Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Cytoplasmic membrane activities during first cleavage of zona-free porcine embryos: description and consequences

Rong Li A , Ying Liu A , Hanne Skovsgaard Pedersen A and Henrik Callesen A B
+ Author Affiliations
- Author Affiliations

A Department of Animal Science, Aarhus University, Blichers Allé 20, Postbox 50, DK-8830 Tjele, Denmark.

B Corresponding author. Email: henrik.callesen@anis.au.dk

Reproduction, Fertility and Development 29(3) 557-564 https://doi.org/10.1071/RD15179
Submitted: 6 May 2015  Accepted: 26 August 2015   Published: 22 September 2015

Abstract

Already at first embryo cleavage subsequent blastocyst formation can be predicted based on morphology but the finer morphological details can be difficult to determine due to the presence of the zona pellucida (ZP). Therefore, we monitored zona-free porcine parthenogenetically activated (PA) embryos in a time-lapse system to: (1) describe and characterise the morphological activity of the cytoplasmic membrane and the distribution to the two nuclei during first cleavage and (2) determine the relationship between specific morphological activities and subsequent embryonic development. After ZP removal the membrane surface activities were clearly visible, so all cleaved embryos could be divided into two groups depending on the surface activity during first cleavage: regular morphology (MN) or irregular morphology with ‘bumps’ (MB). The two nuclei were more unequal in MB embryos in both nucleus size and DNA quantity. After first cleavage, MB embryos could be further divided into three types of irregularities (MB1, MB2, MB3) based on their subsequent behaviour. Clear differences in developmental patterns were found between MN and MB embryos, such as delayed first cleavage, compromised blastocyst formation and total cell number. The predictive value of these new types of morphological events was comparable to the more traditionally used time of first cleavage. In conclusion, zona-free embryos allow visualisation of finer morphological details that can provide an early prediction of embryo developmental potential, but further studies are needed on other type of embryos.

Additional keywords: cytokinesis, parthenogenetic activation, prediction, shape change, time-lapse.


References

Azoury, J., Lee, K. W., Georget, V., Rassinier, P., Leader, B., and Verlhac, M. H. (2008). Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr. Biol. 18, 1514–1519.
Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1entL7P&md5=0c67d066f6c8aac3de1150c17bd44189CAS | 18848445PubMed |

Burruel, V., Klooster, K., Barker, C. M., Pera, R. R., and Meyers, S. (2014). Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage. Sci. Rep. 4, 6598.
Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVyhsbY%3D&md5=2ea5144863cbd5a0e67090f0ef5a6349CAS | 25307782PubMed |

Cai, S., Weaver, L. N., Ems-McClung, S. C., and Walczak, C. E. (2010). Proper organisation of microtubule minus ends is needed for midzone stability and cytokinesis. Curr. Biol. 20, 880–885.
Proper organisation of microtubule minus ends is needed for midzone stability and cytokinesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVeisLk%3D&md5=7f3967525fb9f986625967ebc5bd4eb1CAS | 20434340PubMed |

Campbell, A., Fishel, S., Bowman, N., Duffy, S., Sedler, M., and Thornton, S. (2013). Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod. Biomed. Online 27, 140–146.
Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS.Crossref | GoogleScholarGoogle Scholar | 23683847PubMed |

Chavez, S. L., Loewke, K. E., Han, J. N., Moussavi, F., Colls, P., Munne, S., Behr, B., and Reijo Pera, R. A. (2012). Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat. Commun. 3, 1251.
Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage.Crossref | GoogleScholarGoogle Scholar | 23212380PubMed |

Chen, Y. Z., Mapes, J., Lee, E. S., Skeen-Gaar, R. R., and Xue, D. (2013). Caspase-mediated activation of Caenorhabditis elegans CED-8 promotes apoptosis and phosphatidylserine externalisation. Nat. Commun. 4, 2726.
Caspase-mediated activation of Caenorhabditis elegans CED-8 promotes apoptosis and phosphatidylserine externalisation.Crossref | GoogleScholarGoogle Scholar | 24225442PubMed |

Cruz, M., Garrido, N., Herrero, J., Perez-Cano, I., Munoz, M., and Meseguer, M. (2012). Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reprod. Biomed. Online 25, 371–381.
Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality.Crossref | GoogleScholarGoogle Scholar | 22877944PubMed |

Delimitreva, S. M., Zhivkova, R. S., Vatev, I. T., and Toncheva, D. I. (2005). Chromosomal disorders and nuclear and cell destruction in cleaving human embryos. Int. J. Dev. Biol. 49, 409–416.
Chromosomal disorders and nuclear and cell destruction in cleaving human embryos.Crossref | GoogleScholarGoogle Scholar | 15968586PubMed |

Deshmukh, R. S., Ostrup, O., Ostrup, E., Vejlsted, M., Niemann, H., Lucas-Hahn, A., Petersen, B., Li, J., Callesen, H., and Hyttel, P. (2011). DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilisation, parthenogenetic activation and somatic cell nuclear transfer. Epigenetics 6, 177–187.
DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilisation, parthenogenetic activation and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs12ksLY%3D&md5=7f6332ef229ed49e4350ab26c9fc021dCAS | 20935454PubMed |

Deshmukh, R. S., Ostrup, O., Strejcek, F., Vejlsted, M., Lucas-Hahn, A., Petersen, B., Li, J., Callesen, H., Niemann, H., and Hyttel, P. (2012). Early aberrations in chromatin dynamics in embryos produced under in vitro conditions. Cell. Reprogram. 14, 225–234.
| 1:CAS:528:DC%2BC38XotlCgtLo%3D&md5=ab237c10b83acd6b697e7f64bfd6860cCAS | 22468997PubMed |

Gray, D., Plusa, B., Piotrowska, K., Na, J., Tom, B., Glover, D. M., and Zernicka-Goetz, M. (2004). First cleavage of the mouse embryo responds to change in egg shape at fertilisation. Curr. Biol. 14, 397–405.
First cleavage of the mouse embryo responds to change in egg shape at fertilisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVeksbc%3D&md5=f5053ed2328dafec42ef02eb47a4c1dfCAS | 15028215PubMed |

Hao, Y. H., Lai, L. X., Liu, Z. H., Im, G. S., Wax, D., Samuel, M., Murphy, C. N., Sutovsky, P., and Prather, R. S. (2006). Developmental competence of porcine parthenogenetic embryos relative to embryonic chromosomal abnormalities. Mol. Reprod. Dev. 73, 77–82.
Developmental competence of porcine parthenogenetic embryos relative to embryonic chromosomal abnormalities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12ntbzJ&md5=9663ed5c6bffb6a1eab859030ec1bd2aCAS | 16224773PubMed |

Hardarson, T., Löfman, C., Coull, G., Sjögren, A., Hamberger, L., and Edwards, R. G. (2002). Internalisation of cellular fragments in a human embryo: time-lapse recordings. Reprod. Biomed. Online 5, 36–38.
Internalisation of cellular fragments in a human embryo: time-lapse recordings.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38jgvFKmug%3D%3D&md5=6cd8572cecc212d1b47867c957aa5072CAS | 12470543PubMed |

Hickman, C. F. L., Campbell, A., Duffy, S., and Fishel, S. (2012). Reverse cleavage: its significance with regards to human embryo morphokinetics, ploidy and stimulation protocol. Hum. Reprod. 27, ii103–ii105.

Isom, S. C., Li, R., Whitworth, K. M., and Prather, R. S. (2012). Timing of first embryonic cleavage is a positive indicator of the in vitro developmental potential of porcine embryos derived from in vitro fertilisation, somatic cell nuclear transfer and parthenogenesis. Mol. Reprod. Dev. 79, 197–207.
Timing of first embryonic cleavage is a positive indicator of the in vitro developmental potential of porcine embryos derived from in vitro fertilisation, somatic cell nuclear transfer and parthenogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Oiur7M&md5=064fc26ef4121de7ff83d47589f3fc0cCAS | 22213403PubMed |

Kryzak, C. A., Moraine, M. M., Kyle, D. D., Lee, H. J., Cubenas-Potts, C., Robinson, D. N., and Evans, J. P. (2013). Prophase I mouse oocytes are deficient in the ability to respond to fertilisation by decreasing membrane receptivity to spermatozoa and establishing a membrane block to polyspermy. Biol. Reprod. 89, 44.
Prophase I mouse oocytes are deficient in the ability to respond to fertilisation by decreasing membrane receptivity to spermatozoa and establishing a membrane block to polyspermy.Crossref | GoogleScholarGoogle Scholar | 23863404PubMed |

Lammers, J., Splingart, C., Barriere, P., and Freour, T. (2014). Morphokinetic parameters of ICSI tripronucleated embryos observed using time lapse. Reprod. Biomed. Online 28, 658–660.
Morphokinetic parameters of ICSI tripronucleated embryos observed using time lapse.Crossref | GoogleScholarGoogle Scholar | 24631380PubMed |

Lemmen, J. G., Agerholm, I., and Ziebe, S. (2008). Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilised oocytes. Reprod. Biomed. Online 17, 385–391.
Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilised oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1crnslSguw%3D%3D&md5=9b9aaed566d82a2dcc205c77adfcdd2cCAS | 18765009PubMed |

Li, R., Liu, Y., Pedersen, H., Kragh, P., and Callesen, H. (2013). Development and quality of porcine parthenogenetically activated embryos after removal of zona pellucida. Theriogenology 80, 58–64.
Development and quality of porcine parthenogenetically activated embryos after removal of zona pellucida.Crossref | GoogleScholarGoogle Scholar | 23602082PubMed |

Li, R., Pedersen, K., Liu, Y., Pedersen, H., Lægdsmand, M., Rickelt, L. F., Kühl, M., and Callesen, H. (2014). Effect of red light on the development and quality of mammalian embryos. J. Assist. Reprod. Genet. 31, 795–801.
Effect of red light on the development and quality of mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 24854483PubMed |

Liu, X., Wang, P., Fu, J., Lv, D., Chen, D., Li, Y., and Ma, W. (2011). Two-photon fluorescence real-time imaging on the development of early mouse embryo by stages. J. Microsc. 241, 212–218.
Two-photon fluorescence real-time imaging on the development of early mouse embryo by stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisV2qtr8%3D&md5=6bee99e05af7f47b0b3860f10891bf60CAS | 21118221PubMed |

Liu, Y., Chapple, V., Roberts, P., and Matson, P. (2014). Prevalence, consequence and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system. Fertil. Steril. 102, 1295–1300.e2.
Prevalence, consequence and significance of reverse cleavage by human embryos viewed with the use of the Embryoscope time-lapse video system.Crossref | GoogleScholarGoogle Scholar | 25225070PubMed |

Mateusen, B., Van Soom, A., Maes, D. G., Donnay, I., Duchateau, L., and Lequarre, A. S. (2005). Porcine embryo development and fragmentation and their relation to apoptotic markers: a cinematographic and confocal laser-scanning microscopic study. Reproduction 129, 443–452.
Porcine embryo development and fragmentation and their relation to apoptotic markers: a cinematographic and confocal laser-scanning microscopic study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1ertLc%3D&md5=cd3ec87a9745e1d96be3c1220d7d2f13CAS | 15798019PubMed |

Mertzanidou, A., Wilton, L., Cheng, J., Spits, C., Vanneste, E., Moreau, Y., Vermeesch, J. R., and Sermon, K. (2013). Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos. Hum. Reprod. 28, 256–264.
Microarray analysis reveals abnormal chromosomal complements in over 70% of 14 normally developing human embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVGms7%2FM&md5=c5a059aff9e2cc728a4a9d37aa19afa4CAS | 23054067PubMed |

Meseguer, M., Herrero, J., Tejera, A., Hilligsoe, K. M., Ramsing, N. B., and Remohi, J. (2011). The use of morphokinetics as a predictor of embryo implantation. Hum. Reprod. 26, 2658–2671.
The use of morphokinetics as a predictor of embryo implantation.Crossref | GoogleScholarGoogle Scholar | 21828117PubMed |

Nakahara, T., Iwase, A., Goto, M., Harata, T., Suzuki, M., Ienaga, M., Kobayashi, H., Takikawa, S., Manabe, S., Kikkawa, F., and Ando, H. (2010). Evaluation of the safety of time-lapse observations for human embryos. J. Assist. Reprod. Genet. 27, 93–96.
Evaluation of the safety of time-lapse observations for human embryos.Crossref | GoogleScholarGoogle Scholar | 20127164PubMed |

Paffoni, A., Brevini, T. A., Gandolfi, F., and Ragni, G. (2008). Parthenogenetic activation: biology and applications in the ART laboratory. Placenta 29, 121–125.
Parthenogenetic activation: biology and applications in the ART laboratory.Crossref | GoogleScholarGoogle Scholar | 18778853PubMed |

Petersen, B., Lucas-Hahn, A., Oropeza, M., Hornen, N., Lemme, E., Hassel, P., Queisser, A. L., and Niemann, H. (2008). Development and validation of a highly efficient protocol of porcine somatic cloning using pre-ovulatory embryo transfer in peripubertal gilts. Cloning Stem Cells 10, 355–362.
Development and validation of a highly efficient protocol of porcine somatic cloning using pre-ovulatory embryo transfer in peripubertal gilts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOmu7%2FL&md5=f6e8141034fac9d92a8e4057068000d1CAS | 18729768PubMed |

Scott, L., Alvero, R., Leondires, M., and Miller, B. (2000). The morphology of human pronuclear embryos is positively related to blastocyst development and implantation. Hum. Reprod. 15, 2394–2403.
The morphology of human pronuclear embryos is positively related to blastocyst development and implantation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FmtVahsA%3D%3D&md5=11ca3b6566ebcf7edc2b8f3f6186735eCAS | 11056141PubMed |

Stringfellow, D. A., and Givens, M. D. (2010). ‘Manual of the International Embryo Transfer Society (IETS)’. 4th edn. (IETS: Champaign, IL, USA.)

Thouas, G. A., Jones, G. M., and Trounson, A. O. (2003). The ‘GO’ system – a novel method of microculture for in vitro development of mouse zygotes to the blastocyst stage. Reproduction 126, 161–169.
The ‘GO’ system – a novel method of microculture for in vitro development of mouse zygotes to the blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFyjsbk%3D&md5=b4e5f865db2125046d4f1888f7669179CAS | 12887273PubMed |

Ueno, S., Bodri, D., Uchiyama, K., Okimura, T., Okuno, T., Kobayashi, T., and Kato, K. (2014). Developmental potential of zona pellucida-free oocytes obtained following mild in vitro fertilisation. Fertil. Steril. 102, 1602–1607.
Developmental potential of zona pellucida-free oocytes obtained following mild in vitro fertilisation.Crossref | GoogleScholarGoogle Scholar | 25256934PubMed |

Vajta, G., Peura, T. T., Holm, P., Paldi, K., Greve, T., Trounson, A. O., and Callesen, H. (2000). New method for culture of zona-included or zona-free embryos: the well-of-the-well (WOW) system. Mol. Reprod. Dev. 55, 256–264.
New method for culture of zona-included or zona-free embryos: the well-of-the-well (WOW) system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFelsbY%3D&md5=292b96466b619d2843625e84f6121398CAS | 10657044PubMed |

Vajta, G., Rienzi, L., and Bavister, B. D. (2010). Zona-free embryo culture: is it a viable option to improve pregnancy rates? Reprod. Biomed. Online 21, 17–25.
Zona-free embryo culture: is it a viable option to improve pregnancy rates?Crossref | GoogleScholarGoogle Scholar | 20466592PubMed |

Viuff, D., Hendriksen, P. J., Vos, P. L., Dieleman, S. J., Bibby, B. M., Greve, T., Hyttel, P., and Thomsen, P. D. (2001). Chromosomal abnormalities and developmental kinetics in in vivo-developed cattle embryos at Days 2 to 5 after ovulation. Biol. Reprod. 65, 204–208.
Chromosomal abnormalities and developmental kinetics in in vivo-developed cattle embryos at Days 2 to 5 after ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWhtbg%3D&md5=71d1aa2d545e6f5782f9b758805a5447CAS | 11420241PubMed |

Wong, C. C., Loewke, K. E., Bossert, N. L., Behr, B., De Jonge, C. J., Baer, T. M., and Reijo Pera, R. A. (2010). Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat. Biotechnol. 28, 1115–1121.
Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1elurfF&md5=f37312bca6b7ac68bbbb5624ad070d4dCAS | 20890283PubMed |

Xu, X., and Vogel, B. E. (2011). A secreted protein promotes cleavage furrow maturation during cytokinesis. Curr. Biol. 21, 114–119.
A secreted protein promotes cleavage furrow maturation during cytokinesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVarurk%3D&md5=3069c10aa0063438e7196d2a2dbc6d87CAS | 21215633PubMed |

Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M., and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
Birth of piglets derived from porcine zygotes cultured in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1yksQ%3D%3D&md5=561964c8beff5173933d7dff62eac0c9CAS | 11751272PubMed |

Zhang, Y., Pan, D., Sun, X., Sun, G., Wang, X., Liu, X., Li, Y., Dai, Y., and Li, N. (2006). Production of porcine cloned transgenic embryos expressing green fluorescent protein by somatic cell nuclear transfer. Sci. China C Life Sci. 49, 164–171.
Production of porcine cloned transgenic embryos expressing green fluorescent protein by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltFamtbc%3D&md5=a2f93b9d812bc4d3e594ee0bfaf7d3dbCAS | 16704120PubMed |

Zhao, J., Ross, J. W., Hao, Y., Spate, L. D., Walters, E. M., Samuel, M. S., Rieke, A., Murphy, C. N., and Prather, R. S. (2009). Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer. Biol. Reprod. 81, 525–530.
Significant improvement in cloning efficiency of an inbred miniature pig by histone deacetylase inhibitor treatment after somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVChu7%2FF&md5=f90be508bd635177aad7a9508904f310CAS | 19386991PubMed |

Zhong, Z., Spate, L., Hao, Y., Li, R., Lai, L., Katayama, M., Sun, Q. Y., Prather, R. S., and Schatten, H. (2007). Remodelling of centrosomes in intra-species and inter-species nuclear transfer porcine embryos. Cell Cycle 6, 1509–1520.
Remodelling of centrosomes in intra-species and inter-species nuclear transfer porcine embryos.Crossref | GoogleScholarGoogle Scholar |