Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Luteotropic and luteolytic factors regulate mRNA and protein expression of progesterone receptor isoforms A and B in the bovine endometrium

Robert Rekawiecki A B , Magdalena Karolina Kowalik A and Jan Kotwica A
+ Author Affiliations
- Author Affiliations

A Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.

B Corresponding author. Email: r.rekawiecki@pan.olsztyn.pl

Reproduction, Fertility and Development 28(7) 907-913 https://doi.org/10.1071/RD14325
Submitted: 1 May 2014  Accepted: 20 October 2014   Published: 17 December 2014

Abstract

The aim of the present study was to examine the effects of luteotropic and luteolytic factors on the mRNA and protein levels of progesterone receptor isoforms A (PGRA) and B (PGRB) in the bovine endometrium. Endometrial slices from Days 6–10 and 17–20 of the oestrous cycle were treated with LH (100 ng mL–1), oestradiol (E2; 1 × 10–8 M), prostaglandin (PG) E2 (1 × 10–6 M) and PGF (1 × 10–6 M) and the nitric oxide donor NONOate (1 × 10–4 M); these treatments lasted for 6 h for mRNA expression analysis and 24 h for protein expression analysis. On Days 6–10 of the oestrous cycle PGRAB (PGRAB; the entire PGRA mRNA sequence is common to the PGRB mRNA sequence) mRNA expression in endometrial slices was enhanced by E2 treatment (P < 0.001), whereas PGRB mRNA expression was increased by LH (P < 0.001), E2 (P < 0.05) and NONOate (P < 0.05) treatment. On Days 17–20, PGRAB mRNA expression increased after E2 (P < 0.001) and PGE2 (P < 0.05) treatment; PGRB mRNA expression was increased by PGE2 (P < 0.05) and PGF (P < 0.01) treatment, but decreased by LH (P < 0.05). On Days 6–10 protein levels of PGRA were stimulated by E2 (P < 0.01), whereas PGRB protein levels were increased by LH (P < 0.05) and E2 (P < 0.05). On Days 17–20 of the oestrous cycle, PGRA protein levels were enhanced by E2 (P < 0.05) and PGF (P < 0.05), whereas PGRB protein levels were stimulated by PGE2 (P < 0.05) and PGF (P < 0.001). These data suggest that luteotropic and luteolytic factors affect PGRA and PGRB mRNA and protein levels, and this may regulate the effects of progesterone on endometrial cells.

Additional keywords: nuclear receptors, PGRA, PGRB, uterus.


References

Arai, M., Yoshioka, S., Tasaki, Y., and Okuda, K. (2013). Remodeling of bovine endometrium throughout the estrous cycle. Anim. Reprod. Sci. 142, 1–9.
Remodeling of bovine endometrium throughout the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVylt77J&md5=df659e63257b4277ac8eb444917042b4CAS | 24051170PubMed |

Arosh, J. A., Parent, J., Chapdelaine, P., Sirois, J., and Fortier, M. A. (2002). Expression of cyclooxygenases 1 and 2 and prostaglandin E synthase in bovine endometrial tissue during the estrous cycle. Biol. Reprod. 67, 161–169.
Expression of cyclooxygenases 1 and 2 and prostaglandin E synthase in bovine endometrial tissue during the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2itL0%3D&md5=b3e245338627b484fbbca074779c7df2CAS | 12080013PubMed |

Arosh, J. A., Banu, S. K., Chapdelaine, P., Emond, V., Kim, J. J., MacLaren, L. A., and Fortier, M. A. (2003). Molecular cloning and characterization of bovine prostaglandin E2 receptors EP2 and EP4: expression and regulation in endometrium and myometrium during the estrous cycle and early pregnancy. Endocrinology 144, 3076–3091.
Molecular cloning and characterization of bovine prostaglandin E2 receptors EP2 and EP4: expression and regulation in endometrium and myometrium during the estrous cycle and early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvF2ktL8%3D&md5=c348f70dfc5eb1b49704c1719a76f4a0CAS | 12810564PubMed |

Banu, S. K., Arosh, J. A., Chapdelaine, P., and Fortier, M. A. (2003). Molecular cloning and spatio-temporal expression of the prostaglandin transporter: a basis for the action of prostaglandins in the bovine reproductive system. Proc. Natl Acad. Sci. USA 100, 11 747–11 752.
Molecular cloning and spatio-temporal expression of the prostaglandin transporter: a basis for the action of prostaglandins in the bovine reproductive system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFKmur4%3D&md5=302a05ce4fa25011f1bf1e510d711ab8CAS |

Cameron, I. T., and Campbell, S. (1998). Nitric oxide in the endometrium. Hum. Reprod. Update 4, 565–569.
Nitric oxide in the endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVShsbs%3D&md5=440dd1bd5467fd3c6d5834e0f314c718CAS | 10027610PubMed |

Conneely, O. M., Kettelberger, D. M., Tsai, M. J., Schrader, W. T., and O’Malley, B. W. (1989). The chicken progesterone receptor A and B isoforms are products of an alternate translation initiation event. J. Biol. Chem. 264, 14 062–14 064.
| 1:CAS:528:DyaL1MXlsV2jsLg%3D&md5=f0ecceb7165f1b311f1ff653577dbba3CAS |

Duckworth, N., Marshall, K., and Clayton, J. K. (2002). An investigation of the effect of the prostaglandin EP2 receptor agonist, butaprost, on the human isolated myometrium from pregnant and non-pregnant women. J. Endocrinol. 172, 263–269.
An investigation of the effect of the prostaglandin EP2 receptor agonist, butaprost, on the human isolated myometrium from pregnant and non-pregnant women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVejt7s%3D&md5=2b730d96a08b23c207e9206c895de13aCAS | 11834444PubMed |

Fields, M. J., and Fields, P. A. (1996). Morphological characteristics of the bovine corpus luteum during the estrous cycle and pregnancy. Theriogenology 45, 1295–1325.
Morphological characteristics of the bovine corpus luteum during the estrous cycle and pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVKnsw%3D%3D&md5=2dd0f13e5df3044ffc2006c343ec1ea4CAS | 16727884PubMed |

Flint, A. P., and Sheldrick, E. L. (1983). Evidence for a systemic role for ovarian oxytocin in luteal regression in sheep. J. Reprod. Fertil. 67, 215–225.
Evidence for a systemic role for ovarian oxytocin in luteal regression in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmsFOmsw%3D%3D&md5=1c862dffff112b238473b48930caa8c4CAS | 6681637PubMed |

Forde, N., Beltman, M. E., Lonergan, P., Diskin, M., Roche, J. F., and Crowe, M. A. (2011). Oestrous cycles in Bos taurus cattle. Anim. Reprod. Sci. 124, 163–169.
Oestrous cycles in Bos taurus cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFWhtb4%3D&md5=1b33a6f884909b6a92e8761443614eceCAS | 20875708PubMed |

Freidman, S., Gurevich, M., and Shemesh, M. (1995). Bovine cyclic endometrium contains high-affinity luteinizing hormone/human chorionic gonadotropin binding sites. Biol. Reprod. 52, 1020–1026.
Bovine cyclic endometrium contains high-affinity luteinizing hormone/human chorionic gonadotropin binding sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVCjsr8%3D&md5=402c0d3581b532411a8b4c73730dc5d2CAS | 7626701PubMed |

Greenbaum, D., Colangelo, C., Williams, K., and Gerstein, M. (2003). Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117.
Comparing protein abundance and mRNA expression levels on a genomic scale.Crossref | GoogleScholarGoogle Scholar | 12952525PubMed |

Homanics, G. E., and Silvia, W. J. (1988). Effects of progesterone and estradiol-17 beta on uterine secretion of prostaglandin F2 alpha in response to oxytocin in ovariectomized ewes. Biol. Reprod. 38, 804–811.
Effects of progesterone and estradiol-17 beta on uterine secretion of prostaglandin F2 alpha in response to oxytocin in ovariectomized ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFOlsbs%3D&md5=f9939f8f624fc357b8fb56682464f750CAS | 3165288PubMed |

Ing, N. H., and Tornesi, M. B. (1997). Estradiol up-regulates estrogen receptor and progesterone receptor gene expression in specific ovine uterine cells. Biol. Reprod. 56, 1205–1215.
Estradiol up-regulates estrogen receptor and progesterone receptor gene expression in specific ovine uterine cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisl2qtbk%3D&md5=e5e9f037d827c503e86b6fe296839c4fCAS | 9160720PubMed |

Ireland, J. J., Murphee, R. L., and Coulson, P. B. (1980). Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J. Dairy Sci. 63, 155–160.
Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c7ot1yjsg%3D%3D&md5=6e70888385c3e3a1307b612ac98a221aCAS | 7372895PubMed |

Kimmins, S., and MacLaren, L. A. (2001). Oestrous cycle and pregnancy effects on the distribution of oestrogen and progesterone receptors in bovine endometrium. Placenta 22, 742–748.
Oestrous cycle and pregnancy effects on the distribution of oestrogen and progesterone receptors in bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFaqu7Y%3D&md5=24519edd691d20319e73da0a72c00099CAS | 11597195PubMed |

Korzekwa, A. J., Jaroszewski, J. J., Woclawek-Potocka, I., Bah, M. M., and Skarzynski, D. J. (2008). Luteolytic effect of prostaglandin F2 alpha on bovine corpus luteum depends on cell composition and contact. Reprod. Domest. Anim. 43, 464–472.
Luteolytic effect of prostaglandin F2 alpha on bovine corpus luteum depends on cell composition and contact.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGjsrrI&md5=d510c9c223d5a3e271018cabc442c8c6CAS | 18282218PubMed |

Kotwica, J., Rekawiecki, R., and Duras, M. (2004). Stimulatory influence of progesterone on its own synthesis in bovine corpus luteum. Bull. Vet. Inst. Pulawy 48, 139–145.

Kowalik, M., and Kotwica, J. (2007). Non-genomic effect of ovarian steroids on oxytocin-stimulated prostaglandin (PG) F2α and E2 secretion from bovine endometrial cells. Bull. Vet. Inst. Pulawy 51, 37–42.

Kowalik, M. K., Slonina, D., Rekawiecki, R., and Kotwica, J. (2013). Expression of progesterone receptor membrane component (PGRMC) 1 and 2, serpine mRNA binding protein 1 (SERBP1) and nuclear progesterone receptor (PGR) in the bovine endometrium during the estrous cycle and the first trimester of pregnancy. Reprod. Biol. 13, 15–23.
Expression of progesterone receptor membrane component (PGRMC) 1 and 2, serpine mRNA binding protein 1 (SERBP1) and nuclear progesterone receptor (PGR) in the bovine endometrium during the estrous cycle and the first trimester of pregnancy.Crossref | GoogleScholarGoogle Scholar | 23522067PubMed |

Liszewska, E., Rekawiecki, R., and Kotwica, J. (2005). Effect of progesterone on the expression of bax and bcl-2 and on caspase activity in bovine luteal cells. Prostaglandins Other Lipid Mediat. 78, 67–81.
Effect of progesterone on the expression of bax and bcl-2 and on caspase activity in bovine luteal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GntbvI&md5=2b62003c55df28345163074cdc3e492bCAS | 16303606PubMed |

McCracken, J. A., Custer, E. E., Lamsa, J. C., and Robinson, A. G. (1995). The central oxytocin pulse generator: a pacemaker for luteolysis. Adv. Exp. Med. Biol. 395, 133–154.
| 1:CAS:528:DyaK28Xkt1egsbk%3D&md5=c06827ebea9024d95f769b2e4110dfd4CAS | 8713960PubMed |

McCracken, J. A., Custer, E. E., and Lamsa, J. C. (1999). Luteolysis: a neuroendocrine-mediated event. Physiol. Rev. 79, 263–323.
| 1:CAS:528:DyaK1MXivFektLg%3D&md5=074c6537a7115feb0591a1e2a4d8bb8fCAS | 10221982PubMed |

Miyamoto, Y., Skarzynski, D. J., and Okuda, K. (2000). Is tumor necrosis factor alpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle? Biol. Reprod. 62, 1109–1115.
Is tumor necrosis factor alpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisl2htr8%3D&md5=4109fe57528feee511845fc94598cb5eCAS | 10775155PubMed |

Mulac-Jericevic, B., and Conneely, O. M. (2004). Reproductive tissue selective actions of progesterone receptors. Reproduction 128, 139–146.
Reproductive tissue selective actions of progesterone receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFeitr0%3D&md5=0713a8d4081572e5ec9fd806d8404837CAS | 15280552PubMed |

Niswender, G. D., Juengel, J. L., Silva, P. J., Rollyson, M. K., and McIntush, E. W. (2000). Mechanisms controlling the function and life span of the corpus luteum. Physiol. Rev. 80, 1–29.
| 1:CAS:528:DC%2BD3cXmtl2jtg%3D%3D&md5=2ddf599839d3ca0412673365c558f557CAS | 10617764PubMed |

Pieber, D., Allport, V. C., and Bennett, P. R. (2001). Progesterone receptor isoform A inhibits isoform B-mediated transactivation in human amnion. Eur. J. Pharmacol. 427, 7–11.
Progesterone receptor isoform A inhibits isoform B-mediated transactivation in human amnion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1Oktr4%3D&md5=f9a4b19fcdef4ba8b43b8b40512b6b44CAS | 11553358PubMed |

Prakash, B. S., Meyer, H. H., Schallenberger, E., and van de Wiel, D. F. (1987). Development of a sensitive enzymeimmunoassay (EIA) for progesterone determination in unextracted bovine plasma using the second antibody technique. J. Steroid Biochem. 28, 623–627.
Development of a sensitive enzymeimmunoassay (EIA) for progesterone determination in unextracted bovine plasma using the second antibody technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvFChtA%3D%3D&md5=eabbcafabc269213352f406d20a8cb82CAS | 3320573PubMed |

Rekawiecki, R., Nowik, M., and Kotwica, J. (2005). Stimulatory effect of LH, PGE2 and progesterone on StAR protein, cytochrome P450 cholesterol side chain cleavage and 3beta hydroxysteroid dehydrogenase gene expression in bovine luteal cells. Prostaglandins Other Lipid Mediat. 78, 169–184.
Stimulatory effect of LH, PGE2 and progesterone on StAR protein, cytochrome P450 cholesterol side chain cleavage and 3beta hydroxysteroid dehydrogenase gene expression in bovine luteal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gntb3K&md5=55149ac412d4750b2ffdb6775d832405CAS | 16303614PubMed |

Robinson, R. S., Mann, G. E., Lamming, G. E., and Wathes, D. C. (2001). Expression of oxytocin, oestrogen and progesterone receptors in uterine biopsy samples throughout the oestrous cycle and early pregnancy in cows. Reproduction 122, 965–979.
Expression of oxytocin, oestrogen and progesterone receptors in uterine biopsy samples throughout the oestrous cycle and early pregnancy in cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVWitQ%3D%3D&md5=236c6a47190637bd5ca7f511fabd29bbCAS | 11732992PubMed |

Savouret, J. F., Misrahi, M., Loosfelt, H., Atger, M., Bailly, A., Perrot-Applanat, M., Vu Hai, M. T., Guiochon-Mantel, A., Jolivet, A., and Lorenzo, F. (1989). Molecular and cellular biology of mammalian progesterone receptors. Recent Prog. Horm. Res. 45, 65–116.
| 1:CAS:528:DyaK3cXktVSlsrw%3D&md5=9e8c75aa6a4ca1c421dd91b06820d15eCAS | 2682849PubMed |

Shemesh, M. (2001). Actions of gonadotrophins on the uterus. Reproduction 121, 835–842.
Actions of gonadotrophins on the uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWnsbk%3D&md5=c6ca090f35081e6ad299fa6b6f77ea50CAS | 11373169PubMed |

Shemesh, M., Mizrachi, D., Gurevich, M., Shore, L. S., Reed, J., Chang, S. M., Thatcher, W. W., and Fields, M. J. (2001). Expression of functional luteinizing hormone (LH) receptor and its messenger ribonucleic acid in bovine endometrium: LH augmentation of cAMP and inositol phosphate in vitro and human chorionic gonadotropin (hCG) augmentation of peripheral prostaglandin in vivo. Reprod. Biol. 1, 13–32.
| 1:STN:280:DC%2BD3srosFWkuw%3D%3D&md5=e96b41543cf014e0499849eed3066d7bCAS | 14666165PubMed |

Skarzynski, D. J., Bogacki, M., and Kotwica, J. (1997). Changes in ovarian oxytocin secretion as an indicator of corpus luteum response to prostaglandin F(2alpha) treatment in cattle. Theriogenology 48, 733–742.
Changes in ovarian oxytocin secretion as an indicator of corpus luteum response to prostaglandin F(2alpha) treatment in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXms1Siu7Y%3D&md5=458271a6bc9006dbe0f3d2481c4a6572CAS | 16728167PubMed |

Skarzynski, D. J., Bogacki, M., and Kotwica, J. (1999). Involvement of ovarian steroids in basal and oxytocin-stimulated prostaglandin (PG) F2 alpha secretion by the bovine endometrium in vitro. Theriogenology 52, 385–397.
Involvement of ovarian steroids in basal and oxytocin-stimulated prostaglandin (PG) F2 alpha secretion by the bovine endometrium in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlyhtbc%3D&md5=f85a8163ce1618dd783d4783c9918a56CAS | 10734374PubMed |

Vincent, D. L., Meredith, S., and Inskeep, E. K. (1986). Advancement of uterine secretion of prostaglandin E2 by treatment with progesterone and transfer of asynchronous embryos. Endocrinology 119, 527–529.
Advancement of uterine secretion of prostaglandin E2 by treatment with progesterone and transfer of asynchronous embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltVyrsL0%3D&md5=07f54fb4cf5a54dbc27a06b94e727b7aCAS | 3460797PubMed |

Walker, C. G., Meier, S., Mitchell, M. D., Roche, J. R., and Littlejohn, M. (2009). Evaluation of real-time PCR endogenous control genes for analysis of gene expression in bovine endometrium. BMC Mol. Biol. 10, 100.
Evaluation of real-time PCR endogenous control genes for analysis of gene expression in bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 19878604PubMed |

Weems, Y. S., Lennon, E., Uchima, T., Raney, A., Goto, K., Ong, A., Zaleski, H., and Weems, C. W. (2008). Mechanism whereby nitric oxide (NO) infused chronically intrauterine in ewes is antiluteolytic rather than being luteolytic. Prostaglandins Other Lipid Mediat. 85, 33–41.
Mechanism whereby nitric oxide (NO) infused chronically intrauterine in ewes is antiluteolytic rather than being luteolytic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlKnsw%3D%3D&md5=10fd1dff47d3c765e136d013e66e021aCAS | 18078774PubMed |

Wehling, M., and Lösel, R. (2006). Non-genomic steroid hormone effects: membrane or intracellular receptors? J. Steroid Biochem. Mol. Biol. 102, 180–183.
Non-genomic steroid hormone effects: membrane or intracellular receptors?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cmt7fN&md5=3e9678a068dfb04d9cd701e7678a031fCAS | 17113980PubMed |

Woclawek-Potocka, I., Deptula, K., Bah, M. M., Lee, H. Y., Okuda, K., and Skarzynski, D. J. (2004). Effects of nitric oxide and tumor necrosis factor-alpha on production of prostaglandin F2alpha and E2 in bovine endometrial cells. J. Reprod. Dev. 50, 333–340.
Effects of nitric oxide and tumor necrosis factor-alpha on production of prostaglandin F2alpha and E2 in bovine endometrial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1KrtLg%3D&md5=d42bd254c485aa91c413b5829a9005a9CAS | 15226598PubMed |

Zhao, S., and Fernald, R. D. (2005). Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 12, 1047–1064.
Comprehensive algorithm for quantitative real-time polymerase chain reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFemtb7K&md5=cd8b3b8a6974e3345ac0d76f39e8314aCAS | 16241897PubMed |

Ziecik, A. J., Stepien, A., and Gawronska, B. (2000). Importance of endometrial luteinizing hormone receptors in induction of luteolysis and maternal recognition of pregnancy in the pig. Reprod. Domest. Anim. 35, 190–192.
Importance of endometrial luteinizing hormone receptors in induction of luteolysis and maternal recognition of pregnancy in the pig.Crossref | GoogleScholarGoogle Scholar |