Analysis and characterisation of bovine oocyte and embryo biomarkers by matrix-assisted desorption ionisation mass spectrometry imaging
Roseli F. Gonçalves A G , Mônica S. Ferreira B G , Diogo N. de Oliveira B , Rafael Canevarolo C , Marcos A. Achilles D , Daniela L. D’Ercole D , Peter E. Bols E , Jose A. Visintin A , Gary J. Killian F and Rodrigo R. Catharino B HA Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, São Paulo University, Av. Prof. Dr. Orlando Marques de Paiva, 87 – Cidade Universitária, 05508-270, São Paulo, SP, Brazil
B Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, University of Campinas, Rua Cinco de Junho, 350 – Barão Geraldo, 13083-877, Campinas, SP, Brazil.
C Brazilian Biosciences National Laboratory, National Energy and Material Research Center, Post Office box: 6192, 13083-877, Campinas, SP, Brazil.
D Achilles Genetics Ltda, Rua Padre de Toledo Leite, 20 – Centro, 17400-000, Garça, SP, Brazil.
E Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1 Gebouw U 0.09, B-2610, Wilrijk, Belgium.
F Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, 324 Henning Building University Park, PA, 16802, USA.
G These authors contributed equally to this work.
H Corresponding author. Email: rrc@fcm.unicamp.br
Reproduction, Fertility and Development 28(3) 293-301 https://doi.org/10.1071/RD14047
Submitted: 7 February 2014 Accepted: 22 May 2014 Published: 11 July 2014
Abstract
In the field of ‘single cell analysis’, many classical strategies like immunofluorescence and electron microscopy are the primary techniques of choice. However, these methodologies are time consuming and do not permit direct identification of specific molecular classes, such as lipids. In the present study, a novel mass spectrometry-based analytical approach was applied to bovine oocytes and embryos. This new metabolomics-based application uses mass spectrometry imaging (MSI), efficient data processing and multivariate data analysis. Metabolic fingerprinting (MF) was applied to the analysis of unfertilised oocytes, 2-, 4- and 8-cell embryos and blastocysts. A semiquantitative strategy for sphingomyelin [SM (16 : 0) + Na]+ (m/z 725) and phosphatidylcholine [PC (32 : 0) + Na]+ (m/z 756) was developed, showing that lipid concentration was useful for selecting the best metabolic biomarkers. This study demonstrates that a combination of MF, MSI features and chemometric analysis can be applied to discriminate cell stages, characterising specific biomarkers and relating them to developmental pathways. This information furthers our understanding of fertilisation and preimplantation events during bovine embryo development.
Additional keywords: fingerprinting, metabolic, phosphatidylcholine, sphingomyelin.
References
An, S., Dickens, M. A., Bleu, T., Hallmark, O. G., and Goetzl, E. J. (1997). Molecular cloning of the human Edg2 protein and its identification as a functional cellular receptor for lysophosphatidic acid. Biochem. Biophys. Res. Commun. 231, 619–622.| Molecular cloning of the human Edg2 protein and its identification as a functional cellular receptor for lysophosphatidic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFWktr0%3D&md5=d4eaa8566619f1f8ba9f5cddcb4a49a3CAS | 9070858PubMed |
Angulo, L., Perreau, C., Lakhdari, N., Uzbekov, R., Papillier, P., Freret, S., Cadoret, V., Guyader-Joly, C., Royere, D., Ponsart, C., Uzbekova, S., and Dalbies-Tran, R. (2013). Breast-cancer anti-estrogen resistance 4 (BCAR4) encodes a novel maternal-effect protein in bovine and is expressed in the oocyte of humans and other non-rodent mammals. Hum. Reprod. 28, 430–441.
| Breast-cancer anti-estrogen resistance 4 (BCAR4) encodes a novel maternal-effect protein in bovine and is expressed in the oocyte of humans and other non-rodent mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOntbk%3D&md5=de282e271e8f7903cb81488f2e9cc963CAS | 23202989PubMed |
Boeri Erba, E., Bergatto, E., Cabodi, S., Silengo, L., Tarone, G., Defilippi, P., and Jensen, O. N. (2005). Systematic analysis of the epidermal growth factor receptor by mass spectrometry reveals stimulation-dependent multisite phosphorylation. Mol. Cell. Proteomics 4, 1107–1121.
| Systematic analysis of the epidermal growth factor receptor by mass spectrometry reveals stimulation-dependent multisite phosphorylation.Crossref | GoogleScholarGoogle Scholar | 15901825PubMed |
Carpenter, G. (2000). The EGF receptor: a nexus for trafficking and signaling. Bioessays 22, 697–707.
| The EGF receptor: a nexus for trafficking and signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslShurg%3D&md5=51934bc3bba35e208053f2fe782ec11dCAS | 10918300PubMed |
Cazares, L. H., Troyer, D. A., Wang, B., Drake, R. R., and Semmes, O. J. (2011). MALDI tissue imaging: from biomarker discovery to clinical applications. Anal. Bioanal. Chem. 401, 17–27.
| MALDI tissue imaging: from biomarker discovery to clinical applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFSgtLw%3D&md5=6ceefb621c93caa8b40f1e7c3c572841CAS | 21541816PubMed |
Chae, J. I., Cho, S. K., Seo, J. W., Yoon, T. S., Lee, K. S., Kim, J. H., Lee, K. K., Han, Y. M., and Yu, K. (2006). Proteomic analysis of the extraembryonic tissue from cloned porcine embryos. Mol. Cell. Proteomics 5, 1559–1566.
| Proteomic analysis of the extraembryonic tissue from cloned porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVGguro%3D&md5=546ac3f4e8162337b3657bcc6e9a7f8bCAS | 16815948PubMed |
Clerc, J., Fourre, C., and Fragu, P. (1997). SIMS microscopy: methodology, problems and perspectives in mapping drugs and nuclear medicine compounds. Cell Biol. Int. 21, 619–633.
| SIMS microscopy: methodology, problems and perspectives in mapping drugs and nuclear medicine compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltlCht7g%3D&md5=0d13d064a43374350f69db39b7473631CAS | 9693832PubMed |
Damirin, A., Tomura, H., Komachi, M., Tobo, M., Sato, K., Mogi, C., Nochi, H., Tamoto, K., and Okajima, F. (2005). Sphingosine 1-phosphate receptors mediate the lipid-induced cAMP accumulation through cyclooxygenase-2/prostaglandin I2 pathway in human coronary artery smooth muscle cells. Mol. Pharmacol. 67, 1177–1185.
| Sphingosine 1-phosphate receptors mediate the lipid-induced cAMP accumulation through cyclooxygenase-2/prostaglandin I2 pathway in human coronary artery smooth muscle cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFWms7g%3D&md5=3b8820465fe53d27f066bce1d492fd4aCAS | 15625281PubMed |
De, B. K., Misono, K. S., Lukas, T. J., Mroczkowski, B., and Cohen, S. (1986). A calcium-dependent 35-kilodalton substrate for epidermal growth factor receptor/kinase isolated from normal tissue. J. Biol. Chem. 261, 13 784–13 792.
| 1:CAS:528:DyaL28XlvVKmu7w%3D&md5=09e2df15a0160895db90ec6b57a26eddCAS |
Duan, X., Dai, L., Chen, S. C., Balthasar, J. P., and Qu, J. (2012). Nano-scale liquid chromatography/mass spectrometry and on-the-fly orthogonal array optimization for quantification of therapeutic monoclonal antibodies and the application in preclinical analysis. J. Chromatogr. A 1251, 63–73.
| Nano-scale liquid chromatography/mass spectrometry and on-the-fly orthogonal array optimization for quantification of therapeutic monoclonal antibodies and the application in preclinical analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOrtLrL&md5=3344f92352d371427f191553cb09255aCAS | 22770385PubMed |
Edidin, M. (2003). Lipids on the frontier: a century of cell-membrane bilayers. Nat. Rev. Mol. Cell Biol. 4, 414–418.
| Lipids on the frontier: a century of cell-membrane bilayers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlalt70%3D&md5=784a8b18719be6204bb0ede416b14a74CAS | 12728275PubMed |
Ernst, J. D., Hoye, E., Blackwood, R. A., and Mok, T. L. (1991). Identification of a domain that mediates vesicle aggregation reveals functional diversity of annexin repeats. J. Biol. Chem. 266, 6670–6673.
| 1:CAS:528:DyaK3MXit1eqtL4%3D&md5=6b3ccd86b5a828f8eff0b80370ca169eCAS | 1707872PubMed |
Ferguson, E. M., and Leese, H. J. (1999). Triglyceride content of bovine oocytes and early embryos. J. Reprod. Fertil. 116, 373–378.
| Triglyceride content of bovine oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOltbc%3D&md5=34536db816e8448b5e8ece9bbf49a96bCAS | 10615263PubMed |
Ferreira, C. R., Saraiva, S. A., Catharino, R. R., Garcia, J. S., Gozzo, F. C., Sanvido, G. B., Santos, L. F., Lo Turco, E. G., Pontes, J. H., Basso, A. C., Bertolla, R. P., Sartori, R., Guardieiro, M. M., Perecin, F., Meirelles, F. V., Sagalli, J. R., and Eberlin, M. N. (2010). Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 51, 1218–1227.
| Single embryo and oocyte lipid fingerprinting by mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltlWktb0%3D&md5=583c72bbaaf426f3b8898b2f7aa01356CAS | 19965589PubMed |
Ferreira, M. S., de Oliveira, N. S., Gonçalves, R. F., and Catharino, R. R. (2014). Lipid characterization of embryo zones by silica plate laser desorption ionization mass spectrometry imaging (SP-LDI-MSI). Anal. Chim. Acta 807, 96–102.
| Lipid characterization of embryo zones by silica plate laser desorption ionization mass spectrometry imaging (SP-LDI-MSI).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFyltb3F&md5=230a99197bcb56b4bd43e179405f5795CAS | 24356225PubMed |
Fletcher, J. S., Lockyer, N. P., Vaidyanathan, S., and Vickerman, J. C. (2007). TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Anal. Chem. 79, 2199–2206.
| TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhslais7k%3D&md5=45b9956d336da8080da5c9d600ba58a2CAS | 17302385PubMed |
Gonçalves, R. F., Staros, A. L., and Killian, G. J. (2008). Oviductal fluid proteins associated with the bovine zona pellucida and the effect of in vitro sperm–egg binding, fertilization and embryo development. Reprod. Domest. Anim. 43, 720–729.
| Oviductal fluid proteins associated with the bovine zona pellucida and the effect of in vitro sperm–egg binding, fertilization and embryo development.Crossref | GoogleScholarGoogle Scholar | 18484958PubMed |
Hanrieder, J., Nyakas, A., Naessen, T., and Bergquist, J. (2008). Proteomic analysis of human follicular fluid using an alternative bottom-up approach. J. Proteome Res. 7, 443–449.
| Proteomic analysis of human follicular fluid using an alternative bottom-up approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOgsrjM&md5=7f55325f5b9cd0a205a0308c83478ee1CAS | 18047273PubMed |
Hillman, N., and Flynn, T. J. (1980). The metabolism of exogenous fatty acids by preimplantation mouse embryos developing in vitro. J. Embryol. Exp. Morphol. 56, 157–168.
| 1:STN:280:DyaL3c3ltVyhsA%3D%3D&md5=8584d2987e30395cf9f9775033072d2eCAS | 7400740PubMed |
Hirano, K., Ikeda, Y., Zaima, N., Sakata, Y., and Matsumiya, G. (2008). Triglyceride deposit cardiomyovasculopathy N. Engl. J. Med. 359, 2396–2398.
| Triglyceride deposit cardiomyovasculopathyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVehur3F&md5=986a397a9dd93028efe57b5cf0bdbbf1CAS | 19038890PubMed |
Jackson, S. N., Wang, H. Y., and Woods, A. S. (2005). In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS. J. Am. Soc. Mass Spectrom. 16, 2052–2056.
| In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CmsbrO&md5=24b259988d636e41a64a04d8e0a4a351CAS | 16253515PubMed |
Jiang, J. Y., Macchiarelli, G., Tsang, B. K., and Sato, E. (2003). Capillary angiogenesis and degeneration in bovine ovarian antral follicles. Reproduction 125, 211–223.
| Capillary angiogenesis and degeneration in bovine ovarian antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVKlt7w%3D&md5=9b74e05f5fb39568248ae7c79c18ad72CAS | 12578535PubMed |
Karas, M., and Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301.
| Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsVGmu7g%3D&md5=9bb164dc0a6eeae5a634d1bac9a92a63CAS | 3239801PubMed |
Katz-Jaffe, M. G., and Gardner, D. K. (2007). Embryology in the era of proteomics. Theriogenology 68, S125–S130.
| Embryology in the era of proteomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitLg%3D&md5=925f30bf5c551b7556eab84068093302CAS | 17477967PubMed |
Khandoker, M., and Tsujii, H. (1999). Effect of exogenous fatty acids on in vitro development of rat embryos. Asian-Australas. J. Anim. Sci. 12, 169–173.
| 1:CAS:528:DyaK1MXht1GmtbY%3D&md5=69a8ffd09cf21d963b04c0b82a4c2087CAS |
Kim, J. Y., Kinoshita, M., Ohnishi, M., and Fukui, Y. (2001). Lipid and fatty acid analysis of fresh and frozen–thawed immature and in vitro matured bovine oocytes. Reproduction 122, 131–138.
| Lipid and fatty acid analysis of fresh and frozen–thawed immature and in vitro matured bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVGis70%3D&md5=5bdbce473372dfc9bd98bcd113210b69CAS | 11425337PubMed |
Kim, J. I., Jo, E. J., Lee, H. Y., Cha, M. S., Min, J. K., Choi, C. H., Lee, Y. M., Choi, Y. A., Baek, S. H., Ryu, S. H., Lee, K. S., Kwak, J. Y., and Bae, Y. S. (2003). Sphingosine 1-phosphate in amniotic fluid modulates cyclooxygenase-2 expression in human amnion-derived WISH cells. J. Biol. Chem. 278, 31 731–31 736.
| Sphingosine 1-phosphate in amniotic fluid modulates cyclooxygenase-2 expression in human amnion-derived WISH cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVOntLg%3D&md5=ecb7a89ae587d8e0d6a5159518209a77CAS |
Klee, C. B. (1988). Ca2+-dependent phospholipid- (and membrane-) binding proteins. Biochemistry 27, 6645–6653.
| Ca2+-dependent phospholipid- (and membrane-) binding proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltVKmtLs%3D&md5=511ce91d1d45485b9116aeb573083924CAS | 2973805PubMed |
Kohno, M., Hasegawa, H., Inoue, A., Muraoka, M., Miyazaki, T., Oka, K., and Yasukawa, M. (2006). Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem. Biophys. Res. Commun. 347, 827–832.
| Identification of N-arachidonylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xntl2jurw%3D&md5=7ed8ec29a85562af3d686f5053d38151CAS | 16844083PubMed |
Kruip, T. A. M., Cran, D. G., Van Beneden, T. H., and Dieleman, S. J. (1983). Structural changes in bovine oocytes during final maturation in vivo. Gamete Res. 8, 29–47.
| Structural changes in bovine oocytes during final maturation in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvVyisLc%3D&md5=05dc9456cce4c4433ad5010691c38cd1CAS |
Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K., King, N., Stein, S. E., and Aebersold, R. (2007). Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 7, 655–667.
| Development and validation of a spectral library searching method for peptide identification from MS/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Kls70%3D&md5=13291adf56c2e0a83d0807190f5c9f30CAS | 17295354PubMed |
McEvoy, T. G., Coull, G. D., Broadbent, P. J., Hutchinson, J. S., and Speake, B. K. (2000). Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J. Reprod. Fertil. 118, 163–170.
| 1:CAS:528:DC%2BD3cXpsl2msA%3D%3D&md5=55edb2ac960e2ffe69c7a5c87775d9cdCAS | 10793638PubMed |
Melner, M. H., Ducharme, N. A., Brash, A. R., Winfrey, V. P., and Olson, G. E. (2004). Differential expression of genes in the endometrium at implantation: upregulation of a novel member of the E2 class of ubiquitin-conjugating enzymes. Biol. Reprod. 70, 406–414.
| Differential expression of genes in the endometrium at implantation: upregulation of a novel member of the E2 class of ubiquitin-conjugating enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsl2jsw%3D%3D&md5=361e97f1cc2dd279845df7f04bf752e5CAS | 14561654PubMed |
Mes-Hartree, M., and Armstrong, J. B. (1976). Lipid composition of developing Xenopus laevis embryos. Can. J. Biochem. 54, 578–582.
| Lipid composition of developing Xenopus laevis embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xks1SjsLw%3D&md5=4c12992a1068c94ffeb286c55f74d7d9CAS | 1276984PubMed |
Miles, J. R., Farin, C. E., Rodriguez, K. F., Alexander, J. E., and Farin, P. W. (2004). Angiogenesis and morphometry of bovine placentas in late gestation from embryos produced in vivo or in vitro. Biol. Reprod. 71, 1919–1926.
| Angiogenesis and morphometry of bovine placentas in late gestation from embryos produced in vivo or in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgsr3M&md5=394695cb7c7b5f60f3ada4204884c828CAS | 15286036PubMed |
Natarajan, V., Jayaram, H. N., Scribner, W. M., and Garcia, J. G. (1994). Activation of endothelial cell phospholipase D by sphingosine and sphingosine-1-phosphate. Am. J. Respir. Cell Mol. Biol. 11, 221–229.
| Activation of endothelial cell phospholipase D by sphingosine and sphingosine-1-phosphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvFOlsL0%3D&md5=509d880e2bbfb1d54cfc4e56c653a69bCAS | 8049083PubMed |
Niakan, K. K., Han, J., Pedersen, R. A., Simon, C., and Pera, R. A. R. (2012). Human pre-implantation embryo development. Development 139, 829–841.
| Human pre-implantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmsl2hu7g%3D&md5=3edec6db89dfd22b065b5be0782e5360CAS | 22318624PubMed |
Oh, D. Y., Yoon, J. M., Moon, M. J., Hwang, J. I., Choe, H., Lee, J. Y., Kim, J. I., Rhim, H., O’Dell, D. K., Walker, J. M., Na, H. S., Lee, M. G., Kwon, H. B., Kim, K., and Seong, J. Y. (2008). Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92. J. Biol. Chem. 283, 21 054–21 064.
| Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslWrt7k%3D&md5=5d673f80bf6680d0dd16e12a559fd6c2CAS |
Pepinsky, R. B., Sinclair, L. K., Browning, J. L., Mattaliano, R. J., Smart, J. E., Chow, E. P., Falbel, T., Ribolini, A., Garwin, J. L., and Wallner, B. P. (1986). Purification and partial sequence analysis of a 37-kDa protein that inhibits phospholipase A2 activity from rat peritoneal exudates. J. Biol. Chem. 261, 4239–4246.
| 1:CAS:528:DyaL28Xhs1ChsLw%3D&md5=69bd51a4b0b88632f363136e338a9c57CAS | 3081518PubMed |
Ruggeri, R. R., Watanabe, Y., Meirelles, F., Bressan, F. F., Frantz, N., and Bos-Mikich, A. (2012). The use of parthenotegenetic and IVF bovine blastocysts as a model for the creation of human embryonic stem cells under defined conditions. J. Assist. Reprod. Genet. 29, 1039–1043.
| The use of parthenotegenetic and IVF bovine blastocysts as a model for the creation of human embryonic stem cells under defined conditions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s%2FktFCguw%3D%3D&md5=de789b404aff7525600e9f272cb307f0CAS | 23054358PubMed |
Skaznik-Wikiel, M. E., Kaneko-Tarui, T., Kashiwagi, A., and Pru, J. K. (2006). Sphingosine-1-phosphate receptor expression and signaling correlate with uterine prostaglandin-endoperoxide synthase 2 expression and angiogenesis during early pregnancy. Biol. Reprod. 74, 569–576.
| Sphingosine-1-phosphate receptor expression and signaling correlate with uterine prostaglandin-endoperoxide synthase 2 expression and angiogenesis during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslejsLo%3D&md5=d50223d81278f3b756575fb9a02e56d0CAS | 16319286PubMed |
Smotrich, D. B., Stillman, R. J., Widra, E. A., Gindoff, P. R., Kaplan, P., Graubert, M., and Johnson, K. E. (1996). Immunocytochemical localization of growth factors and their receptors in human pre-embryos and Fallopian tubes. Hum. Reprod. 11, 184–190.
| Immunocytochemical localization of growth factors and their receptors in human pre-embryos and Fallopian tubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhslygurk%3D&md5=b7cfac89782c0656425e029fb89d4fb4CAS | 8671183PubMed |
Stubbs, C. D., and Smith, A. D. (1984). The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta 779, 89–137.
| The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtVSnsL8%3D&md5=c7abfacf1a4e1069bb58ef74df7a9ea9CAS | 6229284PubMed |
Tan, B., O’Dell, D. K., Yu, Y. W., Monn, M. F., Hughes, H. V., Burstein, S., and Walker, J. M. (2010). Identification of endogenous acyl amino acids based on a targeted lipidomics approach. J. Lipid Res. 51, 112–119.
| Identification of endogenous acyl amino acids based on a targeted lipidomics approach.Crossref | GoogleScholarGoogle Scholar | 19584404PubMed |
Trede, D., Schiffler, S., Becker, M., Wirtz, S., Steinhorst, K., Strehlow, J., Aichler, M., Kobarg, J. H., Oetjen, J., Dyatlov, A., Heldmann, S., Walch, A., Thiele, H., Maass, P., and Alexandrov, T. (2012). Exploring three-dimensional matrix-assisted laser desorption/ionization imaging mass spectrometry data: three-dimensional spatial segmentation of mouse kidney. Anal. Chem. 84, 6079–6087.
| Exploring three-dimensional matrix-assisted laser desorption/ionization imaging mass spectrometry data: three-dimensional spatial segmentation of mouse kidney.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFarsr0%3D&md5=201da76b9ff0a541813d92baa4b4e054CAS | 22720760PubMed |
Tyler, B. (2003). Interpretation of TOF-SIMS images: multivariate and univariate approaches to image de-noising, image segmentation and compound identification. Appl. Surf. Sci. 203–204, 825–831.
| Interpretation of TOF-SIMS images: multivariate and univariate approaches to image de-noising, image segmentation and compound identification.Crossref | GoogleScholarGoogle Scholar |
Viana, J. H. M., Siqueira, L. G. B., and Palhão, M. P. (2010). Use of in vitro fertilization technique in the last decade and its effect on Brazilian embryo industry and animal production. Acta Sci. Vet. 38, 661–674.
Viana, J. H. M., Siqueira, L. G. B., Palhao, M. P., and Camargo, L. S. A. (2012). Features and perspectives of the Brazilian in vitro embryo industry. Anim. Reprod. 9, 12–18.
Wang, L., Zheng, W., Mu, L., and Zhang, S. Z. (2008). Identifying biomarkers of endometriosis using serum protein fingerprinting and artificial neural networks. Int. J. Gynaecol. Obstet. 101, 253–258.
| Identifying biomarkers of endometriosis using serum protein fingerprinting and artificial neural networks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFOntLc%3D&md5=b94fd224735539a281e8bbfa6fdeb556CAS | 18325521PubMed |
Weng, X., Luecke, H., Song, I. S., Kang, D. S., Kim, S. H., and Huber, R. (1993). Crystal structure of human annexin I at 2.5 A resolution. Protein Sci. 2, 448–458.
| Crystal structure of human annexin I at 2.5 A resolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1GqsL4%3D&md5=ec773ff052a74ec1a7975670b42ead75CAS | 8453382PubMed |
Zhao, Z., Garbett, D., Hill, J. L., and Gross, D. J. (2005). Epidermal growth factor receptor downregulation in cultured bovine cumulus cells: reconstitution of calcium signaling and stimulated membrane permeabilization. Reproduction 130, 517–528.
| Epidermal growth factor receptor downregulation in cultured bovine cumulus cells: reconstitution of calcium signaling and stimulated membrane permeabilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFent7rE&md5=0b1f5c65275212df97b1339298789840CAS | 16183869PubMed |