Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Factors supporting long-term culture of bovine male germ cells

Mahesh Sahare A , Sung-Min Kim A B , Ayagi Otomo A , Kana Komatsu A , Naojiro Minami A , Masayasu Yamada A and Hiroshi Imai A C
+ Author Affiliations
- Author Affiliations

A Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.

B Institute of Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, 1960 East-West Road, Honolulu, HI 96813, USA.

C Corresponding author. Email: imai@kais.kyoto-u.ac.jp

Reproduction, Fertility and Development 28(12) 2039-2050 https://doi.org/10.1071/RD15003
Submitted: 5 January 2015  Accepted: 11 June 2015   Published: 16 July 2015

Abstract

Spermatogonial stem cells (SSCs) are unipotent in nature, but mouse SSCs acquire pluripotency under the appropriate culture conditions. Although culture systems are available for rodent and human germ-cell lines, no proven culture system is yet available for livestock species. Here, we examined growth factors, matrix substrates and serum-free supplements to develop a defined system for culturing primitive germ cells (gonocytes) from neonatal bovine testis. Poly-L-lysine was a suitable substrate for selective inhibition of the growth of somatic cells and made it possible to maintain a higher gonocyte : somatic cell ratio than those maintained with gelatin, collagen or Dolichos biflorus agglutinin (DBA) substrates. Among the serum-free supplements tested in our culture medium, knockout serum replacement (KSR) supported the proliferation and survival of gonocytes better than the supplements B-27 and StemPro-SFM after sequential passages of colonies. Under our optimised culture conditions consisting of 15% KSR supplement on poly-L-lysine-coated dishes, the stem-cell and germ-cell potentials of the cultured gonocytes were maintained with normal karyotype for more than 2 months (over 13 passages). The proposed culture system, which can maintain a population of proliferating bovine germ stem cells, could be useful for studying SSC biology and germline modifications in livestock animals.

Additional keywords: glial cell line-derived neurotrophic factor (GDNF), gonocytes, knockout serum replacement (KSR), self-renewal, testis.


References

Amit, M., Shariki, C., Margulets, V., and Itskovitz-Eldor, J. (2004). Feeder-layer and serum-free culture of human embryonic stem cells. Biol. Reprod. 70, 837–845.
Feeder-layer and serum-free culture of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Chtr8%3D&md5=1312d6af19a19d7adaca6bb41bb992b5CAS | 14627547PubMed |

Aponte, P. M., Soda, T., Kant, H. J. G., and Van, De. (2006). Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor. Theriogenology 65, 1828–1847.
Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVCksbs%3D&md5=7a4bf9a2a236135c314fac81786f45fbCAS | 16321433PubMed |

Aponte, P. M., Soda, T., Teerds, K. J., Mizrak, S. C., van de Kant, H. J. G., and de Rooij, D. G. (2008). Propagation of bovine spermatogonial stem cells in vitro. Reproduction 136, 543–557.
Propagation of bovine spermatogonial stem cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCjtrnL&md5=7d6778113d941726f751e149702cb72aCAS | 18663014PubMed |

Choi, S. J., and Anderson, G. B. (1998). Development of tumours from bovine primordial germ cells transplanted to athymic mice. Anim. Reprod. Sci. 52, 17–25.
Development of tumours from bovine primordial germ cells transplanted to athymic mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czpslSisA%3D%3D&md5=5844e8d404c536ad9ebb024c0e52c3d9CAS | 9728811PubMed |

Creemers, L. B., den Ouden, K., van Pelt, A. M., and de Rooij, D. G. (2002). Maintenance of adult mouse Type A spermatogonia in vitro: influence of serum and growth factors and comparison with prepubertal spermatogonial cell culture. Reproduction 124, 791–799.
Maintenance of adult mouse Type A spermatogonia in vitro: influence of serum and growth factors and comparison with prepubertal spermatogonial cell culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVWhsg%3D%3D&md5=ea677ebc4c84f3bd1d4c1afde8ef491eCAS | 12530917PubMed |

de Rooij, D. G., Okabe, M., and Nishimune, Y. (1999). Arrest of spermatogonial differentiation in jsd/jsd, Sl17H/Sl17H and cryptorchid mice. Biol. Reprod. 61, 842–847.
Arrest of spermatogonial differentiation in jsd/jsd, Sl17H/Sl17H and cryptorchid mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFCqt7s%3D&md5=630353b22a3b2c6607472033be885bdcCAS | 10456866PubMed |

Dobrinski, I. (2006). Transplantation of germ cells and testis tissue for the study of mammalian spermatogenesis Anim. Reprod. 3, 135–145.

Fujihara, M., Kim, S. M., Minami, N., Yamada, M., and Imai, H. (2011). Characterisation and in vitro culture of male germ cells from developing bovine testis. J. Reprod. Dev. 57, 355–364.
Characterisation and in vitro culture of male germ cells from developing bovine testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslOiur0%3D&md5=f1ee6f70845fd1a783ff943cf439da58CAS | 21289464PubMed |

Garcia-Gonzalo, F. R., and Izpisúa-Belmonte, J. C. (2008). Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS One 3, e1384.
Albumin-associated lipids regulate human embryonic stem cell self-renewal.Crossref | GoogleScholarGoogle Scholar | 18167543PubMed |

Goel, S., Fujihara, M., Tsuchiya, K., Takagi, Y., Minami, N., Yamada, M., and Imai, H. (2009). Multipotential ability of primitive germ cells from neonatal pig testis cultured in vitro. Reprod. Fertil. Dev. 21, 696–708.
Multipotential ability of primitive germ cells from neonatal pig testis cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVCrurY%3D&md5=1e0a8d379b888d88b6a4cb9fce725b49CAS | 19486607PubMed |

Guan, K., Rohwedel, J., and Wobus, A. M. (1999). Embryonic stem-cell differentiation models: cardiogenesis, myogenesis, neurogenesis, epithelial and vascular smooth-muscle cell differentiation in vitro. Cytotechnology 30, 211–226.
Embryonic stem-cell differentiation models: cardiogenesis, myogenesis, neurogenesis, epithelial and vascular smooth-muscle cell differentiation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjjtlOjsQ%3D%3D&md5=461f0b9144797c11fc681e2cf27aa739CAS | 19003371PubMed |

Hamra, F. K., Chapman, K. M., Nguyen, D. M., Williams-stephens, A. A., Hammer, R. E., and Garbers, D. L. (2005). Self-renewal, expansion and transfection of rat spermatogonial stem cells in culture. Proc. Natl. Acad. Sci. USA 102, 17430–17435.
Self-renewal, expansion and transfection of rat spermatogonial stem cells in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSqtb%2FF&md5=93c5ccfd77c7074ff09b3a3c8b9c8a72CAS | 16293688PubMed |

Harb, N., Archer, T. K., and Sato, N. (2008). The rho-rock-myosin signalling axis determines cell–cell integrity of self-renewing pluripotent stem cells. PLoS One 3, e3001.
The rho-rock-myosin signalling axis determines cell–cell integrity of self-renewing pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 18714354PubMed |

Horii, T., Nagao, Y., Tokunaga, T., and Imai, H. (2003). Serum-free culture of murine primordial germ cells and embryonic germ cells. Theriogenology 59, 1257–1264.
Serum-free culture of murine primordial germ cells and embryonic germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1Wlsg%3D%3D&md5=c4f2584e0ac2ed6bb4f2a359cc64fef7CAS | 12527073PubMed |

Izadyar, F., Spierenberg, G. T., Creemers, L. B., den Ouden, K., and de Rooij, D. G. (2002). Isolation and purification of Type A spermatogonia from the bovine testis. Reproduction 124, 85–94.
Isolation and purification of Type A spermatogonia from the bovine testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtFaksL8%3D&md5=dbbf7ee72a1d6160bd2c88390837dd8eCAS | 12090922PubMed |

Izadyar, F., Den Ouden, K., Stout, T. A. E., Stout, J., Coret, J., Lankveld, D. P., Spoormakers, T. J. P., Colenbrander, B., Oldenbroek, J. K., Van der Ploeg, K. D., Woelders, H., Kal, H. B., and De Rooij, D. G. (2003). Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction 126, 765–774.
Autologous and homologous transplantation of bovine spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFWktw%3D%3D&md5=b731ee303ba80c878d8c2da747ee8d5cCAS | 14748695PubMed |

Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K., Miki, H., Ogura, A., Toyokuni, S., and Shinohara, T. (2003). Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69, 612–616.
Long-term proliferation in culture and germline transmission of mouse male germline stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVerurc%3D&md5=d121280d1d1ad211de2ae492ac785d96CAS | 12700182PubMed |

Kanatsu-Shinohara, M., Inoue, K., Lee, J., Yoshimoto, M., Ogonuki, N., Miki, H., Baba, S., Kato, T., Kazuki, Y., Toyokuni, S., Toyoshima, M., Niwa, O., Oshimura, M., Heike, T., Nakahata, T., Ishino, F., Ogura, A., and Shinohara, T. (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell 119, 1001–1012.
Generation of pluripotent stem cells from neonatal mouse testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlSiuw%3D%3D&md5=fa4bba99ee665d4fa4984cad08909c78CAS | 15620358PubMed |

Kanatsu-Shinohara, M., Miki, H., Inoue, K., Ogonuki, N., Toyokuni, S., Ogura, A., and Shinohara, T. (2005). Long-term culture of mouse male germline stem cells under serum- or feeder-free conditions. Biol. Reprod. 72, 985–991.
Long-term culture of mouse male germline stem cells under serum- or feeder-free conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis12hsLY%3D&md5=31efdb990e850db9a3df75855c43c0a5CAS | 15601913PubMed |

Kanatsu-Shinohara, M., Muneto, T., Lee, J., Takenaka, M., Chuma, S., Nakatsuji, N., and Shinohara, T. (2008). Long-term culture of male germline stem cells from hamster testes. Biol. Reprod. 78, 611–617.
Long-term culture of male germline stem cells from hamster testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvVaitbg%3D&md5=bd2d3b5a3d30c67e21b3e3d8799ac917CAS | 18094355PubMed |

Kanatsu-Shinohara, M., Inoue, K., Ogonuki, N., Morimoto, H., Ogura, A., and Shinohara, T. (2011). Serum- and feeder-free culture of mouse germline stem cells. Biol. Reprod. 84, 97–105.
Serum- and feeder-free culture of mouse germline stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVegurw%3D&md5=c138d1d4960b652911dfb4194f330149CAS | 20844279PubMed |

Kim, S. M., Fujihara, M., Sahare, M., Minami, N., Yamada, M., and Imai, H. (2014). Effects of extracellular matrix and lectin Dolichos biflorus agglutinin on cell adhesion and self-renewal of bovine gonocytes cultured in vitro. Reprod. Fertil. Dev. 26, 268–281.
Effects of extracellular matrix and lectin Dolichos biflorus agglutinin on cell adhesion and self-renewal of bovine gonocytes cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtFClsA%3D%3D&md5=7976bc615a5d0ed46e741d2936a007f4CAS | 23425371PubMed |

Ko, K., Tapia, N., Wu, G., Kim, J. B., Bravo, M. J., Sasse, P., Glaser, T., Ruau, D., Han, D. W., Greber, B., Hausdörfer, K., Sebastiano, V., Stehling, M., Fleischmann, B. K., Brüstle, O., Zenke, M., and Schöler, H. R. (2009). Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell. 5, 87–96.
Induction of pluripotency in adult unipotent germline stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslCns70%3D&md5=901885c8934602ad04ba6f4f3b572ac5CAS | 19570517PubMed |

Kubota, H., Avarbock, M. R., and Brinster, R. L. (2004). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 101, 16489–16494.
Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOisbvP&md5=e259bb14366b793769cbdedee7e4beb4CAS | 15520394PubMed |

Kubota, H., Wu, X., Goodyear, S. M., Avarbock, M. R., and Brinster, R. L. (2011). Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem-cell properties. FASEB J. 25, 2604–2614.
Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem-cell properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFers74%3D&md5=d8193d1c5fd5dc7cf122dadb8bd4a523CAS | 21525489PubMed |

Li, P., Tong, C., Mehrian-Shai, R., Jia, L., Wu, N., Yan, Y., Maxson, R. E., Schulze, E. N., Song, H., Hsieh, C. L., Pera, M. F., and Ying, Q. L. (2008). Germline competent embryonic stem cells derived from rat blastocysts. Cell 135, 1299–1310.
Germline competent embryonic stem cells derived from rat blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFyisQ%3D%3D&md5=684dba05ec1123731b6894e84559cd9aCAS | 19109898PubMed |

McKeehan, W. L., and Ham, R. G. (1976). Stimulation of clonal growth of normal fibroblasts with substrata coated with basic polymers. J. Cell Biol. 71, 727–734.
Stimulation of clonal growth of normal fibroblasts with substrata coated with basic polymers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXislGjtQ%3D%3D&md5=736d4a6d05868ea3d1227e3b4288df60CAS | 993268PubMed |

Meistrich, M., and VanBeek, M. (1993). Spermatogonial stem cells. In ‘The Cell and Molecular Biology of Testis’. (Eds C. Desjardins, L. L. Ewing.) pp. 266–295. (Oxford University Press: New York.)

Meng, X., Lindahl, M., Hyvönen, M. E., Parvinen, M., de Rooij, D. G., Hess, M. W., Raatikainen-Ahokas, A., Sainio, K., Rauvala, H., Lakso, M., Pichel, J. G., Westphal, H., Saarma, M., and Sariola, H. (2000). Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493.
Regulation of cell fate decision of undifferentiated spermatogonia by GDNF.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsV2qtL8%3D&md5=236a0e6843c83157504455741520528fCAS | 10688798PubMed |

Mohseni, R., Hamidieh, A. A., Verdi, J., and Shoae-Hassani, A. (2014). Safe transplantation of pluripotent stem cell by preventing teratoma formation. Stem Cell Res. Ther. 4, 212.
Safe transplantation of pluripotent stem cell by preventing teratoma formation.Crossref | GoogleScholarGoogle Scholar |

Nagano, M., Ryu, B. Y., Brinster, C. J., Avarbock, M. R., and Brinster, R. L. (2003). Maintenance of mouse male germ-line stem cells in vitro. Biol. Reprod. 68, 2207–2214.
Maintenance of mouse male germ-line stem cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Ggsbk%3D&md5=c31abae17bd7db9ca941529b7381c56aCAS | 12606373PubMed |

Oatley, J. M., and Brinster, R. L. (2008). Regulation of spermatogonial stem-cell self-renewal in mammals. Annu. Rev. Cell Dev. Biol. 24, 263–286.
Regulation of spermatogonial stem-cell self-renewal in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOgtbbI&md5=8cbbaea1877ba43f9560d10b1ea215e2CAS | 18588486PubMed |

Oatley, J. M., Reeves, J. J., and McLean, D. J. (2004). Biological activity of cryopreserved bovine spermatogonial stem cells during in vitro culture. Biol. Reprod. 71, 942–947.
Biological activity of cryopreserved bovine spermatogonial stem cells during in vitro culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFeju70%3D&md5=78f8c6a8c4bf97dbc792122a939a4c0dCAS | 15151932PubMed |

Petkov, S. G., and Anderson, G. B. (2008). Culture of porcine embryonic germ cells in serum-supplemented and serum-free conditions: the effects of serum and growth factors on primary and long-term culture. Cloning Stem Cells 10, 263–276.
Culture of porcine embryonic germ cells in serum-supplemented and serum-free conditions: the effects of serum and growth factors on primary and long-term culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVGhsbw%3D&md5=727ed4e8d81900e41f8e3814b216bb16CAS | 18373476PubMed |

Ryu, B., Kubota, H., Avarbock, M. R., and Brinster, R. L. (2005). Conservation of spermatogonial stem-cell self-renewal signalling between mouse and rat. Proc. Natl. Acad. Sci. USA 102, 14302–14307.
Conservation of spermatogonial stem-cell self-renewal signalling between mouse and rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCgsr7N&md5=68b6641278620087d73807bb8932ccdcCAS | 16183739PubMed |

Sahare, M., Otomo, A., Komatsu, K., Minami, N., Yamada, M., and Imai, H. (2015). The role of signalling pathways on proliferation and self-renewal of cultured bovine primitive germ cells. Reprod. Med. Biol. 14, 17–25.
The role of signalling pathways on proliferation and self-renewal of cultured bovine primitive germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVWlu7fK&md5=85c2e534e8481f85af6919b3b1e20e25CAS |

Seandel, M., James, D., Shmelkov, S. V., Falciatori, I., Kim, J., Chavala, S., Scherr, D. S., Zhang, F., Torres, R., Gale, N. W., Yancopoulos, G. D., Murphy, A., Valenzuela, D. M., Hobbs, R. M., Pandolfi, P. P., and Rafii, S. (2007). Generation of functional multipotent adult stem cells from GPR125 1 germline progenitors. Nature 449, 346–350.
Generation of functional multipotent adult stem cells from GPR125 1 germline progenitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKiu7jP&md5=e28492f5cca603869c2059581959fc56CAS | 17882221PubMed |

Struijk, R. B., Mulder, C. L., van der Veen, F., van Pelt, A. M. M., and Repping, S. (2013). Restoring fertility in sterile childhood cancer survivors by autotransplanting spermatogonial stem cells: are we there yet? BioMed Res. Int. 2013, Article ID 903142.
Restoring fertility in sterile childhood cancer survivors by autotransplanting spermatogonial stem cells: are we there yet?Crossref | GoogleScholarGoogle Scholar |

Vergouwen, R. P., Hiskamp, R., Bas, R. J., Roepers-Gajadien, H. L., Davids, J. A., and de Rooij, D. G. (1993). Postnatal development of testicular cell populations in mice. J. Reprod. Fertil. 99, 479–485.
Postnatal development of testicular cell populations in mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7kvFKgsQ%3D%3D&md5=dc4169fdb148e0f29de53f2e22ef1268CAS | 8107030PubMed |

Wu, Z., Falciatori, I., Molyneux, L. A., Richardson, T. E., Chapman, K. M., and Hamra, F. K. (2009). Spermatogonial culture medium: an effective and efficient nutrient mixture for culturing rat spermatogonial stem cells. Biol. Reprod. 81, 77–86.
Spermatogonial culture medium: an effective and efficient nutrient mixture for culturing rat spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslaru7c%3D&md5=a9ba66dd7ddfc66c82c60a83072e065aCAS | 19299316PubMed |

Ying, Q. L., Nichols, J., Chambers, I., and Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem-cell self-renewal in collaboration with STAT3. Cell 115, 281–292.
BMP induction of Id proteins suppresses differentiation and sustains embryonic stem-cell self-renewal in collaboration with STAT3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFClu7c%3D&md5=b8f6f3d318bab733aa0f72751c73eb72CAS | 14636556PubMed |