Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Impact of superovulation and mating on the wellbeing of juvenile and adult C57BL/6N mice

Thomas Kolbe A B , Sarjoun Sheety C , Ingrid Walter D , Rupert Palme E and Thomas Rülicke C F
+ Author Affiliations
- Author Affiliations

A Biomodels Austria, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.

B IFA-Tulln, University of Natural Resources and Life Sciences, Konrad Lorenz Strasse 20, 3430 Tulln, Austria.

C Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.

D VetCore Facility for Research, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.

E Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.

F Corresponding author. Email: thomas.ruelicke@vetmeduni.ac.at

Reproduction, Fertility and Development 28(7) 969-973 https://doi.org/10.1071/RD14372
Submitted: 3 October 2014  Accepted: 12 November 2014   Published: 17 December 2014

Abstract

Superovulation of mice is routinely used to increase the number of obtainable ova per female. Because of the better outcome, prepubescent females are preferentially used. Here, we provide results of the impact of superovulation and mating on the wellbeing of juvenile compared with adult C57BL/6N mice. Two groups of mice (3–4 weeks vs 7–8 weeks old) were superovulated and mated. Observation of mating behaviour showed that reluctant adult females tended to fight the male’s approach, whereas juveniles preferred to take flight. Faeces were collected daily for the analysis of stress hormones. There was no difference in the levels of glucocorticoid metabolites either between age groups or between treated animals and their controls. Histology after mating revealed intact vaginal mucosa without any detectable lesions in all animals regardless of age. In contrast to adults, almost all juveniles were synchronised in oestrus and produced significantly more ova. Taken together, our results reveal no increased welfare problem from using juvenile mice for superovulation and mating. Considering the higher yield of fertilisable oocytes and zygotes, it is advisable to use C57BL/6N prepubescent mice in order to reduce the number of donor females required.

Additional keywords: distress, mating behaviour, oestrous cycle, oestrus synchronisation, sexual maturation, vaginal histology.


References

An, X. L., Zou, J. X., Wu, R. Y., Yang, Y., Tai, F. D., Zeng, S. Y., Jia, R., Zhang, X., Liu, E. Q., and Broders, H. (2011). Strain and sex differences in anxiety-like and social behaviours in C57BL/6J and BALB/cJ mice. Exp. Anim. 60, 111–123.
Strain and sex differences in anxiety-like and social behaviours in C57BL/6J and BALB/cJ mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1Cnurk%3D&md5=9cfdba7214b17128972f5fbd1d01f284CAS | 21512266PubMed |

Byers, S. L., Payson, S. J., and Taft, R. A. (2006). Performance of ten inbred mouse strains following assisted reproductive technologies (ARTs). Theriogenology 65, 1716–1726.
Performance of ten inbred mouse strains following assisted reproductive technologies (ARTs).Crossref | GoogleScholarGoogle Scholar | 16271754PubMed |

Carola, V., Scalera, E., Brunamonti, E., Gross, C., and D’Amato, F. (2008). Mating-related interactions share common features with anxiety in the mouse. Behav. Brain Res. 186, 185–190.
Mating-related interactions share common features with anxiety in the mouse.Crossref | GoogleScholarGoogle Scholar | 17854918PubMed |

Ducottet, C., and Belzung, C. (2005). Correlations between behaviours in the elevated plus-maze and sensitivity to unpredictable subchronic mild stress: evidence from inbred strains of mice. Behav. Brain Res. 156, 153–162.
Correlations between behaviours in the elevated plus-maze and sensitivity to unpredictable subchronic mild stress: evidence from inbred strains of mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2crgsFarsQ%3D%3D&md5=fa625051f298ef084f582ca1955fbe76CAS | 15474660PubMed |

Edgar, D. H., Whalley, K. M., and Mills, J. A. (1987). Effects of high-dose and multiple-dose gonadotrophin stimulation on mouse oocyte quality as assessed by preimplantation development following in vitro fertilisation. J. In Vitro Fert. Embryo Transf. 4, 273–276.
Effects of high-dose and multiple-dose gonadotrophin stimulation on mouse oocyte quality as assessed by preimplantation development following in vitro fertilisation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c%2FovFWrtg%3D%3D&md5=31d6aae7684c6625d681c6308457a985CAS | 3694007PubMed |

Ferrero, D. M., Moeller, L. M., Osakada, T., Horio, N., Li, Q., Roy, D. S., Cichy, A., Spehr, M., Touhara, K., and Liberles, S. D. (2013). A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature 502, 368–371.
A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCqurrO&md5=0096cf4454814075f2fa9cd9cc01afc8CAS | 24089208PubMed |

Gates, A. H., and Bozarth, J. L. (1978). Ovulation in the PMSG-treated immature mouse: effect of dose, age, weight, puberty, season and strain (BALB/c, 129 and C129F1 hybrid). Biol. Reprod. 18, 497–505.
Ovulation in the PMSG-treated immature mouse: effect of dose, age, weight, puberty, season and strain (BALB/c, 129 and C129F1 hybrid).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXktVektLk%3D&md5=7275fd06b135e3477540d8f340a0852aCAS | 667255PubMed |

Gurfein, B. T., Stamm, A. W., Bacchetti, P., Dallman, M. F., Nadkarni, N. A., Milush, J. M., Touma, C., Palme, R., Di Borgo, C. P., Fromentin, G., Lown-Hecht, R., Konsman, J. P., Acree, M., Premenko-Lanier, M., Darcel, N., Hecht, F. M., and Nixon, D. F. (2012). The calm mouse: an animal model of stress reduction. Mol. Med. 18, 606–617.
The calm mouse: an animal model of stress reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGmurbM&md5=fc1a7bd3612c43434cc8cb5e3b148186CAS | 22398685PubMed |

Hoogenkamp, H., and Lewing, P. (1982). Superovulation in mice in relation to their age. Vet.Q. 4, 47–48.
Superovulation in mice in relation to their age.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3is1Orsw%3D%3D&md5=3ee0ed458779eade18406c5a4e1bf931CAS | 15861588PubMed |

Johnson, L. W., Moffatt, R. J., Bartol, F. F., and Pinkert, C. A. (1996). Optimisation of embryo transfer protocols for mice. Theriogenology 46, 1267–1276.
Optimisation of embryo transfer protocols for mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVOntg%3D%3D&md5=708df50c22c65b8bbb176eb4d34b32d5CAS | 16727990PubMed |

Legge, M., and Sellens, M. H. (1994). Optimisation of superovulation in the reproductively mature mouse. J. Assist. Reprod. Genet. 11, 312–318.
Optimisation of superovulation in the reproductively mature mouse.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M3lt1OltQ%3D%3D&md5=2865c5df6605b3a8c56bd4a082ea0a1fCAS | 7734917PubMed |

Luo, C., Zuniga, J., Edison, E., Palla, S., Dong, W., and Parker-Thornburg, J. (2011). Superovulation strategies for six commonly used mouse strains. J. Am. Assoc. Lab. Anim. Sci. 50, 471–478.
| 1:CAS:528:DC%2BC3MXhtVCntLrN&md5=02940cd83f1072027a4791afcf7f47e9CAS | 21838974PubMed |

McGill, T. E. (1962). Sexual behaviour in three strains of mice. 19, 341–350.

Miyoshi, I., Yamashita, T., Aoyama, S., Sasaki, N., Maki, K., and Kasai, N. (1993). Effect of environmental factors on the yield of mouse embryos obtained after hormone-induced superovulation. Lab. Anim. Sci. 43, 642–645.
| 1:STN:280:DyaK2c3htVyrsg%3D%3D&md5=9b7ac31f3447fc65770a1159f1d617b8CAS | 8159000PubMed |

Ozgunen, K. T., Erdogan, S., Mazmanoglu, N., Pamuk, I., Logoglu, G., and Ozgunen, T. (2001). Effect of gonadotrophin dose on oocyte retrieval in superovulated BALB/c mice. Theriogenology 56, 435–445.
Effect of gonadotrophin dose on oocyte retrieval in superovulated BALB/c mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1ehsbo%3D&md5=1c97f48bdfce2a9cbafb3150f027d668CAS | 11516123PubMed |

Spearow, J. L. (1988). Major genes control hormone-induced ovulation rate in mice. J. Reprod. Fertil. 82, 787–797.
Major genes control hormone-induced ovulation rate in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhs1Wlurc%3D&md5=3014ad8e009fd623e5756c5e494de05fCAS | 3361512PubMed |

Spearow, J. L., and Barkley, M. (1999). Genetic control of hormone-induced ovulation rate in mice. Biol. Reprod. 61, 851–856.
Genetic control of hormone-induced ovulation rate in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlajsLg%3D&md5=860b2cb8e436a96042a1b7a0153bb4ceCAS | 10491616PubMed |

Sugiyama, F., Kajiwara, N., Hayashi, S., Sugiyama, Y., and Yagami, K. (1992). Development of mouse oocytes superovulated at different ages. Lab. Anim. Sci. 42, 297–298.
| 1:STN:280:DyaK38zhvVKjug%3D%3D&md5=eb413b74b3e739894e1190a1a709aab7CAS | 1320163PubMed |

Touma, C., Sachser, N., Mostl, E., and Palme, R. (2003). Effects of sex and time of day on metabolism and excretion of corticosterone in urine and faeces of mice. Gen. Comp. Endocrinol. 130, 267–278.
Effects of sex and time of day on metabolism and excretion of corticosterone in urine and faeces of mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVCgt74%3D&md5=02f011cdf861ab013d71ca9da9270e0fCAS | 12606269PubMed |

Touma, C., Palme, R., and Sachser, N. (2004). Analysing corticosterone metabolites in faecal samples of mice: a non-invasive technique to monitor stress hormones. Horm. Behav. 45, 10–22.
Analysing corticosterone metabolites in faecal samples of mice: a non-invasive technique to monitor stress hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFOitg%3D%3D&md5=942ab20b4558c14e862104f77571b6e5CAS | 14733887PubMed |

Vergara, G. J., Irwin, M. H., Moffatt, R. J., and Pinkert, C. A. (1997). In vitro fertilisation in mice: strain differences in response to superovulation protocols and effect of cumulus cell removal. Theriogenology 47, 1245–1252.
In vitro fertilisation in mice: strain differences in response to superovulation protocols and effect of cumulus cell removal.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVyhtw%3D%3D&md5=02c174ebba1803c29b6ab1edabfd5190CAS | 16728073PubMed |

Yuan, R., Meng, Q., Nautiyal, J., Flurkey, K., Tsaih, S. W., Krier, R., Parker, M. G., Harrison, D. E., and Paigen, B. (2012). Genetic co-regulation of age of female sexual maturation and lifespan through circulating IGF1 among inbred mouse strains. Proc. Natl. Acad. Sci. USA 109, 8224–8229.
Genetic co-regulation of age of female sexual maturation and lifespan through circulating IGF1 among inbred mouse strains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFaiurg%3D&md5=4a2519875e3db0036ec3b4d321b1c4d1CAS | 22566614PubMed |

Zarrow, M. X., and Wilson, E. D. (1961). The influence of age on superovulation in the immature rat and mouse. Endocrinology 69, 851–855.
The influence of age on superovulation in the immature rat and mouse.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF3c7gvVamtQ%3D%3D&md5=db40bd12d278690ea52825e19d1ed944CAS | 13787954PubMed |