Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Measuring embryo metabolism to predict embryo quality

Jeremy G. Thompson A B , Hannah M. Brown A and Melanie L. Sutton-McDowall A
+ Author Affiliations
- Author Affiliations

A ARC Centre of Excellence for Nanoscale BioPhotonics, Robinson Research Institute, School of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia.

B Corresponding author. Email: jeremy.thompson@adelaide.edu.au

Reproduction, Fertility and Development 28(2) 41-50 https://doi.org/10.1071/RD15340
Published: 3 December 2015

Abstract

Measuring the metabolism of early embryos has the potential to be used as a prospective marker for post-transfer development, either alone or in conjunction with other embryo quality assessment tools. This is necessary to maximise the opportunity of couples to have a healthy child from assisted reproduction technology (ART) and for livestock breeders to efficiently improve the genetics of their animals. Nevertheless, although many promising candidate substrates (e.g. glucose uptake) and methods (e.g. metabolomics using different spectroscopic techniques) have been promoted as viability markers, none has yet been widely used clinically or in livestock production. Herein we review the major techniques that have been reported; these are divided into indirect techniques, where measurements are made from the embryo’s immediate microenvironment, or direct techniques that measure intracellular metabolic activity. Both have strengths and weaknesses, the latter ruling out some from contention for use in human ART, but not necessarily for use in livestock embryo assessment. We also introduce a new method, namely multi- (or hyper-) spectral analysis, which measures naturally occurring autofluorescence. Several metabolically important molecules have fluorescent properties, which we are pursuing in conjunction with improved image analysis as a viable embryo quality assessment methodology.

Additional keywords: autofluorescence, embryo metabolism, embryo quality, spectroscopy.


References

Aardema, H., Lolicato, F., van de Lest, C. H., Brouwers, J. F., Vaandrager, A. B., van Tol, H. T., Roelen, B. A., Vos, P. L., Helms, J. B., and Gadella, B. M. (2013). Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. Biol. Reprod. 88, 164.
Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage.Crossref | GoogleScholarGoogle Scholar | 23616596PubMed |

Alvarenga, A. V., Pereira, W. C., Infantosi, A. F., and Azevedo, C. M. (2007). Complexity curve and grey level co-occurrence matrix in the texture evaluation of breast tumor on ultrasound images. Med. Phys. 34, 379–387.
Complexity curve and grey level co-occurrence matrix in the texture evaluation of breast tumor on ultrasound images.Crossref | GoogleScholarGoogle Scholar | 17388154PubMed |

Amin, A., Gad, A., Salilew-Wondim, D., Prastowo, S., Held, E., Hoelker, M., Rings, F., Tholen, E., Neuhoff, C., Looft, C., Schellander, K., and Tesfaye, D. (2014). Bovine embryo survival under oxidative-stress conditions is associated with activity of the NRF2-mediated oxidative-stress-response pathway. Mol. Reprod. Dev. 81, 497–513.
Bovine embryo survival under oxidative-stress conditions is associated with activity of the NRF2-mediated oxidative-stress-response pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1Onsbo%3D&md5=3684151cf6835093bdbbf98df72618a4CAS | 25057524PubMed |

Banrezes, B., Sainte-Beuve, T., Canon, E., Schultz, R. M., Cancela, J., and Ozil, J. P. (2011). Adult body weight is programmed by a redox-regulated and energy-dependent process during the pronuclear stage in mouse. PLoS One 6, e29388.
Adult body weight is programmed by a redox-regulated and energy-dependent process during the pronuclear stage in mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1GgsA%3D%3D&md5=c1eb88244c80aa4fa310fb12ec2aca04CAS | 22216268PubMed |

Brinster, R. L. (1966). Glucose 6-phosphate-dehydrogenase activity in the preimplantation mouse embryo. Biochem. J. 101, 161–163.
| 1:CAS:528:DyaF28Xks1Olurs%3D&md5=c3c3ca73a70cf54d170dc3a1256f4494CAS | 4382009PubMed |

Brison, D. R., and Leese, H. J. (1991). Energy metabolism in late preimplantation rat embryo. J. Reprod. Fertil. 93, 245–251.
Energy metabolism in late preimplantation rat embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt12isL4%3D&md5=7e86507bb8fef070881a2af1772df622CAS | 1920295PubMed |

Brison, D. R., Houghton, F. D., Falconer, D., Roberts, S. A., Hawkhead, J., Humpherson, P. G., Lieberman, B. A., and Leese, H. J. (2004). Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod. 19, 2319–2324.
Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1OmsrY%3D&md5=3ff2d5fd93abbd46cff68c534c3e2688CAS | 15298971PubMed |

Brison, D. R., Sturmey, R. G., and Leese, H. J. (2014). Metabolic heterogeneity during preimplantation development: the missing link? Hum. Reprod. Update 20, 632–640.
Metabolic heterogeneity during preimplantation development: the missing link?Crossref | GoogleScholarGoogle Scholar | 24795173PubMed |

Butcher, L., Coates, A., Martin, K. L., Rutherford, A. J., and Leese, H. J. (1998). Metabolism of pyruvate by early the human embryo. Biol. Reprod. 58, 1054–1056.
Metabolism of pyruvate by early the human embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1Kht7Y%3D&md5=4e135d630a60c5e0d33ae661634c18beCAS | 9546739PubMed |

Castellano, G., Bonilha, L., Li, L. M., and Cendes, F. (2004). Texture analysis of medical images. Clin. Radiol. 59, 1061–1069.
Texture analysis of medical images.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2crotlOlsA%3D%3D&md5=abe8eeb3a094263f8985661c94cea567CAS | 15556588PubMed |

Cox, C. I., and Leese, H. J. (1995). Effect of purinergic stimulation on intracellular calcium concentration and transepithelial potential difference in cultured bovine oviduct cells. Biol. Reprod. 52, 1244–1249.
Effect of purinergic stimulation on intracellular calcium concentration and transepithelial potential difference in cultured bovine oviduct cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvVGls7o%3D&md5=8dae46fcbdb4a87709b888e6c149425aCAS | 7632832PubMed |

De Schepper, G. G., Vander Perk, C., Westerveld, A., Oosting, J., and Van Noorden, C. J. (1993). In situ glucose-6-phosphate dehydrogenase activity during development of pre-implantation mouse embryos. Histochem. J. 25, 299–303.
In situ glucose-6-phosphate dehydrogenase activity during development of pre-implantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvFajt7Y%3D&md5=4060d19b3103ac397c329ea3421a2580CAS | 8491670PubMed |

Dickens, C. J., Southgate, J., and Leese, H. J. (1993). Use of primary cultures of rabbit oviduct epithelial cells to study the ionic basis of tubal fluid information. J. Reprod. Fertil. 98, 603–610.
Use of primary cultures of rabbit oviduct epithelial cells to study the ionic basis of tubal fluid information.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsVKksLY%3D&md5=fce4060beacc36d2642968e90c4b4be9CAS | 8410831PubMed |

Downs, S. M., and Utecht, A. M. (1999). Metabolism of radiolabeled glucose by mouse oocytes and oocyte–cumulus cell complexes. Biol. Reprod. 60, 1446–1452.
Metabolism of radiolabeled glucose by mouse oocytes and oocyte–cumulus cell complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVeisLs%3D&md5=61ffb61e79949557bc72522c89cf3df1CAS | 10330104PubMed |

Dumollard, R., Ward, Z., Carroll, J., and Duchen, M. R. (2007). Regulation of redox metabolism in the mouse oocyte and embryo. Development 134, 455–465.
Regulation of redox metabolism in the mouse oocyte and embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlWgs7g%3D&md5=d77b17285158c4c0a7bb0574441c7e1aCAS | 17185319PubMed |

Dumollard, R., Carroll, J., Duchen, M. R., Campbell, K., and Swann, K. (2009). Mitochondrial function and redox state in mammalian embryos. Semin. Cell Dev. Biol. 20, 346–353.
Mitochondrial function and redox state in mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVCmsLo%3D&md5=8e1436f46bb793d40b3bb0450eec5a94CAS | 19530278PubMed |

Fragouli, E., Spath, K., Alfarawati, S., Kaper, F., Craig, A., Michel, C. E., Kokocinski, F., Cohen, J., Munne, S., and Wells, D. (2015). Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet. 11, e1005241.
Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential.Crossref | GoogleScholarGoogle Scholar | 26039092PubMed |

Gardner, D. K., and Harvey, A. J. (2015). Blastocyst metabolism. Reprod. Fertil. Dev. 27, 638–654.
Blastocyst metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntVWntbw%3D&md5=84af9775f682833dfe2033ef0be5ce02CAS |

Gardner, D. K., and Leese, H. J. (1988). The role of glucose and pyruvate transport in regulating nutrient utilizatioin by preimplantatiojn mouse embryos. Development 104, 423–429.
| 1:CAS:528:DyaL1MXlsV2mtQ%3D%3D&md5=5a8af4e6326bd1c18ac137599d230ebcCAS | 3076862PubMed |

Gardner, D. K., and Sakkas, D. (2003). Assessment of embryo viability: the ability to select a single embryo for transfer: a review. Placenta 24, S5–S12.
Assessment of embryo viability: the ability to select a single embryo for transfer: a review.Crossref | GoogleScholarGoogle Scholar | 14559024PubMed |

Gardner, D. K., and Wale, P. L. (2013). Analysis of metabolism to select viable human embryos for transfer. Fertil. Steril. 99, 1062–1072.
Analysis of metabolism to select viable human embryos for transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslyksQ%3D%3D&md5=1fad36cd6f1d9bc41df900dff6e1c849CAS | 23312219PubMed |

Gardner, D. K., Lane, M., Stevens, J., Schlenker, T., and Schoolcraft, W. B. (2000). Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Steril. 73, 1155–1158.
Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czhsF2hug%3D%3D&md5=af8775b382af57cb381f650602bcb7a4CAS | 10856474PubMed |

Harper, J. C., and Sengupta, S. B. (2012). Preimplantation genetic diagnosis: state of the art 2011. Hum. Genet. 131, 175–186.
Preimplantation genetic diagnosis: state of the art 2011.Crossref | GoogleScholarGoogle Scholar | 21748341PubMed |

Harvey, A. J. (2007). The role of oxygen in ruminant preimplantation embryo development and metabolism. Anim. Reprod. Sci. 98, 113–128.
The role of oxygen in ruminant preimplantation embryo development and metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Slu7s%3D&md5=9e03680937c8859774ab1d10fca77360CAS | 17158002PubMed |

Heikal, A. A. (2010). Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark. Med. 4, 241–263.
Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVKqt74%3D&md5=a8df0c4387de42141edab20012197b4cCAS | 20406068PubMed |

Herrero, J., and Meseguer, M. (2013). Selection of high potential embryos using time-lapse imaging: the era of morphokinetics. Fertil. Steril. 99, 1030–1034.
Selection of high potential embryos using time-lapse imaging: the era of morphokinetics.Crossref | GoogleScholarGoogle Scholar | 23395415PubMed |

Houghton, F. D., Thompson, J. G., Kennedy, C. J., and Leese, H. J. (1996). Oxygen consumption and energy metabolism of the early mouse embryo. Mol. Reprod. Dev. 44, 476–485.
Oxygen consumption and energy metabolism of the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvFGrtLY%3D&md5=692830e4582a9981bcf0e4804c72c6f5CAS | 8844690PubMed |

Houghton, F. D., Hawkhead, J. A., Humpherson, P. G., Hogg, J. E., Balen, A. H., Rutherford, A. J., and Leese, H. J. (2002). Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 17, 999–1005.
Non-invasive amino acid turnover predicts human embryo developmental capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs12isLg%3D&md5=adfd3bb337f670f6d799e1d8fe73da21CAS | 11925397PubMed |

Huang, H., Liu, L., and Ngadi, M. O. (2014). Recent developments in hyperspectral imaging for assessment of food quality and safety. Sensors 14, 7248–7276.
Recent developments in hyperspectral imaging for assessment of food quality and safety.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjt1Wrurw%3D&md5=427f1b3aa1d30185532b54506d1d44ebCAS | 24759119PubMed |

Kane, M. T. (1979). Fatty acids as energy sources for culture of one-cell rabbit ova to viable movulae. Biol. Reprod. 20, 323–332.
Fatty acids as energy sources for culture of one-cell rabbit ova to viable movulae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXitVWntLw%3D&md5=1ef1d7634d6d764e350a11647055372bCAS | 572233PubMed |

Keefer, C. L., Stice, S. L., Paprocki, A. M., and Golueke, P. (1994). In vitro culture of bovine IVM–IVF embryos: cooperative interaction among embryos and the role of growth factors. Theriogenology 41, 1323–1331.
In vitro culture of bovine IVM–IVF embryos: cooperative interaction among embryos and the role of growth factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkt1OrsbY%3D&md5=998f6b56364944f52ebf630747631930CAS | 16727487PubMed |

Killian, G. J. (2004). Evidence for the role of oviduct secretions in sperm function, fertilization and embryo development. Anim. Reprod. Sci. 82–83, 141–153.
Evidence for the role of oviduct secretions in sperm function, fertilization and embryo development.Crossref | GoogleScholarGoogle Scholar | 15271449PubMed |

Kölle, S., Dubielzig, S., Reese, S., Wehrend, A., König, P., and Kummer, W. (2009). Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow. Biol. Reprod. 81, 267–274.
Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow.Crossref | GoogleScholarGoogle Scholar | 19299315PubMed |

Krisher, R. L., and Prather, R. S. (2012). A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol. Reprod. Dev. 79, 311–320.
A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFygs7Y%3D&md5=c0eff42a155facc9c59aef5762dc984fCAS | 22431437PubMed |

Krisher, R. L., Heuberger, A. L., Paczkowski, M., Stevens, J., Pospisil, C., Prather, R. S., Sturmey, R. G., Herrick, J. R., and Schoolcraft, W. B. (2015a). Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology. Reprod. Fertil. Dev , .
Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology.Crossref | GoogleScholarGoogle Scholar | 25763765PubMed |

Krisher, R. L., Schoolcraft, W. B., and Katz-Jaffe, M. G. (2015b). Omics as a window to view embryo viability. Fertil. Steril. 103, 333–341.
Omics as a window to view embryo viability.Crossref | GoogleScholarGoogle Scholar | 25639968PubMed |

Lamb, V. K., and Leese, H. J. (1994). Uptake of mixture of amino acids by mouse blastocysts. J. Reprod. Fertil. 102, 169–175.
Uptake of mixture of amino acids by mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXit12rtLc%3D&md5=5e22c360a1385304b421f653defc2c71CAS | 7799310PubMed |

Lane, M., and Gardner, D. K. (1992). Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro. Hum. Reprod. 7, 558–562.
| 1:STN:280:DyaK38zpsFWjtA%3D%3D&md5=b6c899dc0261d977d8151f7015311813CAS | 1522203PubMed |

Lane, M., and Gardner, D. K. (1998). Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum. Reprod. 13, 991–997.
Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12guro%3D&md5=0c4a71a225bc6ac5f0bb294af32ede91CAS | 9619560PubMed |

Leese, H. J. (1991). Metabolism of the preimplantation mammalian embryo. Oxf. Rev. Reprod. Biol. 13, 35–72.
| 1:STN:280:DyaK3szgvFyqsA%3D%3D&md5=0c8a749b0feb997d93f0005390d859b0CAS | 1845337PubMed |

Leese, H. J. (1995). Metabolic control during preimplantation mammalian development. Hum. Reprod. Update 1, 63–72.
Metabolic control during preimplantation mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3jsFSmuw%3D%3D&md5=28b6f8cf121990d2653f68295bcb88cbCAS | 9080207PubMed |

Leese, H. J. (2002). Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays 24, 845–849.
Quiet please, do not disturb: a hypothesis of embryo metabolism and viability.Crossref | GoogleScholarGoogle Scholar | 12210521PubMed |

Leese, H. J. (2012). Metabolism of the preimplantation embryo: 40 years on. Reproduction 143, 417–427.
Metabolism of the preimplantation embryo: 40 years on.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntV2ns7k%3D&md5=f555309438a1c10cea0035b1d323ea61CAS | 22408180PubMed |

Leese, H. J., and Bronk, J. R. (1972). Automated fluorometric analysis of micromolar quantities of ATP, glucose, and lactic acid. Anal. Biochem. 45, 211–221.
Automated fluorometric analysis of micromolar quantities of ATP, glucose, and lactic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xjt1SmtA%3D%3D&md5=6bed56c2f2819ea0c464faf2c3251dddCAS | 5009284PubMed |

Leese, H. J., Biggers, J. D., Mroz, E. A., and Lechene, C. (1984). Nucleotides in a single mammalian ovum or preimplantation embryo. Anal. Biochem. 140, 443–448.
Nucleotides in a single mammalian ovum or preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkvVKlu7k%3D&md5=94f5fb3c5ea777a6ba4b7a86fabd8b38CAS | 6486431PubMed |

Leese, H. J., Conaghen, J., Hardy, K., Martin, K., Handyside, A. H., and Winston, R. M. L. (1994) Non-invasive biochemical methods for assessing human embryo quality. In: ‘Gamete and Embryo Quality. Proceedings of the 4th Organon, Round Table Conference’, Thessaloniki, Greece (Eds L. Mastroianni Jr, H. J. T. Bennink, S. Suzuki and H. M. Vemer.) pp. 125–138. (Parthenon Publishing Group: New York.)

Leese, H. J., Sturmey, R. G., Baumann, C. G., and McEvoy, T. G. (2007). Embryo viability and metabolism: obeying the quiet rules. Hum. Reprod. 22, 3047–3050.
Embryo viability and metabolism: obeying the quiet rules.Crossref | GoogleScholarGoogle Scholar | 17956925PubMed |

Leese, H. J., Baumann, C. G., Brison, D. R., McEvoy, T. G., and Sturmey, R. G. (2008). Metabolism of the viable mammalian embryo: quietness revisited. Mol. Hum. Reprod. 14, 667–672.
Metabolism of the viable mammalian embryo: quietness revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2gsA%3D%3D&md5=9034204c84df6b71f9e2d5645a866619CAS | 19019836PubMed |

Lolicato, F., Brouwers, J. F., de Lest, C. H., Wubbolts, R., Aardema, H., Priore, P., Roelen, B. A., Helms, J. B., and Gadella, B. M. (2015). The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity. Biol. Reprod. 92, 16.
The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity.Crossref | GoogleScholarGoogle Scholar | 25297544PubMed |

Lonergan, P., and Fair, T. (2014). The ART of studying early embryo development: progress and challenges in ruminant embryo culture. Theriogenology 81, 49–55.
The ART of studying early embryo development: progress and challenges in ruminant embryo culture.Crossref | GoogleScholarGoogle Scholar | 24274409PubMed |

Lopes, A. S., Madsen, S. E., Ramsing, N. B., Lovendahl, P., Greve, T., and Callesen, H. (2007). Investigation of respiration of individual bovine embryos produced in vivo and in vitro and correlation with viability following transfer. Hum. Reprod. 22, 558–566.
Investigation of respiration of individual bovine embryos produced in vivo and in vitro and correlation with viability following transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s%2FhvFCrsQ%3D%3D&md5=75dafbb44f20391a28a05a047997635aCAS | 17127688PubMed |

Lowry, O. H. (1990). How to succeed in research without being a genius. Annu. Rev. Biochem. 59, 1–27.
How to succeed in research without being a genius.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltFCgs7o%3D&md5=f08f42bbaa3325fe78bf85862bddc690CAS | 2197974PubMed |

Meseguer, M., Herrero, J., Tejera, A., Hilligsoe, K. M., Ramsing, N. B., and Remohi, J. (2011). The use of morphokinetics as a predictor of embryo implantation. Hum. Reprod. 26, 2658–2671.
The use of morphokinetics as a predictor of embryo implantation.Crossref | GoogleScholarGoogle Scholar | 21828117PubMed |

Murata, S., Herman, P., and Lakowicz, J. R. (2001). Texture analysis of fluorescence lifetime images of AT- and GC-rich regions in nuclei. J. Histochem. Cytochem. 49, 1443–1451.
Texture analysis of fluorescence lifetime images of AT- and GC-rich regions in nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVWis74%3D&md5=ebb698002fd6677bb7075c2c79f3e7e6CAS | 11668197PubMed |

O’Fallon, J. V., and Wright, R. W. J. (1986). Quantitative determination of the pentose phosphate pathway in preimplantation mouse embryos. Biol. Reprod. 34, 58–64.
Quantitative determination of the pentose phosphate pathway in preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtVKqtb8%3D&md5=c599b3d9685b77332d0d0a751f7425f9CAS | 3513853PubMed |

O’Fallon, J. V., and Wright, R. W. J. (1987). Calculaton of the pentose phosphate and embden-myerhoff pathways from a single incubation with [U-14C]- and [5-3H] glucose. Anal. Biochem. 162, 33–38.
Calculaton of the pentose phosphate and embden-myerhoff pathways from a single incubation with [U-14C]- and [5-3H] glucose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktVelt7g%3D&md5=5af635bacb31f13eba3a4eff65039734CAS | 3605595PubMed |

Opiela, J., and Katska-Ksiazkiewicz, L. (2013). The utility of brilliant Cresyl blue (BCB) staining of mammalian oocytes used for in vitro embryo production (IVP). Reprod. Biol. 13, 177–183.
The utility of brilliant Cresyl blue (BCB) staining of mammalian oocytes used for in vitro embryo production (IVP).Crossref | GoogleScholarGoogle Scholar | 24011188PubMed |

Paczkowski, M., Silva, E., Schoolcraft, W. B., and Krisher, R. L. (2013). Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol. Reprod. 88, 111.
Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 23536372PubMed |

Picton, H. M., Elder, K., Houghton, F. D., Hawkhead, J. A., Rutherford, A. J., Hogg, J. E., Leese, H. J., and Harris, S. E. (2010). Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol. Hum. Reprod. 16, 557–569.
Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlegt7o%3D&md5=21f32cb976dfe948af69b99046cf8743CAS | 20571076PubMed |

Puscheck, E. E., Awonuga, A. O., Yang, Y., Jiang, Z., and Rappolee, D. A. (2015). Molecular biology of the stress response in the early embryo and its stem cells. Adv. Exp. Med. Biol. 843, 77–128.
Molecular biology of the stress response in the early embryo and its stem cells.Crossref | GoogleScholarGoogle Scholar | 25956296PubMed |

Ramanujam, N. (2000). Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2, 89–117.
Fluorescence spectroscopy of neoplastic and non-neoplastic tissues.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvhvFKqtA%3D%3D&md5=c2ebaba6001c5cb024801d8189f2202eCAS | 10933071PubMed |

Rieger, D., and Guay, P. (1988). Measurement of the metabolism of energy substrates in individual bovine blastocysts. J. Reprod. Fertil. 83, 585–591.
Measurement of the metabolism of energy substrates in individual bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltVyisrc%3D&md5=ad9821d4619ac61f4c751c399811a28aCAS | 3411552PubMed |

Rieger, D., and Loskutoff, N. M. (1994). Changes in the metabolism of glucose, pyruvate, glutamine and glycine during maturation of cattle oocytes in vitro. J. Reprod. Fertil. 100, 257–262.
Changes in the metabolism of glucose, pyruvate, glutamine and glycine during maturation of cattle oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjt1Sjurs%3D&md5=982a655123e470c7d0a7782c0d53bcd5CAS | 8182598PubMed |

Sakkas, D. (2014). Embryo selection using metabolomics. Methods Mol. Biol. 1154, 533–540.
Embryo selection using metabolomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvFGltLk%3D&md5=4a0c2af1e2e5831294d27673dafccc7bCAS | 24782026PubMed |

Schoolcraft, W. B., and Katz-Jaffe, M. G. (2013). Comprehensive chromosome screening of trophectoderm with vitrification facilitates elective single-embryo transfer for infertile women with advanced maternal age. Fertil. Steril. 100, 615–619.
Comprehensive chromosome screening of trophectoderm with vitrification facilitates elective single-embryo transfer for infertile women with advanced maternal age.Crossref | GoogleScholarGoogle Scholar | 23993664PubMed |

Shiku, H., Shiraishi, T., Ohya, H., Matsue, T., Abe, H., Hoshi, H., and Kobayashi, M. (2001). Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy. Anal. Chem. 73, 3751–3758.
Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1Sgtb4%3D&md5=157302564c368cccaa7e8073f48db114CAS | 11510844PubMed |

Sturmey, R. G., Bermejo-Alvarez, P., Gutierrez-Adan, A., Rizos, D., Leese, H. J., and Lonergan, P. (2010). Amino acid metabolism of bovine blastocysts: a biomarker of sex and viability. Mol. Reprod. Dev. 77, 285–296.
| 1:CAS:528:DC%2BC3cXotFSmuw%3D%3D&md5=e95dd21b2c1d7b3b02318a8323bd5bd9CAS | 20058302PubMed |

Sutton-McDowall, M. L., Purdey, M., Brown, H. M., Abell, A. D., Mottershead, D. G., Cetica, P. D., Dalvit, G. C., Goldys, E. M., Gilchrist, R. B., Gardner, D. K., and Thompson, J. G. (2015a). Redox and anti-oxidant state within cattle oocytes following in vitro maturation with bone morphogenetic protein 15 and follicle stimulating hormone. Mol. Reprod. Dev. 82, 281–294.
Redox and anti-oxidant state within cattle oocytes following in vitro maturation with bone morphogenetic protein 15 and follicle stimulating hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvVSmsL4%3D&md5=6de41cfe3083c5b1f54df62042bfbb82CAS | 25721374PubMed |

Sutton-McDowall, M. L., White, M. A., Purdey, M., Abell, A. D., Goldys, E. M., Anwer, A. G., Gosnell, M. A., and Thompson, J. G. (2015b). Non-invasive detection of metabolic heterogeneity in cow embryos as a predictor of developmental competence. Proceedings Society Study of Reproduction 375, 150.

Tejera, A., Herrero, J., Viloria, T., Romero, J.L., Gamiz, P., and Meseguer, M. (2012). Time-dependent O2 consumption patterns determined optimal time ranges for selecting viable human embryos. Fertil. Steril. 98, 849–857.
Time-dependent O2 consumption patterns determined optimal time ranges for selecting viable human embryos.Crossref | GoogleScholarGoogle Scholar | 22835446PubMed |

Thompson, J. G. (2005). Adaptive responses of early embryos to their microenvironment and subsequent consequences. In ‘Early Life Origin of Health and Disease’. (Eds M. Wintour and J. Owens.) pp. 58–69. (J. Landes Bioscience Publishing: Georgetown, TX.)

Thompson, J. G., Simpson, A. C., Pugh, P. A., Wright, R. W., and Tervit, H. R. (1991). Glucose utilization by sheep embryos derived in vivo and in vitro. Reprod. Fertil. Dev. 3, 571–576.
Glucose utilization by sheep embryos derived in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsVOrtro%3D&md5=df438bec22479f360e237a79c82137cfCAS | 1788397PubMed |

Thompson, J. G., Partridge, R. J., Houghton, F. D., Cox, C. I., and Leese, H. J. (1996a). Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J. Reprod. Fertil. 106, 299–306.
Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFKntrc%3D&md5=bc62e85b525f03af3440a40c544dd3c3CAS | 8699414PubMed |

Thompson, J. G., Partridge, R. J., Houghton, F. D., Kennedy, C. J., Pullar, D., and Leese, H. J. (1996b). Oxygen consumption by Day 7 bovine blastocysts: determination of ATP production. Anim. Reprod. Sci. 43, 241–247.
Oxygen consumption by Day 7 bovine blastocysts: determination of ATP production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xltlamsbk%3D&md5=79e2ff18e72ae0bec168d7675b40143bCAS |

Thompson, J. G., McNaughton, C., Gasparrini, B., McGowan, L. T., and Tervit, H. R. (2000). Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J. Reprod. Fertil. 118, 47–55.
| 1:CAS:528:DC%2BD3cXpsl2guw%3D%3D&md5=d3aba33dd2db82997e85e170616a9331CAS | 10793625PubMed |

Thomson, J. L. (1967). Effects of inhibitors of carbohydrate metabolism on the development of preimplantation mouse embryo. Exp. Cell Res. 46, 252–262.
Effects of inhibitors of carbohydrate metabolism on the development of preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXksFWrurg%3D&md5=6f6e0cf973ad2891fc7b05bfff4d3209CAS | 6026807PubMed |

Trimarchi, J. R., Liu, L., Marshall Porterfield, D., Smith, P. J. S., and Keefe, D. L. (2000a). Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantaton mouse embryos. Biol. Reprod. 62, 1866–1874.
Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantaton mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2ht78%3D&md5=35b86ef0d83cbc5389ce5ed505672864CAS | 10819794PubMed |

Trimarchi, J. R., Liu, L., Smith, P. J. S., and Keefe, D. L. (2000b). Noninvasive measurement of potassium efflux as an early indicator of cell death in mouse embryos. Biol. Reprod. 63, 851–857.
Noninvasive measurement of potassium efflux as an early indicator of cell death in mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCiu7Y%3D&md5=20b24869b42dcc99ebd15a78e942d937CAS | 10952931PubMed |

Van Blerkom, J. (2011). Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 11, 797–813.
Mitochondrial function in the human oocyte and embryo and their role in developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWrsrzM&md5=d8fce630c456055ad27de96490482f43CAS | 20933103PubMed |

Vanneste, E., Voet, T., Le Caignec, C., Ampe, M., Konings, P., Melotte, C., Debrock, S., Amyere, M., Vikkula, M., Schuit, F., Fryns, J. P., Verbeke, G., D’Hooghe, T., Moreau, Y., and Vermeesch, J. R. (2009). Chromosome instability is common in human cleavage-stage embryos. Nat. Med. 15, 577–583.
Chromosome instability is common in human cleavage-stage embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltValt7Y%3D&md5=fe5551a93b1181b4e1f7faa61ebbb8f0CAS | 19396175PubMed |

Vergouw, C. G., Heymans, M. W., Hardarson, T., Sfontouris, I. A., Economou, K. A., Ahlstrom, A., Rogberg, L., Lainas, T. G., Sakkas, D., Kieslinger, D. C., Kostelijk, E. H., Hompes, P. G., Schats, R., and Lambalk, C. B. (2014). No evidence that embryo selection by near-infrared spectroscopy in addition to morphology is able to improve live birth rates: results from an individual patient data meta-analysis. Hum. Reprod. 29, 455–461.
No evidence that embryo selection by near-infrared spectroscopy in addition to morphology is able to improve live birth rates: results from an individual patient data meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2czjs1ylsw%3D%3D&md5=4c8351923894425e74f01925dbb4fb0bCAS | 24408316PubMed |

Wale, P. L., and Gardner, D. K. (2013). Oxygen affects the ability of mouse blastocysts to regulate ammonium. Biol. Reprod. 89, 75.
Oxygen affects the ability of mouse blastocysts to regulate ammonium.Crossref | GoogleScholarGoogle Scholar | 23803557PubMed |

Williams, T. J. (1986). A technique for sexing mouse embryos by a visual colorimetric assay of the X-linked enzyme, glucose 6-phosphate dehydrogenase. Theriogenology 25, 733–739.
A technique for sexing mouse embryos by a visual colorimetric assay of the X-linked enzyme, glucose 6-phosphate dehydrogenase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XkvFersr8%3D&md5=002c7192487bbac983f45bd97828b043CAS | 16726164PubMed |

Zander, D. L., Thompson, J. G., and Lane, M. (2006). Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages. Biol. Reprod. 74, 288–294.
Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1KlsA%3D%3D&md5=bf85b92016f7df2e669b98a49b646c2fCAS | 16221986PubMed |