Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Assessment of yellowtail kingfish (Seriola lalandi) as a surrogate host for the production of southern bluefin tuna (Thunnus maccoyii) seed via spermatogonial germ cell transplantation

Ido Bar A , Andre Smith A , Erin Bubner B , Goro Yoshizaki C , Yutaka Takeuchi D , Ryosuke Yazawa C , Ben Nan Chen E , Scott Cummins A and Abigail Elizur A F
+ Author Affiliations
- Author Affiliations

A Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Qld 4558, Australia.

B Lincoln Marine Science Centre, School of Biological Science, Flinders University, PO Box 2023, Port Lincoln, SA 5606, Australia.

C Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.

D Research Center for Advanced Science and Technology, Tokyo University of Marine and Science Technology, 670 Banda, Tateyama-shi, Chiba, 294-0308, Japan.

E Clean Seas Tuna Ltd, PO Box 159, Port Lincoln, SA 5606, Australia.

F Corresponding author. Email: aelizur@usc.edu.au

Reproduction, Fertility and Development 28(12) 2051-2064 https://doi.org/10.1071/RD15136
Submitted: 8 April 2015  Accepted: 11 June 2015   Published: 21 July 2015

Abstract

Germ cell transplantation is an innovative technology for the production of interspecies surrogates, capable of facilitating easier and more economical management of large-bodied broodstock, such as the bluefin tuna. The present study explored the suitability of yellowtail kingfish (Seriola lalandi) as a surrogate host for transplanted southern bluefin tuna (Thunnus maccoyii) spermatogonial cells to produce tuna donor-derived gametes upon sexual maturity. Germ cell populations in testes of donor T. maccoyii males were described using basic histology and the molecular markers vasa and dead-end genes. The peripheral area of the testis was found to contain the highest proportions of dead-end-expressing transplantable Type A spermatogonia. T. maccoyii Type A spermatogonia-enriched preparations were transplanted into the coelomic cavity of 6–10-day-old post-hatch S. lalandi larvae. Fluorescence microscopy and polymerase chain reaction analysis detected the presence of tuna cells in the gonads of the transplanted kingfish fingerlings at 18, 28, 39 and 75 days after transplantation, indicating that the transplanted cells migrated to the genital ridge and had colonised the developing gonad. T. maccoyii germ cell-derived DNA or RNA was not detected at later stages, suggesting that the donor cells were not maintained in the hosts’ gonads.

Additional keywords: aquaculture, dead-end, gonad development, spermatogenesis, vasa.


References

Bar, I. (2015). Transplantation of PKH26-labeled southern bluefin tuna spermatogonial cells into a 7 days post hatch yellowtail kingfish larva. Vimeo video, 1 : 12, uploaded 7 April 2015. Available at: https://vimeo.com/124275841 [verified 7 April 2015].

Batlouni, S. R., Nóbrega, R. H., and França, L. R. (2009). Cell junctions in fish seminiferous epithelium. Fish Physiol. Biochem. 35, 207–217.
Cell junctions in fish seminiferous epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlOrt7k%3D&md5=27d86382991512b8d1e405bbefacdf14CAS | 18803027PubMed |

Bubner, E. (2011). Towards the captive breeding of the southern bluefin tuna (Thunnus maccoyii). PhD Thesis, Flinders University of South Australia, Adelaide.

Bubner, E., Farley, J., Thomas, P., Bolton, T., and Elizur, A. (2012). Assessment of reproductive maturation of southern bluefin tuna (Thunnus maccoyii) in captivity. Aquaculture 364–365, 82–95.
Assessment of reproductive maturation of southern bluefin tuna (Thunnus maccoyii) in captivity.Crossref | GoogleScholarGoogle Scholar |

Cantatore, P., Roberti, M., Pesole, G., Ludovico, A., Milella, F., Gadaleta, M. N., and Saccone, C. (1994). Evolutionary analysis of cytochrome b sequences in some perciformes: evidence for a slower rate of evolution than in mammals. J. Mol. Evol. 39, 589–597.
Evolutionary analysis of cytochrome b sequences in some perciformes: evidence for a slower rate of evolution than in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXis1Kgsrc%3D&md5=da007ca153ab7b4066d895030f9a624eCAS | 7807548PubMed |

Crespi, B. J., and Fulton, M. J. (2004). Molecular systematics of Salmonidae: combined nuclear data yields a robust phylogeny. Mol. Phylogenet. Evol. 31, 658–679.
Molecular systematics of Salmonidae: combined nuclear data yields a robust phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVKntbg%3D&md5=576ee2af7ab93ca7de594f8f7ed0616cCAS | 15062801PubMed |

David, R., and Wedlich, D. (2001). PCR-based RNA probes: a quick and sensitive method to improve whole mount embryo in situ hybridizations. BioTechniques 30, 769–772.
| 1:CAS:528:DC%2BD3MXivVKisr8%3D&md5=98ac5af0c7ef55f98de6f6e2cac2b055CAS | 11314259PubMed |

de Montgolfier, B., Dufresne, J., Letourneau, M., Nagler, J. J., Fournier, A., Audet, C., and Cyr, D. G. (2007). The expression of multiple connexins throughout spermatogenesis in the rainbow trout testis suggests a role for complex intercellular communication. Biol. Reprod. 76, 2–8.
The expression of multiple connexins throughout spermatogenesis in the rainbow trout testis suggests a role for complex intercellular communication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1KqtQ%3D%3D&md5=9cb24b9f684869ad908f4bbc0333e494CAS | 16971556PubMed |

Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K., and Mattick, J. S. (1991). ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19, 4008.
‘Touchdown’ PCR to circumvent spurious priming during gene amplification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtVShu70%3D&md5=05be7ff9415f9fdd4955206e42582921CAS | 1861999PubMed |

Dumstrei, K., Mennecke, R., and Raz, E. (2004). Signaling pathways controlling primordial germ cell migration in zebrafish. J. Cell Sci. 117, 4787–4795.
Signaling pathways controlling primordial germ cell migration in zebrafish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVygurg%3D&md5=259c48fcfa2bc5eb06a3815dd9b8b6daCAS | 15340012PubMed |

Farlora, R., Hattori-Ihara, S., Takeuchi, Y., Hayashi, M., Octavera, A., Alimuddin, , and Yoshizaki, G. (2014). Intraperitoneal germ cell transplantation in the Nile tilapia Oreochromis niloticus. Mar. Biotechnol. (N. Y.) 16, 309–320.
Intraperitoneal germ cell transplantation in the Nile tilapia Oreochromis niloticus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOit7nK&md5=1990627fa7bbbd82f7a0c96e9f2e297dCAS |

Higuchi, K., Takeuchi, Y., Miwa, M., Yamamoto, Y., Tsunemoto, K., and Yoshizaki, G. (2011). Colonization, proliferation, and survival of intraperitoneally transplanted yellowtail Seriola quinqueradiata spermatogonia in nibe croaker Nibea mitsukurii recipient. Fish. Sci. 77, 69–77.
Colonization, proliferation, and survival of intraperitoneally transplanted yellowtail Seriola quinqueradiata spermatogonia in nibe croaker Nibea mitsukurii recipient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1aksLfL&md5=4b59256c3e9fb3df66118bf69b615deaCAS |

Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., and Madden, T. L. (2008). NCBI BLAST: a better web interface. Nucleic Acids Res. 36, W5–W9.
NCBI BLAST: a better web interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlKrs70%3D&md5=6470a6c58704233198b6bd15702a5dfdCAS | 18440982PubMed |

Knaut, H., Werz, C., Geisler, R., Nüsslein-Volhard, C., Tübingen 2000 Screen Consortium (2003). A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature 421, 279–282.
A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsF2gtw%3D%3D&md5=2d5de48e19382244bd95e91f280816e0CAS | 12508118PubMed |

Knibb, W., Miller, A., Deichmann, M., Lamont, R., Zohar, Y., and Foster, C. (2014). Statistical multivariate analysis to identify potential spawning cues for captive southern bluefin tuna, Thunnus maccoyii. In: ‘Proceedings of World Aquaculture 2014’, Adelaide, South Australia, June 2014. (World Aquaculture Society: Baton Rouge, LA.)

Kolkovski, S., and Sakakura, Y. (2004). Yellowtail kingfish, from larvae to mature fish: problems and opportunities. In: ‘Advances in aquaculture nutrition 2004. VII. Proceedings of the Seventh International Symposium on Aquatic Nutrition’, 16–19 November 2004. (Autonomous University of New Leon: Monterrey, NL, Mexico.)

Lacerda, S. M., Costa, G. M., and de França, L. R. (2014). Biology and identity of fish spermatogonial stem cell. Gen. Comp. Endocrinol. 207, 56–65.
Biology and identity of fish spermatogonial stem cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFGru73L&md5=f507d8b481def1a50035f07a34afdff7CAS | 24967950PubMed |

Lopera-Barrero, N. M., Povh, J. A., Ribeiro, R. P., Gomes, P., Jacometo, C., and Lopes, T. (2008). Comparison of DNA extraction protocols of fish fin and larvae samples: modified salt (NaCl) extraction. Cienc. Investig. Agrar. 35, 77–86.
Comparison of DNA extraction protocols of fish fin and larvae samples: modified salt (NaCl) extraction.Crossref | GoogleScholarGoogle Scholar |

McKay, S. J., Devlin, R. H., and Smith, M. J. (1996). Phylogeny of Pacific salmon and trout based on growth hormone type-2 and mitochondrial NADH dehydrogenase subunit 3 DNA sequences. Can. J. Fish. Aquat. Sci. 53, 1165–1176.
Phylogeny of Pacific salmon and trout based on growth hormone type-2 and mitochondrial NADH dehydrogenase subunit 3 DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvFOitbY%3D&md5=238a171e05e2cbb145a3781a9fac8e60CAS |

Meynard, C. N., Mouillot, D., Mouquet, N., and Douzery, E. J. P. (2012). A phylogenetic perspective on the evolution of mediterranean teleost fishes. PLoS One 7, e36443.
A phylogenetic perspective on the evolution of mediterranean teleost fishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1agsLY%3D&md5=7499fee97d091852b3c37c8da3999f45CAS | 22590545PubMed |

Miura, C., and Miura, T. (2011). Analysis of spermatogenesis using an eel model. Aqua-Biosci Monogr 4, 105–129.
Analysis of spermatogenesis using an eel model.Crossref | GoogleScholarGoogle Scholar |

Moran, D., Smith, C. K., Gara, B., and Poortenaar, C. W. (2007). Reproductive behaviour and early development in yellowtail kingfish (Seriola lalandi Valenciennes 1833). Aquaculture 262, 95–104.
Reproductive behaviour and early development in yellowtail kingfish (Seriola lalandi Valenciennes 1833).Crossref | GoogleScholarGoogle Scholar |

Morita, T., Kumakura, N., Morishima, K., Mitsuboshi, T., Ishida, M., Hara, T., Kudo, S., Miwa, M., Ihara, S., Higuchi, K., Takeuchi, Y., and Yoshizaki, G. (2012). Production of donor-derived offspring by allogeneic transplantation of spermatogonia in the yellowtail (Seriola quinqueradiata). Biol. Reprod. 86, 176.
Production of donor-derived offspring by allogeneic transplantation of spermatogonia in the yellowtail (Seriola quinqueradiata).Crossref | GoogleScholarGoogle Scholar | 22460666PubMed |

Mylonas, C. C., Bridges, C., Gordin, H., Belmonte Ríos, A., García, A., De La Gándara, F., Fauvel, C., Suquet, M., Medina, A., Papadaki, M., Heinisch, G., De Metrio, G., Corriero, A., Vassallo-Agius, R., Guzmán, J.-M., Mañanos, E., and Zohark, Y. (2007). Preparation and administration of gonadotropin-releasing hormone agonist (GnRHa) implants for the artificial control of reproductive maturation in captive-reared Atlantic bluefin tuna (Thunnus thynnus thynnus). Rev. Fish. Sci. 15, 183–210.
Preparation and administration of gonadotropin-releasing hormone agonist (GnRHa) implants for the artificial control of reproductive maturation in captive-reared Atlantic bluefin tuna (Thunnus thynnus thynnus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSltL%2FF&md5=543282e8f4bf1b6d6314c88e7ce05a07CAS |

Nagasawa, K., Takeuchi, Y., Miwa, M., Higuchi, K., Morita, T., Mitsuboshi, T., Miyaki, K., Kadomura, K., and Yoshizaki, G. (2009). cDNA cloning and expression analysis of a vasa-like gene in Pacific bluefin tuna Thunnus orientalis. Fish. Sci. 75, 71–79.
cDNA cloning and expression analysis of a vasa-like gene in Pacific bluefin tuna Thunnus orientalis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVWrs78%3D&md5=1858dc67c128ba28ca59903450cf7c75CAS |

National Health and Medical Research Council (NHMRC). (2013). ‘Australian Code of Practice for the Care and Use of Animals for Scientific Purposes’, 8th edn. (NHMRC: Canberra.)

Okutsu, T., Suzuki, K., Takeuchi, Y., Takeuchi, T., and Yoshizaki, G. (2006). Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc. Natl Acad. Sci. USA 103, 2725–2729.
Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksF2rtrc%3D&md5=03e5e7d2223673413ab6208f84c0b6daCAS | 16473947PubMed |

Okutsu, T., Shikina, S., Kanno, M., Takeuchi, Y., and Yoshizaki, G. (2007). Production of trout offspring from triploid salmon parents. Science 317, 1517.
Production of trout offspring from triploid salmon parents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVejt77N&md5=e0e533d0355740d3d2388c455322b512CAS | 17872437PubMed |

Okutsu T, Takeuchi Y, Yoshizaki G (2008). Spermatogonial transplantation in fish: production of trout offspring from salmon parents. In: ‘Fisheries for Global Welfare and Environment, Memorial book of the 5th World Fisheries Congress 2008’, 20–24 October, Yokohama, Japan. (Eds K. Tsukamoto, T. Kawamura, T. Takeuchi, T. D. Beard, Jr., M. J. Kaiser.) pp. 209–219.

Olsen, L. C., Aasland, R., and Fjose, A. (1997). A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech. Dev. 66, 95–105.
A vasa-like gene in zebrafish identifies putative primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2FisFCrtg%3D%3D&md5=c043e204eef5541748925a444b18ff35CAS | 9376327PubMed |

Pacchiarini, T., Sarasquete, C., and Cabrita, E. (2014). Development of interspecies testicular germ-cell transplantation in flatfish. Reprod. Fertil. Dev. 26, 690–702.
Development of interspecies testicular germ-cell transplantation in flatfish.Crossref | GoogleScholarGoogle Scholar | 23735683PubMed |

Patterson H, Stobutzki I, Stephan M (2014). Southern bluefin tuna fishery. In: ‘Australian Fisheries Management Authority Annual Report 13–14’. p. 92. (Australian Fisheries Management Authority: Canberra.) Available at: http://www.afma.gov.au/wp-content/uploads/2014/04/2013-14-AFMA-Annual-Report.pdf [verified 17 June 2015]

Polinski, M., Bridle, A., and Nowak, B. (2013). Temperature-induced transcription of inflammatory mediators and the influence of Hsp70 following LPS stimulation of southern bluefin tuna peripheral blood leukocytes and kidney homogenates. Fish Shellfish Immunol. 34, 1147–1157.
Temperature-induced transcription of inflammatory mediators and the influence of Hsp70 following LPS stimulation of southern bluefin tuna peripheral blood leukocytes and kidney homogenates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFygt7g%3D&md5=aa0e94b8d21404a5ec0990532b4e42d2CAS | 23439399PubMed |

Saito, T., Goto-Kazeto, R., Arai, K., and Yamaha, E. (2008). Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol. Reprod. 78, 159–166.
Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVc%3D&md5=44c258918ace808f3112843b8996aeb1CAS | 17901077PubMed |

Saito, T., Goto-Kazeto, R., Fujimoto, T., Kawakami, Y., Arai, K., and Yamaha, E. (2010). Inter-species transplantation and migration of primordial germ cells in cyprinid fish. Int. J. Dev. Biol. 54, 1481–1486.
Inter-species transplantation and migration of primordial germ cells in cyprinid fish.Crossref | GoogleScholarGoogle Scholar | 20979025PubMed |

Saito, T., Goto-Kazeto, R., Kawakami, Y., Nomura, K., Tanaka, H., Adachi, S., Arai, K., and Yamaha, E. (2011). The mechanism for primordial germ-cell migration is conserved between Japanese eel and zebrafish. PLoS One 6, e24460.
The mechanism for primordial germ-cell migration is conserved between Japanese eel and zebrafish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Glt7jP&md5=f925f99b9b3a240ee2e6603f2bfb089aCAS | 21931724PubMed |

Saito, T., Pšenička, M., Goto, R., Adachi, S., Inoue, K., Arai, K., and Yamaha, E. (2014). The origin and migration of primordial germ cells in sturgeons. PLoS One 9, e86861.
The origin and migration of primordial germ cells in sturgeons.Crossref | GoogleScholarGoogle Scholar | 24505272PubMed |

Saitoh, K., Sado, T., Doosey, M. H., Bart, H. L., Inoue, J. G., Nishida, M., Mayden, R. L., and Miya, M. (2011). Evidence from mitochondrial genomics supports the lower Mesozoic of South Asia as the time and place of basal divergence of cypriniform fishes (Actinopterygii: Ostariophysi). Zool. J. Linn. Soc. 161, 633–662.
Evidence from mitochondrial genomics supports the lower Mesozoic of South Asia as the time and place of basal divergence of cypriniform fishes (Actinopterygii: Ostariophysi).Crossref | GoogleScholarGoogle Scholar |

Sawada, Y., Okada, T., Miyashita, S., Murata, O., and Kumai, H. (2005). Completion of the Pacific bluefin tuna Thunnus orientalis (Temminck et Schlegel) life cycle. Aquacult. Res. 36, 413–421.
Completion of the Pacific bluefin tuna Thunnus orientalis (Temminck et Schlegel) life cycle.Crossref | GoogleScholarGoogle Scholar |

Sawatari, E., Shikina, S., Takeuchi, T., and Yoshizaki, G. (2007). A novel transforming growth factor-beta superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout (Oncorhynchus mykiss). Dev. Biol. 301, 266–275.
A novel transforming growth factor-beta superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout (Oncorhynchus mykiss).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wnsw%3D%3D&md5=16a2e8439455bdf96fa27d4b51431bd5CAS | 17109839PubMed |

Schulz, R. W., de França, L. R., Lareyre, J.-J., LeGac, F., Chiarini-Garcia, H., Nobrega, R. H., and Miura, T. (2010). Spermatogenesis in fish. Gen. Comp. Endocrinol. 165, 390–411.
Spermatogenesis in fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVeguw%3D%3D&md5=62c39046231b02b357ece90d4b4c0d9fCAS | 19348807PubMed |

Shikina, S., and Yoshizaki, G. (2010). Improved in vitro culture conditions to enhance the survival, mitotic activity, and transplantability of rainbow trout Type A spermatogonia. Biol. Reprod. 83, 268–276.
Improved in vitro culture conditions to enhance the survival, mitotic activity, and transplantability of rainbow trout Type A spermatogonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslSntb0%3D&md5=bcbf56bd1f2adabfaabb658a96a4dfc4CAS | 20427757PubMed |

Takeuchi, Y., Yoshizaki, G., and Takeuchi, T. (2004). Biotechnology: surrogate broodstock produces salmonids. Nature 430, 629–630.
Biotechnology: surrogate broodstock produces salmonids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Gis7w%3D&md5=bd7482a02b9c82cf39d40c5c87870258CAS | 15295587PubMed |

Takeuchi, Y., Higuchi, K., Yatabe, T., Miwa, M., and Yoshizaki, G. (2009). Development of spermatogonial cell transplantation in nibe croaker, Nibea mitsukurii (Perciformes, Sciaenidae). Biol. Reprod. 81, 1055–1063.
Development of spermatogonial cell transplantation in nibe croaker, Nibea mitsukurii (Perciformes, Sciaenidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2lt7vK&md5=8688e55eee7736b8e66fab42d4c43538CAS | 19605788PubMed |

Weidinger, G., Stebler, J., Slanchev, K., Dumstrei, K., Wise, C., Lovell-Badge, R., Thisse, C., Thisse, B., and Raz, E. (2003). dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr. Biol. 13, 1429–1434.
dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmslentbg%3D&md5=1c50dffb1e264650ad5cf435dd1b6398CAS | 12932328PubMed |

Woolley, L. D., Fielder, D. S., and Qin, J. G. (2014). Swimbladder inflation, growth and survival of yellowtail kingfish Seriola lalandi (Valenciennes, 1833) larvae under different temperature, light and oxygen conditions. Aquacult. Res. 45, 1489–1498.
Swimbladder inflation, growth and survival of yellowtail kingfish Seriola lalandi (Valenciennes, 1833) larvae under different temperature, light and oxygen conditions.Crossref | GoogleScholarGoogle Scholar |

Yamaha, E., Saito, T., Goto-Kazeto, R., and Arai, K. (2007). Developmental biotechnology for aquaculture, with special reference to surrogate production in teleost fishes. J. Sea Res. 58, 8–22.
Developmental biotechnology for aquaculture, with special reference to surrogate production in teleost fishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFKqtrc%3D&md5=f36fa29dc8dfca0d64aa5c671b475c0dCAS |

Yazawa, R., Takeuchi, Y., Higuchi, K., Yatabe, T., Kabeya, N., and Yoshizaki, G. (2010). Chub mackerel gonads support colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells. Biol. Reprod. 82, 896–904.
Chub mackerel gonads support colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Kht7Y%3D&md5=acd5100700906025e21124842855ad55CAS | 20089885PubMed |

Yazawa, R., Takeuchi, Y., Morita, T., Ishida, M., and Yoshizaki, G. (2013). The Pacific bluefin tuna (Thunnus orientalis) dead end gene is suitable as a specific molecular marker of Type A spermatogonia. Mol. Reprod. Dev. 80, 871–880.
The Pacific bluefin tuna (Thunnus orientalis) dead end gene is suitable as a specific molecular marker of Type A spermatogonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlahu7fK&md5=1d63603bc487e362ff9821b21d4141ecCAS | 23913406PubMed |

Yoon, C., Kawakami, K., and Hopkins, N. (1997). Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124, 3157–3165.
| 1:CAS:528:DyaK2sXlvVehs7Y%3D&md5=25d49aaedd130c449c11a2503be8ddbcCAS | 9272956PubMed |