Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Genomic and non-genomic effects of progesterone on prostaglandin (PG) F2α and PGE2 production in the bovine endometrium

Mariko Kuse A , Ryosuke Sakumoto B and Kiyoshi Okuda A C
+ Author Affiliations
- Author Affiliations

A Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.

B Reproductive Biology Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-0901, Japan.

C Corresponding author. Email: kokuda@okayama-u.ac.jp

Reproduction, Fertility and Development 28(10) 1588-1597 https://doi.org/10.1071/RD14490
Submitted: 10 December 2014  Accepted: 6 March 2015   Published: 21 April 2015

Abstract

Progesterone (P4) acts through different actuating pathways called genomic and non-genomic pathways. Here we investigated whether P4 regulates prostaglandin (PG) F2α (PGF) and PGE2 production in bovine endometrium through different pathways. Cultured endometrial cells were exposed to P4 for a short time (5–20 min) or bovine serum albumin (BSA)-conjugated P4 (P4-BSA) for 24 h. Progesterone treatment for 24 h stimulated PGE2 production in epithelial cells, but suppressed both PGF and PGE2 production and the expression of PG-metabolising enzymes including phospholipase A2 (PLA2) and cyclooxygenase-2 (COX2) in stromal cells. Short-term (5–20 min) P4 treatment did not affect PLA2 or COX2 transcript levels in either cell type. P4-BSA increased PGF and PGE2 production only in epithelial cells. Nuclear P4 receptor mRNA expression in endometrium was higher at the follicular phase than at the early- to mid-luteal stages, whereas membrane P4 receptor mRNA expression did not change throughout the oestrous cycle. The overall results suggest that P4 controls PG production by inhibiting enzymes via a genomic pathway and by stimulating signal transduction via a non-genomic pathway. Consequently, P4 may protect the corpus luteum by attenuating PGF production in stromal cells and by increasing PGE2 secretion from epithelial cells.

Additional keywords: cows, luteolysis, steroid hormone, uterus.


References

Anfuso, C. D., Lupo, G., Romeo, L., Giurdanella, G., Motta, C., Pascale, A., Tirolo, C., Marchetti, B., and Alberghina, M. (2007). Endothelial cell–pericyte co-cultures induce PLA2 protein expression through activation of PKCα and the MAPK/ERK cascade. J. Lipid Res. 48, 782–793.
Endothelial cell–pericyte co-cultures induce PLA2 protein expression through activation of PKCα and the MAPK/ERK cascade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFGhurY%3D&md5=3d2e5104a475d8fa4c90c257774c9510CAS | 17267947PubMed |

Arosh, J. A., Parent, J., Chapdelaine, P., Sirois, J., and Fortier, M. A. (2002). Expression of cyclo-oxygenases 1 and 2 and prostaglandin E synthase in bovine endometrial tissue during the oestrous cycle. Biol. Reprod. 67, 161–169.
Expression of cyclo-oxygenases 1 and 2 and prostaglandin E synthase in bovine endometrial tissue during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2itL0%3D&md5=8b75be00ce543e779a48c8c558e42be8CAS | 12080013PubMed |

Asselin, E., Goff, A. K., Bergeron, H., and Fortier, M. A. (1996). Influence of sex steroids on the production of prostaglandins F2α and E2 and response to oxytocin in cultured epithelial and stromal cells of the bovine endometrium. Biol. Reprod. 54, 371–379.
Influence of sex steroids on the production of prostaglandins F2α and E2 and response to oxytocin in cultured epithelial and stromal cells of the bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xlt1SjtQ%3D%3D&md5=34563044be0149635ac7ff6484bfae26CAS | 8788188PubMed |

Clark, J. D., Lin, L. L., Kriz, R. W., Ramesha, C. S., Sultzman, L. A., Lin, A. Y., Milona, N., and Knopf, J. L. (1991). A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP. Cell 65, 1043–1051.
A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XjsFemug%3D%3D&md5=adf4af513edc700dc880114f1cb2af29CAS | 1904318PubMed |

Duras, M., Mlynarczuk, J., and Kotwica, J. (2005). Non-genomic effect of steroids on oxytocin-stimulated intracellular mobilisation of calcium and on prostaglandin F2α and E2 secretion from bovine endometrial cells. Prostaglandins Other Lipid Mediat. 76, 105–116.
Non-genomic effect of steroids on oxytocin-stimulated intracellular mobilisation of calcium and on prostaglandin F2α and E2 secretion from bovine endometrial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1arsL0%3D&md5=4237b78f5e9d5cd7d9299e4060b8dbf7CAS | 15967166PubMed |

Flint, A. P., and Sheldrick, E. L. (1986). Ovarian oxytocin and the maternal recognition of pregnancy. J. Reprod. Fertil. 76, 831–839.
Ovarian oxytocin and the maternal recognition of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitVShtbo%3D&md5=c55fcae4f5aceb7669949f55f5e4c787CAS | 3009801PubMed |

Flint, A. P., Leat, W. M., Sheldrick, E. L., and Stewart, H. J. (1986). Stimulation of phosphoinositide hydrolysis by oxytocin and the mechanism by which oxytocin controls prostaglandin synthesis in the ovine endometrium. Biochem. J. 237, 797–805.
| 1:CAS:528:DyaL2sXnvFSiuw%3D%3D&md5=3ecf8b0b6c01ceaaebb367c655ba4df0CAS | 3026333PubMed |

Forde, N., Beltman, M. E., Lonergan, P., Diskin, M., Roche, J. F., and Crowe, M. A. (2011). Oestrous cycles in Bos taurus cattle. Anim. Reprod. Sci. 124, 163–169.
Oestrous cycles in Bos taurus cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFWhtb4%3D&md5=43d5e8dc833b7f950e02aa0b4f3ed59bCAS | 20875708PubMed |

Fortier, M. A., Guilbault, L. A., and Grasso, F. (1988). Specific properties of epithelial and stromal cells from the endometrium of cows. J. Reprod. Fertil. 83, 239–248.
Specific properties of epithelial and stromal cells from the endometrium of cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXksV2jurY%3D&md5=c6ebd7d5c2a99c9844c68348995aacfaCAS | 3165129PubMed |

Gerdes, D., Wehling, M., Leube, B., and Falkenstein, E. (1998). Cloning and tissue expression of two putative steroid membrane receptors. Biol. Chem. 379, 907–911.
| 1:CAS:528:DyaK1cXkvVGlsbs%3D&md5=f3ff1ba8d12377033cd72a69c8fd6a20CAS | 9705155PubMed |

Karteris, E., Zervou, S., Pang, Y., Dong, J., Hillhouse, E. W., Randeva, H. S., and Thomas, P. (2006). Progesterone signalling in human myometrium through two novel membrane G protein-coupled receptors: potential role in functional progesterone withdrawal at term. Mol. Endocrinol. 20, 1519–1534.
Progesterone signalling in human myometrium through two novel membrane G protein-coupled receptors: potential role in functional progesterone withdrawal at term.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xms1GjsLg%3D&md5=95b5146e3c3948dddbadf193326de0ceCAS | 16484338PubMed |

Kim, J. J., and Fortier, M. A. (1995). Cell type specificity and protein kinase C dependency on the stimulation of prostaglandin E2 and prostaglandin F2α production by oxytocin and platelet-activating factor in bovine endometrial cells. J. Reprod. Fertil. 103, 239–247.
Cell type specificity and protein kinase C dependency on the stimulation of prostaglandin E2 and prostaglandin F2α production by oxytocin and platelet-activating factor in bovine endometrial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvV2rt7c%3D&md5=80f61a9ff9ab82076ecf9abe14fda915CAS | 7616496PubMed |

Koulen, P., Madry, C., Duncan, R. S., Hwang, J. Y., Nixon, E., McClung, N., Gregg, E. V., and Singh, M. (2008). Progesterone potentiates IP(3)-mediated calcium signalling through Akt/PKB. Cell. Physiol. Biochem. 21, 161–172.
Progesterone potentiates IP(3)-mediated calcium signalling through Akt/PKB.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1ajtg%3D%3D&md5=18ed1f0e0becb29bb2da2a58d6fb7190CAS | 18209483PubMed |

Kowalik, M. K., Slonina, D., Rekawiecki, R., and Kotwica, J. (2013). Expression of progesterone receptor membrane component (PGRMC) 1 and 2, serpine mRNA-binding protein 1 (SERBP1) and nuclear progesterone receptor (PGR) in the bovine endometrium during the oestrous cycle and the first trimester of pregnancy. Reprod. Biol. 13, 15–23.
Expression of progesterone receptor membrane component (PGRMC) 1 and 2, serpine mRNA-binding protein 1 (SERBP1) and nuclear progesterone receptor (PGR) in the bovine endometrium during the oestrous cycle and the first trimester of pregnancy.Crossref | GoogleScholarGoogle Scholar | 23522067PubMed |

Labarca, C., and Paigen, K. (1980). A simple, rapid and sensitive DNA assay procedure. Anal. Biochem. 102, 344–352.
A simple, rapid and sensitive DNA assay procedure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhsF2qurk%3D&md5=6f2e7dfe3a4247d91d2bf29b8ff2c6f9CAS | 6158890PubMed |

Lange, C. A. (2004). Making sense of cross-talk between steroid hormone receptors and intracellular signalling pathways: who will have the last word? Mol. Endocrinol. 18, 269–278.
Making sense of cross-talk between steroid hormone receptors and intracellular signalling pathways: who will have the last word?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCiu7c%3D&md5=3f17f58d8687ba6a603f74ca07fa500bCAS | 14563938PubMed |

Leonhardt, S. A., and Edwards, D. P. (2002). Mechanism of action of progesterone antagonists. Exp. Biol. Med. (Maywood) 227, 969–980.
| 1:CAS:528:DC%2BD3sXht1Chuw%3D%3D&md5=e51938f3b998dbeddf3ba8bf27b0f0dbCAS | 12486206PubMed |

Losel, R. M., Falkenstein, E., Feuring, M., Schultz, A., Tillmann, H. C., Rossol-Haseroth, K., and Wehling, M. (2003). Non-genomic steroid action: controversies, questions and answers. Physiol. Rev. 83, 965–1016.
Non-genomic steroid action: controversies, questions and answers.Crossref | GoogleScholarGoogle Scholar | 12843413PubMed |

Mann, G. E., and Lamming, G. E. (2006). Timing of prostaglandin F2α release episodes and oxytocin receptor development during luteolysis in the cow. Anim. Reprod. Sci. 93, 328–336.
Timing of prostaglandin F2α release episodes and oxytocin receptor development during luteolysis in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVyisbs%3D&md5=b3232227dd67528b193d5a8dca3fc455CAS | 16533579PubMed |

McCracken, J. A., Glew, M. E., and Scaramuzzi, R. J. (1970). Corpus luteum regression induced by prostaglandin F2α. J. Clin. Endocrinol. Metab. 30, 544–546.
Corpus luteum regression induced by prostaglandin F2α.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXhtFyitro%3D&md5=d008dc23e54ca6dc7558e86c21c800f1CAS | 5435294PubMed |

McCracken, J. A., Custer, E. E., and Lamsa, J. C. (1999). Luteolysis: a neuroendocrine-mediated event. Physiol. Rev. 79, 263–323.
| 1:CAS:528:DyaK1MXivFektLg%3D&md5=4618652c1671c72ca99657d74825cf2eCAS | 10221982PubMed |

Miyamoto, Y., Skarzynski, D. J., and Okuda, K. (2000). Is tumour necrosis factor α a trigger for the initiation of endometrial prostaglandin F2α release at luteolysis in cattle? Biol. Reprod. 62, 1109–1115.
Is tumour necrosis factor α a trigger for the initiation of endometrial prostaglandin F2α release at luteolysis in cattle?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisl2htr8%3D&md5=593fd627c46c0af0e0d3be625db9d556CAS | 10775155PubMed |

Murakami, S., Shibaya, M., Takeuchi, K., Skarzynski, D. J., and Okuda, K. (2003). A passage and storage system for isolated bovine endometrial epithelial and stromal cells. J. Reprod. Dev. 49, 531–538.
A passage and storage system for isolated bovine endometrial epithelial and stromal cells.Crossref | GoogleScholarGoogle Scholar | 14967905PubMed |

Okuda, K., Kito, S., Sumi, N., and Sato, K. (1988). A study of the central cavity in the bovine corpus luteum. Vet. Rec. 123, 180–183.
A study of the central cavity in the bovine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7hsV2qsA%3D%3D&md5=6058c942d25643194d7d625a71cb3807CAS | 3218058PubMed |

Peluso, J. J., Fernandez, G., Pappalardo, A., and White, B. A. (2002). Membrane-initiated events account for progesterone’s ability to regulate intracellular free calcium levels and inhibit rat granulosa cell mitosis. Biol. Reprod. 67, 379–385.
Membrane-initiated events account for progesterone’s ability to regulate intracellular free calcium levels and inhibit rat granulosa cell mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFKqtr4%3D&md5=8ed947764dccd9016d570dd358116332CAS | 12135870PubMed |

Peluso, J. J., Bremner, T., Fernandez, G., Pappalardo, A., and White, B. A. (2003). Expression pattern and role of a 60-kilodalton progesterone binding protein in regulating granulosa cell apoptosis: involvement of the mitogen-activated protein kinase cascade. Biol. Reprod. 68, 122–128.
Expression pattern and role of a 60-kilodalton progesterone binding protein in regulating granulosa cell apoptosis: involvement of the mitogen-activated protein kinase cascade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtV2n&md5=2d54af1f84249334370c0053ce67f520CAS | 12493703PubMed |

Pratt, B. R., Butcher, R. L., and Inskeep, E. K. (1977). Anti-luteolytic effect of the conceptus and of PGE2 in ewes. J. Anim. Sci. 45, 784–791.
| 1:CAS:528:DyaE1cXhs1eqsQ%3D%3D&md5=56d639032c72ac04b294e20d95787f23CAS | 924907PubMed |

Sakumoto, R., Komatsu, T., Kasuya, E., Saito, T., and Okuda, K. (2006). Expression of mRNAs for interleukin-4, interleukin-6 and their receptors in porcine corpus luteum during the oestrous cycle. Domest. Anim. Endocrinol. 31, 246–257.
Expression of mRNAs for interleukin-4, interleukin-6 and their receptors in porcine corpus luteum during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVWltbg%3D&md5=7934b8b3c3a96c0157e56383d9e594f0CAS | 16332426PubMed |

Silvia, W. J., Lewis, G. S., McCracken, J. A., Thatcher, W. W., and Wilson, L. (1991). Hormonal regulation of uterine secretion of prostaglandin F2α during luteolysis in ruminants. Biol. Reprod. 45, 655–663.
Hormonal regulation of uterine secretion of prostaglandin F2α during luteolysis in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmslSktbw%3D&md5=8cc4207fd94b82620c4703d926961a19CAS | 1756203PubMed |

Skarzynski, D. J., Miyamoto, Y., and Okuda, K. (2000). Production of prostaglandin F2α by cultured bovine endometrial cells in response to tumour necrosis factor alpha: cell type specificity and intracellular mechanisms. Biol. Reprod. 62, 1116–1120.
Production of prostaglandin F2α by cultured bovine endometrial cells in response to tumour necrosis factor alpha: cell type specificity and intracellular mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisl2htrw%3D&md5=371f6adb41774ad86c441d630ebdcdbeCAS | 10775156PubMed |

Spencer, T. E., and Bazer, F. W. (2004). Conceptus signals for establishment and maintenance of pregnancy. Reprod. Biol. Endocrinol. 2, 49.
Conceptus signals for establishment and maintenance of pregnancy.Crossref | GoogleScholarGoogle Scholar | 15236653PubMed |

Tanikawa, M., Acosta, T. J., Fukui, T., Murakami, S., Korzekwa, A., Skarzynski, D. J., Piotrowska, K. K., Park, C. K., and Okuda, K. (2005). Regulation of prostaglandin synthesis by interleukin-1α in bovine endometrium during the oestrous cycle. Prostaglandins Other Lipid Mediat. 78, 279–290.
Regulation of prostaglandin synthesis by interleukin-1α in bovine endometrium during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GntbrK&md5=d299d71e034dd14a2335ae9b128e97b1CAS | 16303622PubMed |

Uenoyama, Y., Hattori, S., Miyake, M., and Okuda, K. (1997). Up-regulation of oxytocin receptors in porcine endometrium by adenosine 3′,5′-monophosphate. Biol. Reprod. 57, 723–728.
Up-regulation of oxytocin receptors in porcine endometrium by adenosine 3′,5′-monophosphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFCqsrk%3D&md5=ea5da4d37c71c4135a67ac9963846d44CAS | 9314572PubMed |

Verikouki, C. H., Hatzoglou, C. H., Gourgoulianis, K. I., Molyvdas, P. A., Kallitsaris, A., and Messinis, I. E. (2008). Rapid effect of progesterone on transepithelial resistance of human fetal membranes: evidence for non-genomic action. Clin. Exp. Pharmacol. Physiol. 35, 174–179.
| 1:CAS:528:DC%2BD1cXhsFOmtrg%3D&md5=e7f5445d57dadf5dc2d26c96509afe92CAS | 17892501PubMed |

Wiltbank, M. C., and Ottobre, J. S. (2003). Regulation of intraluteal production of prostaglandins. Reprod. Biol. Endocrinol. 1, 91.
Regulation of intraluteal production of prostaglandins.Crossref | GoogleScholarGoogle Scholar | 14613533PubMed |

Xiao, C. W., Liu, J. M., Sirois, J., and Goff, A. K. (1998). Regulation of cyclo-oxygenase-2 and prostaglandin F synthase gene expression by steroid hormones and interferon-tau in bovine endometrial cells. Endocrinology 139, 2293–2299.
| 1:CAS:528:DyaK1cXivFSisbk%3D&md5=32a1e16a13a0280bc74539e156a3fb48CAS | 9564837PubMed |

Zhu, Y., Rice, C. D., Pang, Y., Pace, M., and Thomas, P. (2003). Cloning, expression and characterisation of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc. Natl. Acad. Sci. USA 100, 2231–2236.
Cloning, expression and characterisation of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVajtLg%3D&md5=704b28dec280cfa18202416460a3b9bcCAS | 12574519PubMed |