T., Van de Velde, H., Wubbolts, R., Welling, M., Geijsen, N., and Roelen, B. A. (2012). The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development 139, 871–882.
The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmsl2hu7c%3D&md5=8f8577234fbc3bf76abfbf413b724921CAS | 22278923PubMed |

Lau, K., Tao, H., Liu, H., Wen, J., Sturgeon, K., Sorfazlian, N., Lazic, S., Burrows, J. T., Wong, M. D., Li, D., Deimling, S., Ciruna, B., Scott, I., Simmons, C., Henkelman, R. M., Williams, T., Hadjantonakis, A. K., Fernandez-Gonzalez, R., Sun, Y., and Hopyan, S. (2015). Anisotropic stress orients remodelling of mammalian limb bud ectoderm. Nat. Cell Biol. 17, 569–579.
Anisotropic stress orients remodelling of mammalian limb bud ectoderm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnsVWrt7c%3D&md5=7ba8b78d2f49548a6c534cb269715730CAS | 25893915PubMed |

Leroy, J. L., Opsomer, G., De Vliegher, S., Vanholder, T., Goossens, L., Geldhof, A., Bols, P. E., de Kruif, A., and Van Soom, A. (2005). Comparison of embryo quality in high-yielding dairy cows, in dairy heifers and in beef cows. Theriogenology 64, 2022–2036.
Comparison of embryo quality in high-yielding dairy cows, in dairy heifers and in beef cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MnitlejtQ%3D%3D&md5=cd5ecb4d6c1a85b58600bc93d1fd755aCAS | 15936067PubMed |

Liszewska, E., Reinaud, P., Billon-Denis, E., Dubois, O., Robin, P., and Charpigny, G. (2009). Lysophosphatidic acid signaling during embryo development in sheep: involvement in prostaglandin synthesis. Endocrinology 150, 422–434.
Lysophosphatidic acid signaling during embryo development in sheep: involvement in prostaglandin synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1ejsA%3D%3D&md5=86939e01aefd0c5c9d3ce0df9eb81207CAS | 18772233PubMed |

Liszewska, E., Reinaud, P., Dubois, O., and Charpigny, G. (2012). Lysophosphatidic acid receptors in ovine uterus during estrous cycle and early pregnancy and their regulation by progesterone. Domest. Anim. Endocrinol. 42, 31–42.
Lysophosphatidic acid receptors in ovine uterus during estrous cycle and early pregnancy and their regulation by progesterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SlurrF&md5=e513e2e86e322230fbbe19039766c405CAS | 22032854PubMed |

Loh, K. M., Lim, B., and Ang, L. T. (2015). Ex uno plures: molecular designs for embryonic pluripotency. Physiol. Rev. 95, 245–295.
Ex uno plures: molecular designs for embryonic pluripotency.Crossref | GoogleScholarGoogle Scholar | 25540144PubMed |

Lonergan, P., and Forde, N. (2014). Maternal–embryo interaction leading up to the initiation of implantation of pregnancy in cattle. Animal 8, 64–69.
Maternal–embryo interaction leading up to the initiation of implantation of pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotF2qt78%3D&md5=df87a53ad6949d9efe38716229fb255fCAS | 24679216PubMed |

MacLean, J. A., Chakrabarty, A., Xie, S., Bixby, J. A., Roberts, R. M., and Green, J. A. (2003). Family of Kunitz proteins from trophoblast: expression of the trophoblast Kunitz domain proteins (TKDP) in cattle and sheep. Mol. Reprod. Dev. 65, 30–40.
Family of Kunitz proteins from trophoblast: expression of the trophoblast Kunitz domain proteins (TKDP) in cattle and sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1als7w%3D&md5=1b19c33b610a44eec35a7a5b052e5734CAS | 12658631PubMed |

Maddox-Hyttel, P., Alexopoulos, N. I., Vajta, G., Lewis, I., Rogers, P., Cann, L., Callesen, H., Tveden-Nyborg, P., and Trounson, A. (2003). Immunohistochemical and ultrastructural characterization of the initial post-hatching development of bovine embryos. Reproduction 125, 607–623.
Immunohistochemical and ultrastructural characterization of the initial post-hatching development of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFOqtLc%3D&md5=405684b52685baf7b4335e2789317defCAS | 12683931PubMed |

Mamo, S., Mehta, J. P., McGettigan, P., Fair, T., Spencer, T. E., Bazer, F. W., and Lonergan, P. (2011). RNA sequencing reveals novel gene clusters in bovine conceptuses associated with maternal recognition of pregnancy and implantation. Biol. Reprod. 85, 1143–1151.
RNA sequencing reveals novel gene clusters in bovine conceptuses associated with maternal recognition of pregnancy and implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ShsLbO&md5=5fb51a79845f3282dd2de87af18012f1CAS | 21795669PubMed |

Mamo, S., Rizos, D., and Lonergan, P. (2012). Transcriptomic changes in the bovine conceptus between the blastocyst stage and initiation of implantation. Anim. Reprod. Sci. 134, 56–63.
Transcriptomic changes in the bovine conceptus between the blastocyst stage and initiation of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlamtLjL&md5=cc641b55032ee72944a7b99ed8712f50CAS | 22944169PubMed |

Mançanares, C. A., Leiser, R., Favaron, P. O., Carvalho, A. F., Oliveira, V. C., Santos, J. M., Ambrósio, C. E., and Miglino, M. A. (2013). A morphological analysis of the transition between the embryonic primitive intestine and yolk sac in bovine embryos and fetuses. Microsc. Res. Tech. 76, 756–766.
A morphological analysis of the transition between the embryonic primitive intestine and yolk sac in bovine embryos and fetuses.Crossref | GoogleScholarGoogle Scholar | 23650099PubMed |

Mansouri-Attia, N., Aubert, J., Reinaud, P., Giraud-Delville, C., Taghouti, G., Galio, L., Everts, R. E., Degrelle, S., Richard, C., Hue, I., Yang, X., Tian, X. C., Lewin, H. A., Renard, J. P., and Sandra, O. (2009a). Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation. Physiol. Genomics 39, 14–27.
Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlakt7rM&md5=ecca4ef557ee0c7ee9463b19a8e19cb9CAS | 19622795PubMed |

Mansouri-Attia, N., Sandra, O., Aubert, J., Degrelle, S., Everts, R. E., Giraud-Delville, C., Heyman, Y., Galio, L., Hue, I., Yang, X., Tian, X. C., Lewin, H. A., and Renard, J. P. (2009b). Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc. Natl Acad. Sci. USA 106, 5687–5692.
Endometrium as an early sensor of in vitro embryo manipulation technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGhurY%3D&md5=049ad45de0d722a3086ea994b9d4a7b5CAS | 19297625PubMed |

Maruotti, J., Munoz, M., Degrelle, S. A., Gomez, E., Louet, C., Diez, C., de Longchamp, P. H., Brochard, V., Hue, I., Caamano, J. N., and Jouneau, A. (2012). Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors. Mol. Reprod. Dev. 79, 461–477.
Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslOitbc%3D&md5=823168ae947d6cf2f57c5481aa3df221CAS | 22573702PubMed |

McLean, Z., Meng, F., Henderson, H., Turner, P., and Oback, B. (2014). Increased MAP kinase inhibition enhances epiblast-specific gene expression in bovine blastocysts. Biol. Reprod. 91, 49.
Increased MAP kinase inhibition enhances epiblast-specific gene expression in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 25009207PubMed |

Morishita, Y., Kuroiwa, A., and Suzuki, T. (2015). Quantitative analysis of tissue deformation dynamics reveals three characteristic growth modes and globally aligned anisotropic tissue deformation during chick limb development. Development 142, 1672–1683.
Quantitative analysis of tissue deformation dynamics reveals three characteristic growth modes and globally aligned anisotropic tissue deformation during chick limb development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVSjsrnM&md5=be65a90aa2c9a4d7d2f09033d9bbc905CAS | 25858459PubMed |

Nakagawa, S., Bai, H., Sakurai, T., Nakaya, Y., Konno, T., Miyazawa, T., Gojobori, T., and Imakawa, K. (2013). Dynamic evolution of endogenous retrovirus-derived genes expressed in bovine conceptuses during the period of placentation. Genome Biol. Evol. 5, 296–306.
Dynamic evolution of endogenous retrovirus-derived genes expressed in bovine conceptuses during the period of placentation.Crossref | GoogleScholarGoogle Scholar | 23335121PubMed |

Ng, R. K., Dean, W., Dawson, C., Lucifero, D., Madeja, Z., Reik, W., and Hemberger, M. (2008). Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat. Cell Biol. 10, 1280–1290.
Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlais7nN&md5=a9f446668c708e4163980a6779d7ed8bCAS | 18836439PubMed |

Niu, Y., Jin, G., Li, X., Tang, C., Zhang, Y., Liang, Y., and Yu, J. (2015). Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh. J. Exp. Bot. 66, 3841–3854.
Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh.Crossref | GoogleScholarGoogle Scholar | 25922494PubMed |

Nowotschin, S., and Hadjantonakis, A. K. (2010). Cellular dynamics in the early mouse embryo: from axis formation to gastrulation. Curr. Opin. Genet. Dev. 20, 420–427.
Cellular dynamics in the early mouse embryo: from axis formation to gastrulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVCku7k%3D&md5=dfcf958140db596b57eba994b09126daCAS | 20566281PubMed |

O’Hara, L., Forde, N., Carter, F., Rizos, D., Maillo, V., Ealy, A. D., Kelly, A. K., Rodriguez, P., Isaka, N., Evans, A. C., and Lonergan, P. (2014a). Paradoxical effect of supplementary progesterone between Day 3 and Day 7 on corpus luteum function and conceptus development in cattle. Reprod. Fertil. Dev. 26, 328–336.
Paradoxical effect of supplementary progesterone between Day 3 and Day 7 on corpus luteum function and conceptus development in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtFCmtw%3D%3D&md5=4204a72dff123ca1d4ac33b5ae7ed76cCAS | 23439105PubMed |

O’Hara, L., Forde, N., Kelly, A. K., and Lonergan, P. (2014b). Effect of bovine blastocyst size at embryo transfer on Day 7 on conceptus length on Day 14: can supplementary progesterone rescue small embryos? Theriogenology 81, 1123–1128.
Effect of bovine blastocyst size at embryo transfer on Day 7 on conceptus length on Day 14: can supplementary progesterone rescue small embryos?Crossref | GoogleScholarGoogle Scholar | 24582375PubMed |

Oda, M., Shiota, K., and Tanaka, S. (2010). Trophoblast cell lineage in cloned mouse embryos. Dev. Growth Differ. 52, 285–291.
Trophoblast cell lineage in cloned mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlGnt7g%3D&md5=1238ded9caf82b6da4b1d23fbf0fd2ffCAS | 20388167PubMed |

Oestrup, O., Hall, V., Petkov, S. G., Wolf, X. A., Hyldig, S., and Hyttel, P. (2009). From zygote to implantation: morphological and molecular dynamics during embryo development in the pig. Reprod. Domest. Anim. 44, 39–49.
From zygote to implantation: morphological and molecular dynamics during embryo development in the pig.Crossref | GoogleScholarGoogle Scholar | 19660079PubMed |

Okumu, L. A., Forde, N., Mamo, S., McGettigan, P., Mehta, J. P., Roche, J. F., and Lonergan, P. (2014). Temporal regulation of fibroblast growth factors and their receptors in the endometrium and conceptus during the pre-implantation period of pregnancy in cattle. Reproduction 147, 825–834.
Temporal regulation of fibroblast growth factors and their receptors in the endometrium and conceptus during the pre-implantation period of pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKjurjI&md5=98338965bff124379a4786b18a896e42CAS | 24554351PubMed |

Oliveira, V. C., Mancanares, C. A., Oliveira, L. J., Goncalves, N. J., Miglino, M. A., Perecin, F., Meirelles, F. V., Piedrahita, J., and Ambrosio, C. E. (2015). Characterization of putative haematopoietic cells from bovine yolk sac. J. Tissue Eng. Regen. Med , .
Characterization of putative haematopoietic cells from bovine yolk sac.Crossref | GoogleScholarGoogle Scholar | 25712733PubMed |

Ozawa, M., Sakatani, M., Yao, J., Shanker, S., Yu, F., Yamashita, R., Wakabayashi, S., Nakai, K., Dobbs, K. B., Sudano, M. J., Farmerie, W. G., and Hansen, P. J. (2012). Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst. BMC Dev. Biol. 12, 33.
Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvA%3D%3D&md5=2084b46dd55b69f4f02702b642c2de63CAS | 23126590PubMed |

Ozawa, M., Yang, Q. E., and Ealy, A. D. (2013). The expression of fibroblast growth factor receptors during early bovine conceptus development and pharmacological analysis of their actions on trophoblast growth in vitro. Reproduction 145, 191–201.
The expression of fibroblast growth factor receptors during early bovine conceptus development and pharmacological analysis of their actions on trophoblast growth in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlOnt74%3D&md5=63377719c63a02cbb5017b099a306f53CAS | 23241344PubMed |

Pearton, D. J., Broadhurst, R., Donnison, M., and Pfeffer, P. L. (2011). Elf5 regulation in the trophectoderm. Dev. Biol. 360, 343–350.
Elf5 regulation in the trophectoderm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOjtb3J&md5=8b0754e7cf50509dac3c9d252fbd1601CAS | 22020251PubMed |

Pearton, D. J., Smith, C. S., Redgate, E., van Leeuwen, J., Donnison, M., and Pfeffer, P. L. (2014). Elf5 counteracts precocious trophoblast differentiation by maintaining Sox2 and 3 and inhibiting Hand1 expression. Dev. Biol. 392, 344–357.
Elf5 counteracts precocious trophoblast differentiation by maintaining Sox2 and 3 and inhibiting Hand1 expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslKlsLk%3D&md5=4b1df0b57de6e1b43e969fcae84b054cCAS | 24859262PubMed |

Perea-Gomez, A., Vella, F. D., Shawlot, W., Oulad-Abdelghani, M., Chazaud, C., Meno, C., Pfister, V., Chen, L., Robertson, E., Hamada, H., Behringer, R. R., and Ang, S. L. (2002). Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev. Cell 3, 745–756.
Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptF2rtLg%3D&md5=04a4ac472d4b053ccd07602442320fd6CAS | 12431380PubMed |

Pfeffer, P. L., and Pearton, D. J. (2012). Trophoblast development. Reproduction 143, 231–246.
Trophoblast development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFOqs7c%3D&md5=b256e0ffcac1c8de31c11f82f2cab378CAS | 22223687PubMed |

Pfister, S., Steiner, K. A., and Tam, P. P. (2007). Gene expression pattern and progression of embryogenesis in the immediate post-implantation period of mouse development. Gene Expr. Patterns 7, 558–573.
Gene expression pattern and progression of embryogenesis in the immediate post-implantation period of mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslemt74%3D&md5=dda2d7fdc641106260c85d19a04ea627CAS | 17331809PubMed |

Popken, J., Brero, A., Koehler, D., Schmid, V. J., Strauss, A., Wuensch, A., Guengoer, T., Graf, A., Krebs, S., Blum, H., Zakhartchenko, V., Wolf, E., and Cremer, T. (2014a). Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos. Nucleus 5, 555–589.
Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos.Crossref | GoogleScholarGoogle Scholar | 25482066PubMed |

Popken, J., Koehler, D., Brero, A., Wuensch, A., Guengoer, T., Thormeyer, T., Wolf, E., Cremer, T., and Zakhartchenko, V. (2014b). Positional changes of a pluripotency marker gene during structural reorganization of fibroblast nuclei in cloned early bovine embryos. Nucleus 5, 542–554.
Positional changes of a pluripotency marker gene during structural reorganization of fibroblast nuclei in cloned early bovine embryos.Crossref | GoogleScholarGoogle Scholar | 25495180PubMed |

Richard, C., Hue, I., Gelin, V., Neveux, A., Campion, E., Degrelle, S. A., Heyman, Y., and Chavatte-Palmer, P. (2015). Transcervical collection of bovine embryos up to Day 21: an 8-year overview. Theriogenology 83, 1101–1109.
Transcervical collection of bovine embryos up to Day 21: an 8-year overview.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2MrjvVamsQ%3D%3D&md5=90ca75d9ea7269f1f742b8be0f71ff19CAS | 25662200PubMed |

Roberts, R. M., Chen, Y., Ezashi, T., and Walker, A. M. (2008). Interferons and the maternal–conceptus dialog in mammals. Semin. Cell Dev. Biol. 19, 170–177.
Interferons and the maternal–conceptus dialog in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGrsrg%3D&md5=1dc7712d7ab207111b70f3c48bb2607dCAS | 18032074PubMed |

Roberts, R. M., Yuan, Y., Genovese, N., and Ezashi, T. (2015). Livestock models for exploiting the promise of pluripotent stem cells. ILAR J. 56, 74–82.
Livestock models for exploiting the promise of pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 25991700PubMed |

Rodríguez-Alvarez, L., Sharbati, J., Sharbati, S., Cox, J. F., Einspanier, R., and Castro, F. O. (2010). Differential gene expression in bovine elongated (Day 17) embryos produced by somatic cell nucleus transfer and in vitro fertilization. Theriogenology 74, 45–59.
Differential gene expression in bovine elongated (Day 17) embryos produced by somatic cell nucleus transfer and in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 20197198PubMed |

Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Holper, S., Kruger, M., and Stainier, D. Y. (2015). Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230–233.
Genetic compensation induced by deleterious mutations but not gene knockdowns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFylt7fL&md5=355f4b50539ca015cfbb34a1ebbc3b82CAS | 26168398PubMed |

Rugg-Gunn, P. J., Cox, B. J., Lanner, F., Sharma, P., Ignatchenko, V., McDonald, A. C., Garner, J., Gramolini, A. O., Rossant, J., and Kislinger, T. (2012). Cell-surface proteomics identifies lineage-specific markers of embryo-derived stem cells. Dev. Cell 22, 887–901.
Cell-surface proteomics identifies lineage-specific markers of embryo-derived stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFGisrs%3D&md5=16b026970d8369c46de33b9f8b497453CAS | 22424930PubMed |

Ruiz-González, I., Minten, M., Wang, X., Dunlap, K. A., and Bazer, F. W. (2015a). Involvement of TLR7 and TLR8 in conceptus development and establishment of pregnancy in sheep. Reproduction 149, 305–316.
Involvement of TLR7 and TLR8 in conceptus development and establishment of pregnancy in sheep.Crossref | GoogleScholarGoogle Scholar | 25602033PubMed |

Ruiz-González, I., Xu, J., Wang, X., Burghardt, R. C., Dunlap, K. A., and Bazer, F. W. (2015b). Exosomes, endogenous retroviruses and Toll-like receptors: pregnancy recognition in ewes. Reproduction 149, 281–291.
Exosomes, endogenous retroviruses and Toll-like receptors: pregnancy recognition in ewes.Crossref | GoogleScholarGoogle Scholar | 25526899PubMed |

Saadeldin, I. M., Oh, H. J., and Lee, B. C. (2015). Embryonic–maternal cross-talk via exosomes: potential implications. Stem Cells Cloning 8, 103–107.
| 26185458PubMed |

Saijoh, Y., Viotti, M., and Hadjantonakis, A. K. (2014). Follow your gut: relaying information from the site of left–right symmetry breaking in the mouse. Genesis 52, 503–514.
Follow your gut: relaying information from the site of left–right symmetry breaking in the mouse.Crossref | GoogleScholarGoogle Scholar | 24753065PubMed |

Sakurai, T., Sakamoto, A., Muroi, Y., Bai, H., Nagaoka, K., Tamura, K., Takahashi, T., Hashizume, K., Sakatani, M., Takahashi, M., Godkin, J. D., and Imakawa, K. (2009). Induction of endogenous interferon tau gene transcription by CDX2 and high acetylation in bovine nontrophoblast cells. Biol. Reprod. 80, 1223–1231.
Induction of endogenous interferon tau gene transcription by CDX2 and high acetylation in bovine nontrophoblast cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlGmsLs%3D&md5=afe6735140ff64c41de57f94c3a104a9CAS | 19211809PubMed |

Sakurai, T., Bai, H., Bai, R., Arai, M., Iwazawa, M., Zhang, J., Konno, T., Godkin, J. D., Okuda, K., and Imakawa, K. (2012). Coculture system that mimics in vivo attachment processes in bovine trophoblast cells. Biol. Reprod. 87, 60.
Coculture system that mimics in vivo attachment processes in bovine trophoblast cells.Crossref | GoogleScholarGoogle Scholar | 22723465PubMed |

Sakurai, T., Bai, H., Bai, R., Sato, D., Arai, M., Okuda, K., Ideta, A., Aoyagi, Y., Godkin, J. D., and Imakawa, K. (2013). Down-regulation of interferon tau gene transcription with a transcription factor, EOMES. Mol. Reprod. Dev. 80, 371–383.
Down-regulation of interferon tau gene transcription with a transcription factor, EOMES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1SrtrY%3D&md5=a603d8f5c57dfc6759f9ad4039b0e45cCAS | 23606646PubMed |

Sandra, O., Bataillon, I., Roux, P., Martal, J., Charpigny, G., Reinaud, P., Bolifraud, P., Germain, G., and Al-Gubory, K. H. (2005). Suppressor of cytokine signalling (SOCS) genes are expressed in the endometrium and regulated by conceptus signals during early pregnancy in the ewe. J. Mol. Endocrinol. 34, 637–644.
Suppressor of cytokine signalling (SOCS) genes are expressed in the endometrium and regulated by conceptus signals during early pregnancy in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslCisr4%3D&md5=f12cab017ce33aa0193c44f9bb45ba50CAS | 15956335PubMed |

Sandra, O., Mansouri-Attia, N., and Lea, R. G. (2012). Novel aspects of endometrial function: a biological sensor of embryo quality and driver of pregnancy success. Reprod. Fertil. Dev. 24, 68–79.
Novel aspects of endometrial function: a biological sensor of embryo quality and driver of pregnancy success.Crossref | GoogleScholarGoogle Scholar |

Sandra, O., Constant, F., Vitorino Carvalho, A., Eozenou, C., Valour, D., Mauffre, V., Hue, I., and Charpigny, G. (2015). Maternal organism and embryo biosensoring: insights from ruminants. J. Reprod. Immunol. 108, 105–113.
Maternal organism and embryo biosensoring: insights from ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVCqsLc%3D&md5=5a90ae9b6707356d2de6abb6c4092df7CAS | 25617112PubMed |

Sartori, R., Sartor-Bergfelt, R., Mertens, S. A., Guenther, J. N., Parrish, J. J., and Wiltbank, M. C. (2002). Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter. J. Dairy Sci. 85, 2803–2812.
Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xptlagsbg%3D&md5=691292693cd0cfde2650e69f9821e7dfCAS | 12487447PubMed |

Sartori, R., Bastos, M. R., and Wiltbank, M. C. (2010). Factors affecting fertilisation and early embryo quality in single- and superovulated dairy cattle. Reprod. Fertil. Dev. 22, 151–158.
Factors affecting fertilisation and early embryo quality in single- and superovulated dairy cattle.Crossref | GoogleScholarGoogle Scholar | 20003858PubMed |

Sheng, G. (2015). Epiblast morphogenesis before gastrulation. Dev. Biol. 401, 17–24.
Epiblast morphogenesis before gastrulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslyksLjE&md5=acb33dce08737e8fc27ff7543a383789CAS | 25446532PubMed |

Smith, C. S., Berg, D. K., Berg, M., and Pfeffer, P. L. (2010). Nuclear transfer-specific defects are not apparent during the second week of embryogenesis in cattle. Cell. Reprogram. 12, 699–707.
Nuclear transfer-specific defects are not apparent during the second week of embryogenesis in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFygsLrJ&md5=ee4ddbcdff279ab4e6c220f1c21374e2CAS | 20973678PubMed |

Soares, M. J., and Asanoma, K. (2009). Trophoblast stem cells derived from nuclear transfer embryos: phenotypically unique, bad neighbors, or poor communicators? Proc. Natl Acad. Sci. USA 106, 16 014–16 015.
Trophoblast stem cells derived from nuclear transfer embryos: phenotypically unique, bad neighbors, or poor communicators?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1OjsbvN&md5=e723afd215475dc0ae52c32d35d44fdcCAS |

Song, G., Kim, J., Bazer, F. W., and Spencer, T. E. (2008). Progesterone and interferon tau regulate hypoxia-inducible factors in the endometrium of the ovine uterus. Endocrinology 149, 1926–1934.
Progesterone and interferon tau regulate hypoxia-inducible factors in the endometrium of the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVeqsbw%3D&md5=565738e63e4d6f2e5f5f40626f87983dCAS | 18174278PubMed |

Song, G., Satterfield, M. C., Kim, J., Bazer, F. W., and Spencer, T. E. (2009). Progesterone and interferon tau regulate leukemia inhibitory factor receptor and IL6ST in the ovine uterus during early pregnancy. Reproduction 137, 553–565.
Progesterone and interferon tau regulate leukemia inhibitory factor receptor and IL6ST in the ovine uterus during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2ktrY%3D&md5=fca5223fb0d19b90f62fc854c602ec96CAS | 19060097PubMed |

Spencer, T. E., Sandra, O., and Wolf, E. (2008). Genes involved in conceptus-endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction 135, 165–179.
Genes involved in conceptus-endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrtL4%3D&md5=cb086b744d72b9c12233dfa231b5d8ebCAS | 18239047PubMed |

Spencer, T. E., Forde, N., Dorniak, P., Hansen, T. R., Romero, J. J., and Lonergan, P. (2013). Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction 146, 377–387.
Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ygtr3P&md5=317b27a4bb3e58e51fdfed48973f4ed9CAS | 23966582PubMed |

Stankova, V., Tsikolia, N., and Viebahn, C. (2015). Rho kinase activity controls directional cell movements during primitive streak formation in the rabbit embryo. Development 142, 92–98.
Rho kinase activity controls directional cell movements during primitive streak formation in the rabbit embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1Whs78%3D&md5=abc5b503da95de65bd9506d527f0a7c9CAS | 25516971PubMed |

Stower, M. J., and Srinivas, S. (2014). Heading forwards: anterior visceral endoderm migration in patterning the mouse embryo. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130546.
Heading forwards: anterior visceral endoderm migration in patterning the mouse embryo.Crossref | GoogleScholarGoogle Scholar | 25349454PubMed |

Tam, P. P., and Beddington, R. S. (1987). The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis. Development 99, 109–126.
| 1:STN:280:DyaL1c%2FgsVWnug%3D%3D&md5=b1c760f5753c8602d8bf36191303d019CAS | 3652985PubMed |

Tam, P. P., and Loebel, D. A. (2007). Gene function in mouse embryogenesis: get set for gastrulation. Nat. Rev. Genet. 8, 368–381.
Gene function in mouse embryogenesis: get set for gastrulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktlSltLg%3D&md5=950f5be6be29c2bf2e39af75295c802fCAS | 17387317PubMed |

Telugu, B. P., Palmier, M. O., Van Doren, S. R., and Green, J. A. (2010). An examination of the proteolytic activity for bovine pregnancy-associated glycoproteins 2 and 12. Biol. Chem. 391, 259–270.
| 1:CAS:528:DC%2BC3cXjtVaisrg%3D&md5=516b5cc2989e7392b9378e95ae296ac3CAS | 20030586PubMed |

Thompson, I. M., Cerri, R. L., Kim, I. H., Ealy, A. D., Hansen, P. J., Staples, C. R., and Thatcher, W. W. (2012). Effects of lactation and pregnancy on metabolic and hormonal responses and expression of selected conceptus and endometrial genes of Holstein dairy cattle. J. Dairy Sci. 95, 5645–5656.
Effects of lactation and pregnancy on metabolic and hormonal responses and expression of selected conceptus and endometrial genes of Holstein dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCnsLzE&md5=7cb49dadbc2bf2318fdf237a34cc7fd5CAS | 22863093PubMed |

Touzard, E., Reinaud, P., Dubois, O., Guyader-Joly, C., Humblot, P., Ponsart, C., and Charpigny, G. (2013). Specific expression patterns and cell distribution of ancient and modern PAG in bovine placenta during pregnancy. Reproduction 146, 347–362.
Specific expression patterns and cell distribution of ancient and modern PAG in bovine placenta during pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ygtrzL&md5=1561994f6f4df0f0616a0859dcb10e85CAS | 23858478PubMed |

Tveden-Nyborg, P., Peura, T. T., Hartwich, K. M., Walker, S. K., and Maddox-Hyttel, P. (2005). Morphological characterization of pre- and peri-implantation in vitro cultured, somatic cell nuclear transfer and in vivo derived ovine embryos. Reproduction 130, 681–694.
Morphological characterization of pre- and peri-implantation in vitro cultured, somatic cell nuclear transfer and in vivo derived ovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1OnsLjJ&md5=cd10593a090ce600b4d3fe64495152bbCAS | 16264097PubMed |

Ulbrich, S. E., Schulke, K., Groebner, A. E., Reichenbach, H. D., Angioni, C., Geisslinger, G., and Meyer, H. H. (2009). Quantitative characterization of prostaglandins in the uterus of early pregnant cattle. Reproduction 138, 371–382.
Quantitative characterization of prostaglandins in the uterus of early pregnant cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlemtLg%3D&md5=2d705bbbfe7821acc86b3ee6e6b86e5cCAS | 19470711PubMed |

Ulbrich, S. E., Wolf, E., and Bauersachs, S. (2012). Hosting the preimplantation embryo: potentials and limitations of different approaches for analysing embryo-endometrium interactions in cattle. Reprod. Fertil. Dev. 25, 62–70.
Hosting the preimplantation embryo: potentials and limitations of different approaches for analysing embryo-endometrium interactions in cattle.Crossref | GoogleScholarGoogle Scholar | 23244829PubMed |

Ulbrich, S. E., Groebner, A. E., and Bauersachs, S. (2013). Transcriptional profiling to address molecular determinants of endometrial receptivity: lessons from studies in livestock species. Methods 59, 108–115.
Transcriptional profiling to address molecular determinants of endometrial receptivity: lessons from studies in livestock species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWgtbnL&md5=d4d69d5fce83f438c7e9a9290b6b4427CAS | 23178633PubMed |

Valdez Magaña, G., Rodríguez, A., Zhang, H., Webb, R., and Alberio, R. (2014). Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation. Dev. Biol. 387, 15–27.
Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation.Crossref | GoogleScholarGoogle Scholar | 24445281PubMed |

Valour, D., Degrelle, S. A., Ponter, A. A., Giraud-Delville, C., Campion, E., Guyader-Joly, C., Richard, C., Constant, F., Humblot, P., Ponsart, C., Hue, I., and Grimard, B. (2014). Energy and lipid metabolism gene expression of D18 embryos in dairy cows is related to dam physiological status. Physiol. Genomics 46, 39–56.
Energy and lipid metabolism gene expression of D18 embryos in dairy cows is related to dam physiological status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlOktb7K&md5=1da45ac9fd3207680cc956d7574de374CAS | 24220328PubMed |

van Leeuwen, J., Berg, D. K., Smith, C. S., Wells, D. N., and Pfeffer, P. L. (2014). Specific epiblast loss and hypoblast impairment in cattle embryos sensitized to survival signalling by ubiquitous overexpression of the proapoptotic gene BAD. PLoS One 9, e96843.
Specific epiblast loss and hypoblast impairment in cattle embryos sensitized to survival signalling by ubiquitous overexpression of the proapoptotic gene BAD.Crossref | GoogleScholarGoogle Scholar | 24806443PubMed |

van Leeuwen, J., Berg, D. K., and Pfeffer, P. L. (2015). Morphological and gene expression changes in cattle embryos from hatched blastocyst to early gastrulation stages after transfer of in vitro produced embryos. PLoS One 10, e0129787.
Morphological and gene expression changes in cattle embryos from hatched blastocyst to early gastrulation stages after transfer of in vitro produced embryos.Crossref | GoogleScholarGoogle Scholar | 26076128PubMed |

Viotti, M., Nowotschin, S., and Hadjantonakis, A. K. (2014). SOX17 links gut endoderm morphogenesis and germ layer segregation. Nat. Cell Biol. 16, 1146–1156.
SOX17 links gut endoderm morphogenesis and germ layer segregation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFKlsrvJ&md5=cb2dd5a4c7357e75e7d834e81cc053faCAS | 25419850PubMed |

Vitorino Carvalho, A. V., Reinaud, P., Forde, N., Healey, G. D., Eozenou, C., Giraud-Delville, C., Mansouri-Attia, N., Gall, L., Richard, C., Lonergan, P., Sheldon, I. M., Lea, R. G., and Sandra, O. (2014). SOCS genes expression during physiological and perturbed implantation in bovine endometrium. Reproduction 148, 545–557.
SOCS genes expression during physiological and perturbed implantation in bovine endometrium.Crossref | GoogleScholarGoogle Scholar |

Wang, X., Frank, J. W., Little, D. R., Dunlap, K. A., Satterfield, M. C., Burghardt, R. C., Hansen, T. R., Wu, G., and Bazer, F. W. (2014a). Functional role of arginine during the peri-implantation period of pregnancy. I. Consequences of loss of function of arginine transporter SLC7A1 mRNA in ovine conceptus trophectoderm. FASEB J. 28, 2852–2863.
Functional role of arginine during the peri-implantation period of pregnancy. I. Consequences of loss of function of arginine transporter SLC7A1 mRNA in ovine conceptus trophectoderm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFaltb%2FL&md5=96e047b4906e88155d9ec23fdc6e7688CAS | 24627544PubMed |

Wang, X., Frank, J. W., Xu, J., Dunlap, K. A., Satterfield, M. C., Burghardt, R. C., Romero, J. J., Hansen, T. R., Wu, G., and Bazer, F. W. (2014b). Functional role of arginine during the peri-implantation period of pregnancy. II. Consequences of loss of function of nitric oxide synthase NOS3 mRNA in ovine conceptus trophectoderm. Biol. Reprod. 91, 59.
Functional role of arginine during the peri-implantation period of pregnancy. II. Consequences of loss of function of nitric oxide synthase NOS3 mRNA in ovine conceptus trophectoderm.Crossref | GoogleScholarGoogle Scholar | 25061098PubMed |

Wolfenson, D., Roth, Z., and Meidan, R. (2000). Impaired reproduction in heat-stressed cattle: basic and applied aspects. Anim. Reprod. Sci. 60–61, 535–547.
Impaired reproduction in heat-stressed cattle: basic and applied aspects.Crossref | GoogleScholarGoogle Scholar | 10844222PubMed |

Wu, G., Bazer, F. W., Satterfield, M. C., Li, X., Wang, X., Johnson, G. A., Burghardt, R. C., Dai, Z., Wang, J., and Wu, Z. (2013). Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45, 241–256.
Impacts of arginine nutrition on embryonic and fetal development in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFelsbvP&md5=6acbcf315ab3c0e012c9c3089f1e1375CAS | 23732998PubMed |

Wuensch, A., Habermann, F. A., Kurosaka, S., Klose, R., Zakhartchenko, V., Reichenbach, H. D., Sinowatz, F., McLaughlin, K. J., and Wolf, E. (2007). Quantitative monitoring of pluripotency gene activation after somatic cloning in cattle. Biol. Reprod. 76, 983–991.
Quantitative monitoring of pluripotency gene activation after somatic cloning in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFGms74%3D&md5=70f98b4c4828c87278bade916e481b99CAS | 17314316PubMed |

Yang, X., Smith, S. L., Tian, X. C., Lewin, H. A., Renard, J. P., and Wakayama, T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 39, 295–302.
Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVOktro%3D&md5=8fa1c8170d2134e7b7c3d70c1c2052adCAS | 17325680PubMed |

Yang, Q. E., Fields, S. D., Zhang, K., Ozawa, M., Johnson, S. E., and Ealy, A. D. (2011). Fibroblast growth factor 2 promotes primitive endoderm development in bovine blastocyst outgrowths. Biol. Reprod. 85, 946–953.
Fibroblast growth factor 2 promotes primitive endoderm development in bovine blastocyst outgrowths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2is7bJ&md5=a8433f02cf5fd0bde6ea56a2a96029d7CAS | 21778141PubMed |

Zernicka-Goetz, M., and Hadjantonakis, A. K. (2014). From pluripotency to differentiation: laying foundations for the body pattern in the mouse embryo. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130535.
From pluripotency to differentiation: laying foundations for the body pattern in the mouse embryo.Crossref | GoogleScholarGoogle Scholar | 25349444PubMed |