Inhibition of angiopoietin-1 (ANGPT1) affects vascular integrity in ovarian hyperstimulation syndrome (OHSS)
Leopoldina Scotti A D , Dalhia Abramovich A , Natalia Pascuali A , Luis Haro Durand A , Griselda Irusta A , Ignacio de Zúñiga B , Marta Tesone A C and Fernanda Parborell AA Instituto de Biología y Medicina Experimental (IByME) – CONICET, Vuelta de Obligado 2490 (1428) Buenos Aires, Argentina.
B Centro Médico PREGNA Medicina Reproductiva, Juncal 3490 (1425) Buenos Aires, Argentina.
C Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales – Universidad de Buenos Aires, Intendente Güiraldes 2160 (1428), Buenos Aires, Argentina.
D Corresponding author. Email: leopoldinascotti@gmail.com
Reproduction, Fertility and Development 28(6) 690-699 https://doi.org/10.1071/RD13356
Submitted: 22 October 2013 Accepted: 11 September 2014 Published: 11 November 2014
Abstract
Ovarian hyperstimulation syndrome (OHSS) is a complication of ovarian stimulation with gonadotrophins following human chorionic gonadotrophin (hCG) administration. The relationship between hCG and OHSS is partly mediated via the production of angiogenic factors, such as vascular endothelial growth factor A (VEGFA) and angiopoietins (ANGPTs). Here, we investigated the effect of ANGPT1 inhibition on ovarian angiogenesis in follicular fluid (FF) from women at risk of OHSS, using the chorioallantoic membrane (CAM) of quail embryos as an experimental model. We also analysed cytoskeletal changes and endothelial junction protein expression induced by this FF in the presence or absence of an ANGPT1-neutralising antibody in endothelial cell cultures. The presence of this antibody restored the number of vascular branch points and integrin αvβ3 levels in the CAMs to control values. ANGPT1 inhibition in FF from OHSS patients also restored the levels of claudin-5, vascular endothelial cadherin and phosphorylated β-catenin and partially reversed actin redistribution in endothelial cells. Our findings suggest that ANGPT1 increases pathophysiological angiogenesis in patients at risk of OHSS by acting on tight and adherens junction proteins. Elucidating the mechanisms by which ANGPT1 regulates vascular development and cell–cell junctions in OHSS will contribute to identifying new therapeutic targets for the treatment of human diseases with aberrant vascular leakage.
Additional keywords: angiogenesis, follicular fluid, ovary, reproduction.
References
Abramovich, D., Parborell, F., and Tesone, M. (2006). Effect of a vascular endothelial growth factor (VEGF) inhibitory treatment on the folliculogenesis and ovarian apoptosis in gonadotrophin-treated prepubertal rats. Biol. Reprod. 75, 434–441.| Effect of a vascular endothelial growth factor (VEGF) inhibitory treatment on the folliculogenesis and ovarian apoptosis in gonadotrophin-treated prepubertal rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVWmur0%3D&md5=0bca2fc2188f989ae7093266a0ac04f9CAS | 16775226PubMed |
Artini, P. G., Monti, M., Fasciani, A., Tartaglia, M. L., D’Ambrogio, G., and Genazzani, A. R. (1998). Correlation between the amount of follicle-stimulating hormone administered and plasma and follicular fluid vascular endothelial growth factor concentrations in women undergoing in vitro fertilisation. Gynecol. Endocrinol. 12, 243–247.
| Correlation between the amount of follicle-stimulating hormone administered and plasma and follicular fluid vascular endothelial growth factor concentrations in women undergoing in vitro fertilisation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FhsVyltQ%3D%3D&md5=a58877d55b31f45b345eab2de8461e5aCAS | 9798133PubMed |
Avraamides, C. J., Garmy-Susini, B., and Varner, J. A. (2008). Integrins in angiogenesis and lymphangiogenesis. Nat. Rev. Cancer 8, 604–617.
| Integrins in angiogenesis and lymphangiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovV2lsr0%3D&md5=34bd2806ab46915f8caa8cbb6405094dCAS | 18497750PubMed |
Bai, Y., Cui, M., Meng, Z., Shen, L., He, Q., Zhang, X., Chen, F., and Xiao, J. (2009). Ectopic expression of angiopoietin-1 promotes neuronal differentiation in neural progenitor cells through the Akt pathway. Biochem. Biophys. Res. Commun. 378, 296–301.
| Ectopic expression of angiopoietin-1 promotes neuronal differentiation in neural progenitor cells through the Akt pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOisLrK&md5=5a2e2e330670452142d24853b09e2d4eCAS | 19028450PubMed |
Bérubé, M., Deschambeault, A., Boucher, M., Germain, L., Petitclerc, E., and Guérin, S. L. (2005). MMP-2 expression in uveal melanoma: differential activation status dictated by the cellular environment. Mol. Vis. 11, 1101–1111.
| 16379022PubMed |
Bienz, M., and Clevers, H. (2000). Linking colorectal cancer to Wnt signalling. Cell 103, 311–320.
| Linking colorectal cancer to Wnt signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1Clt70%3D&md5=1be40b2c21c89ead83e2921e0e3037cfCAS | 11057903PubMed |
Brooks, P. C., Clark, R. A., and Cheresh, D. A. (1994). Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264, 569–571.
| Requirement of vascular integrin alpha v beta 3 for angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjt1Sis7w%3D&md5=abc6c6d53e7816a0a8772a6c225eac8cCAS | 7512751PubMed |
Brooks, P. C., Silletti, S., von Schalscha, T. L., Friedlander, M., and Cheresh, D. A. (1998). Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin-binding activity. Cell 92, 391–400.
| Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin-binding activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFGisb4%3D&md5=8ae1078ec3ac43d2078ee007654062e7CAS | 9476898PubMed |
Carmeliet, P. (2000). Fibroblast growth factor-1 stimulates branching and survival of myocardial arteries: a goal for therapeutic angiogenesis? Circ. Res. 87, 176–178.
| Fibroblast growth factor-1 stimulates branching and survival of myocardial arteries: a goal for therapeutic angiogenesis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFygsrs%3D&md5=74d8bad8f653e314dea3d6ccbe1e6dd2CAS | 10926865PubMed |
Carmeliet, P., Lampugnani, M. G., Moons, L., Breviario, F., Compernolle, V., Bono, F., Balconi, G., Spagnuolo, R., Oosthuyse, B., Dewerchin, M., Zanetti, A., Angellilo, A., Mattot, V., Nuyens, D., Lutgens, E., Clotman, F., de Ruiter, M. C., Gittenberger-de Groot, A., Poelmann, R., Lupu, F., Herbert, J. M., Collen, D., and Dejana, E. (1999). Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157.
| Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVOqt7s%3D&md5=2c01ca0352bd9b6774e0793a02fc6f41CAS | 10428027PubMed |
Chen, S. U., Chou, C. H., Lin, C. W., Lee, H., Wu, J. C., Lu, H. F., Chen, C. D., and Yang, Y. S. (2010). Signal mechanisms of vascular endothelial growth factor and interleukin-8 in ovarian hyperstimulation syndrome: dopamine targets their common pathways. Hum. Reprod. 25, 757–767.
| Signal mechanisms of vascular endothelial growth factor and interleukin-8 in ovarian hyperstimulation syndrome: dopamine targets their common pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFeisbo%3D&md5=70f19c8a448baf872395435c88e0a218CAS | 20008399PubMed |
Davis, S., Aldrich, T. H., Jones, P. F., Acheson, A., Compton, D. L., Jain, V., Ryan, T. E., Bruno, J., Radziejewski, C., Maisonpierre, P. C., and Yancopoulos, G. D. (1996). Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87, 1161–1169.
| Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXit1Cqsw%3D%3D&md5=0a99478f10196658781dd16fc5efe54dCAS | 8980223PubMed |
Dejana, E., Tournier-Lasserve, E., and Weinstein, B. M. (2009). The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell 16, 209–221.
| The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1aksrw%3D&md5=fc7077ed95367a7e5bcaa4cf593934b6CAS | 19217423PubMed |
Edgell, C. J., McDonald, C. C., and Graham, J. B. (1983). Permanent cell line expressing human factor VIII-related antigen established by hybridisation. Proc. Natl. Acad. Sci. USA 80, 3734–3737.
| Permanent cell line expressing human factor VIII-related antigen established by hybridisation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s3itFKksw%3D%3D&md5=32c48f443517c6d31c86b5a835e1bd8eCAS | 6407019PubMed |
Edgell, C. J., Haizlip, J. E., Bagnell, C. R., Packenham, J. P., Harrison, P., Wilbourn, B., and Madden, V. J. (1990). Endothelium specific Weibel–Palade bodies in a continuous human cell line, EA.hy926. In Vitro Cell. Dev. Biol. 26, 1167–1172.
| Endothelium specific Weibel–Palade bodies in a continuous human cell line, EA.hy926.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M7nslOlsA%3D%3D&md5=6c9e8b3d469c2d0174e940959ad8947cCAS | 2079463PubMed |
Eliceiri, B. P., Klemke, R., Stromblad, S., and Cheresh, D. A. (1998). Integrin alpha v beta 3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J. Cell Biol. 140, 1255–1263.
| Integrin alpha v beta 3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhslOjtLc%3D&md5=5b87b65b133b67f8467d791408314e3eCAS | 9490736PubMed |
Enskog, A., Henriksson, M., Unander, M., Nilsson, L., and Brannstrom, M. (1999). Prospective study of the clinical and laboratory parameters of patients in whom ovarian hyperstimulation syndrome developed during controlled ovarian hyperstimulation for in vitro fertilisation. Fertil. Steril. 71, 808–814.
| Prospective study of the clinical and laboratory parameters of patients in whom ovarian hyperstimulation syndrome developed during controlled ovarian hyperstimulation for in vitro fertilisation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3ks1Slug%3D%3D&md5=e79931baa5b7e6dd1d05bc2100aed9f8CAS | 10231037PubMed |
Fiedler, U., and Augustin, H. G. (2006). Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol. 27, 552–558.
| Angiopoietins: a link between angiogenesis and inflammation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SjsrbM&md5=cb750a083f10c1fd16925e698959bf86CAS | 17045842PubMed |
Gavard, J., and Gutkind, J. S. (2008). VE-cadherin and claudin-5: it takes two to tango. Nat. Cell Biol. 10, 883–885.
| VE-cadherin and claudin-5: it takes two to tango.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1Smtb0%3D&md5=5d523ae38324291c393c36a49579f4bbCAS | 18670447PubMed |
Goede, V., Schmidt, T., Kimmina, S., Kozian, D., and Augustin, H. G. (1998). Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab. Invest. 78, 1385–1394.
| 1:STN:280:DyaK1M%2FlsVenug%3D%3D&md5=bb3688f0a36879411a7499671d0e0d40CAS | 9840613PubMed |
Gómez, R., Soares, S. R., Busso, C., Garcia-Velasco, J. A., Simon, C., and Pellicer, A. (2010). Physiology and pathology of ovarian hyperstimulation syndrome. Semin. Reprod. Med. 28, 448–457.
| Physiology and pathology of ovarian hyperstimulation syndrome.Crossref | GoogleScholarGoogle Scholar | 21082502PubMed |
Groten, T., Fraser, H. M., Duncan, W. C., Konrad, R., Kreienberg, R., and Wulff, C. (2006). Cell junctional proteins in the human corpus luteum: changes during the normal cycle and after hCG treatment. Hum. Reprod. 21, 3096–3102.
| Cell junctional proteins in the human corpus luteum: changes during the normal cycle and after hCG treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlChtb7I&md5=abb9bc54c429da5dd7171651b20edc00CAS | 16923746PubMed |
Hanahan, D., and Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364.
| Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltVSks7s%3D&md5=77d1de58bd4e086d4e143f6e792b5735CAS | 8756718PubMed |
Hartsock, A., and Nelson, W. J. (2008). Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta 1778, 660–669.
| Adherens and tight junctions: structure, function and connections to the actin cytoskeleton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVSqt7s%3D&md5=1962537ef08affce8ecfb441cebb980dCAS | 17854762PubMed |
Hazzard, T. M., Molskness, T. A., Chaffin, C. L., and Stouffer, R. L. (1999). Vascular endothelial growth factor (VEGF) and angiopoietin regulation by gonadotrophin and steroids in macaque granulosa cells during the peri-ovulatory interval. Mol. Hum. Reprod. 5, 1115–1121.
| Vascular endothelial growth factor (VEGF) and angiopoietin regulation by gonadotrophin and steroids in macaque granulosa cells during the peri-ovulatory interval.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivVelsQ%3D%3D&md5=e0e5e041ebafeb3d8ac0a62371308174CAS | 10587365PubMed |
Herr, D., Fraser, H. M., Konrad, R., Holzheu, I., Kreienberg, R., and Wulff, C. (2013). Human chorionic gonadotrophin controls luteal vascular permeability via vascular endothelial growth factor by down-regulation of a cascade of adhesion proteins. Fertil. Steril. 99, 1749–1758.
| Human chorionic gonadotrophin controls luteal vascular permeability via vascular endothelial growth factor by down-regulation of a cascade of adhesion proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtFGrurs%3D&md5=e905c7015757ce13a595f21d0dd7e916CAS | 23465821PubMed |
Hino, S., Tanji, C., Nakayama, K. I., and Kikuchi, A. (2005). Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilises beta-catenin through inhibition of its ubiquitination. Mol. Cell. Biol. 25, 9063–9072.
| Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilises beta-catenin through inhibition of its ubiquitination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWis7%2FI&md5=7fb08c578d207d9947d8d188f959a4faCAS | 16199882PubMed |
Humaidan, P., Quartarolo, J., and Papanikolaou, E. G. (2010). Preventing ovarian hyperstimulation syndrome: guidance for the clinician. Fertil. Steril. 94, 389–400.
| Preventing ovarian hyperstimulation syndrome: guidance for the clinician.Crossref | GoogleScholarGoogle Scholar | 20416867PubMed |
Isachenko, V., Mallmann, P., Petrunkina, A. M., Rahimi, G., Nawroth, F., Hancke, K., Felberbaum, R., Genze, F., Damjanoski, I., and Isachenko, E. (2012). Comparison of in vitro and chorioallantoic membrane (CAM) culture systems for cryopreserved medulla-contained human ovarian tissue. PLoS ONE 7, e32549.
| Comparison of in vitro and chorioallantoic membrane (CAM) culture systems for cryopreserved medulla-contained human ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFyks7s%3D&md5=16844fa9975daf4ef6464abb9a9a6541CAS | 22479331PubMed |
Itoh, M., Nagafuchi, A., Moroi, S., and Tsukita, S. (1997). Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J. Cell Biol. 138, 181–192.
| Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksF2hu74%3D&md5=8501fed47a4113363832a39685982b0fCAS | 9214391PubMed |
Jiao, H., Wang, Z., Liu, Y., Wang, P., and Xue, Y. (2011). Specific role of tight junction proteins claudin-5, occludin and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult. J. Mol. Neurosci. 44, 130–139.
| Specific role of tight junction proteins claudin-5, occludin and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVWit7g%3D&md5=d02e4c0216bd88c48b630623d4787b35CAS | 21318404PubMed |
Kanda, T., Numata, Y., and Mizusawa, H. (2004). Chronic inflammatory demyelinating polyneuropathy: decreased claudin-5 and relocated ZO-1. J. Neurol. Neurosurg. Psychiatry 75, 765–769.
| Chronic inflammatory demyelinating polyneuropathy: decreased claudin-5 and relocated ZO-1.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c7pslCrug%3D%3D&md5=505a8a1697601f546ae3a1ef6a41757aCAS | 15090575PubMed |
Kitajima, Y., Endo, T., Nagasawa, K., Manase, K., Honnma, H., Baba, T., Hayashi, T., Chiba, H., Sawada, N., and Saito, H. (2006). Hyperstimulation and a gonadotrophin-releasing hormone agonist modulate ovarian vascular permeability by altering expression of the tight junction protein claudin-5. Endocrinology 147, 694–699.
| Hyperstimulation and a gonadotrophin-releasing hormone agonist modulate ovarian vascular permeability by altering expression of the tight junction protein claudin-5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVakug%3D%3D&md5=eeea3d67110ae163253baf1a18dfcd9eCAS | 16269461PubMed |
Koos, R. D. (1995). Increased expression of vascular endothelial growth/permeability factor in the rat ovary following an ovulatory gonadotrophin stimulus: potential roles in follicle rupture. Biol. Reprod. 52, 1426–1435.
| Increased expression of vascular endothelial growth/permeability factor in the rat ovary following an ovulatory gonadotrophin stimulus: potential roles in follicle rupture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvVGlsbY%3D&md5=ef0c861772cf1046103992ba9ddbdb15CAS | 7543299PubMed |
Krasnow, J. S., Berga, S. L., Guzick, D. S., Zeleznik, A. J., and Yeo, K. T. (1996). Vascular permeability factor and vascular endothelial growth factor in ovarian hyperstimulation syndrome: a preliminary report. Fertil. Steril. 65, 552–555.
| 1:STN:280:DyaK28zntVeruw%3D%3D&md5=539202f761c270d2a82970f964e3dcaaCAS | 8774285PubMed |
Kunzi-Rapp, K., Ruck, A., and Kaufmann, R. (1999). Characterisation of the chick chorioallantoic membrane model as a short-term in vivo system for human skin. Arch. Dermatol. Res. 291, 290–295.
| Characterisation of the chick chorioallantoic membrane model as a short-term in vivo system for human skin.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3psVWgsA%3D%3D&md5=1ee8d2d0ee4b18a9be3c7f48d3f4b5adCAS | 10367712PubMed |
Lampugnani, MG (2012). Endothelial cell-to-cell junctions: adhesion and signalling in physiology and pathology. Cold Spring Harb. Perspect. Med. 2, a006528.
| Endothelial cell-to-cell junctions: adhesion and signalling in physiology and pathology.Crossref | GoogleScholarGoogle Scholar | 23028127PubMed |
Lauffenburger, D. A., and Horwitz, A. F. (1996). Cell migration: a physically integrated molecular process. Cell 84, 359–369.
| Cell migration: a physically integrated molecular process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFWqtr8%3D&md5=6883ea7f31fd326c0e76e57aae9959b3CAS | 8608589PubMed |
Leng, T., Miller, J. M., Bilbao, K. V., Palanker, D. V., Huie, P., and Blumenkranz, M. S. (2004). The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation. Retina 24, 427–434.
| The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation.Crossref | GoogleScholarGoogle Scholar | 15187666PubMed |
Leung, P., Ho, Y. B., and Moon, Y. S. (1983). Effect of prolactin in an experimental model of the ovarian hyperstimulation syndrome. Am. J. Obstet. Gynecol. 145, 847–849.
| 1:CAS:528:DyaL3sXktVSktLc%3D&md5=9e1b3e18b047a81cc936e37ba0a1dc6aCAS | 6404170PubMed |
Levin, E. R., Rosen, G. F., Cassidenti, D. L., Yee, B., Meldrum, D., Wisot, A., and Pedram, A. (1998). Role of vascular endothelial cell growth factor in ovarian hyperstimulation syndrome. J. Clin. Invest. 102, 1978–1985.
| Role of vascular endothelial cell growth factor in ovarian hyperstimulation syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVertbg%3D&md5=0871670f89206116f2557cbaeaac7fe5CAS | 9835623PubMed |
Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T. H., Papadopoulos, N., Daly, T. J., Davis, S., Sato, T. N., and Yancopoulos, G. D. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60.
| Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVyhu78%3D&md5=3859b85c1f678561c26eb23135bc9ac1CAS | 9204896PubMed |
Malik, A. B., Lynch, J. J., and Cooper, J. A. (1989). Endothelial barrier function. J. Invest. Dermatol. 93, 62S–67S.
| Endothelial barrier function.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1MzivVSjsQ%3D%3D&md5=c3a058406d00f1567aea953b9c6a387fCAS | 2546995PubMed |
Maruo, N., Morita, I., Shirao, M., and Murota, S. (1992). IL-6 increases endothelial permeability in vitro. Endocrinology 131, 710–714.
| 1:CAS:528:DyaK38XlsV2jt7o%3D&md5=245a0c32418fa36f53c5e4f77281bb4fCAS | 1639018PubMed |
Menager, C., Vassy, J., Doliger, C., Legrand, Y., and Karniguian, A. (1999). Subcellular localization of RhoA and ezrin at membrane ruffles of human endothelial cells: differential role of collagen and fibronectin. Exp. Cell Res. 249, 221–230.
| Subcellular localization of RhoA and ezrin at membrane ruffles of human endothelial cells: differential role of collagen and fibronectin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslSls7o%3D&md5=a421cce1383cf7e816b69b95271bc718CAS | 10366421PubMed |
Nap, A. W., Dunselman, G. A., de Goeij, A. F., Evers, J. L., and Groothuis, P. G. (2004). Inhibiting MMP activity prevents the development of endometriosis in the chicken chorioallantoic membrane model. Hum. Reprod. 19, 2180–2187.
| Inhibiting MMP activity prevents the development of endometriosis in the chicken chorioallantoic membrane model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Omsrk%3D&md5=a97f9e9fe990a127707c64506f1fdb29CAS | 15242997PubMed |
Navot, D., Margalioth, E. J., Laufer, N., Birkenfeld, A., Relou, A., Rosler, A., and Schenker, J. G. (1987). Direct correlation between plasma renin activity and severity of the ovarian hyperstimulation syndrome. Fertil. Steril. 48, 57–61.
| 1:STN:280:DyaL2s3kslChtw%3D%3D&md5=443cc08c11d06c84b28f96f4e6a7eb4bCAS | 2439386PubMed |
Navot, D., Bergh, P. A., and Laufer, N. (1992). Ovarian hyperstimulation syndrome in novel reproductive technologies: prevention and treatment. Fertil. Steril. 58, 249–261.
| 1:STN:280:DyaK38zjvFGksg%3D%3D&md5=6d7ffff215c680e5c9be8b183520d7c5CAS | 1633889PubMed |
Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z. (1999). Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9–22.
| 1:CAS:528:DyaK1MXlt1ygsQ%3D%3D&md5=41e6f73ad3e5875be824d956de708a29CAS | 9872925PubMed |
Orvieto, R. (2013). Ovarian hyperstimulation syndrome – an optimal solution for an unresolved enigma. J. Ovarian. Res. 6, 77.
| Ovarian hyperstimulation syndrome – an optimal solution for an unresolved enigma.Crossref | GoogleScholarGoogle Scholar | 24191960PubMed |
Otrock, Z. K., Mahfouz, R. A., Makarem, J. A., and Shamseddine, A. I. (2007). Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol. Dis. 39, 212–220.
| Understanding the biology of angiogenesis: review of the most important molecular mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFKisrg%3D&md5=fdd082f8a96fc1a1941e32b3eaff8379CAS | 17553709PubMed |
Parborell, F., Abramovich, D., and Tesone, M. (2008). Intrabursal administration of the anti-angiopoietin 1 antibody produces a delay in rat follicular development associated with an increase in ovarian apoptosis mediated by changes in the expression of BCL2-related genes. Biol. Reprod. 78, 506–513.
| Intrabursal administration of the anti-angiopoietin 1 antibody produces a delay in rat follicular development associated with an increase in ovarian apoptosis mediated by changes in the expression of BCL2-related genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFSlurg%3D&md5=272cd5dbec7b2369c03beb001e68776aCAS | 17989359PubMed |
Parsons-Wingerter, P., Lwai, B., Yang, M. C., Elliott, K. E., Milaninia, A., Redlitz, A., Clark, J. I., and Sage, E. H. (1998). A novel assay of angiogenesis in the quail chorioallantoic membrane: stimulation by bFGF and inhibition by angiostatin according to fractal dimension and grid intersection. Microvasc. Res. 55, 201–214.
| A novel assay of angiogenesis in the quail chorioallantoic membrane: stimulation by bFGF and inhibition by angiostatin according to fractal dimension and grid intersection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVOku70%3D&md5=5017f03dde23df5c6675228b1bb27954CAS | 9657920PubMed |
Phillips, H. S., Hains, J., Leung, D. W., and Ferrara, N. (1990). Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology 127, 965–967.
| Vascular endothelial growth factor is expressed in rat corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltV2qtrg%3D&md5=02644dd09c8f76a5c86a467e772e6697CAS | 2197082PubMed |
Pride, S. M., Ho, Y. B., and Moon, Y. S. (1984). Clinical, endocrinologic and intraovarian prostaglandin F responses to H-1 receptor blockade in the ovarian hyperstimulation syndrome: studies in the rabbit model. Am. J. Obstet. Gynecol. 148, 670–674.
| Clinical, endocrinologic and intraovarian prostaglandin F responses to H-1 receptor blockade in the ovarian hyperstimulation syndrome: studies in the rabbit model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXitVensr0%3D&md5=e6d58b768da9641cbae90526bc7f6874CAS | 6142649PubMed |
Rodewald, M., Herr, D., Fraser, H. M., Hack, G., Kreienberg, R., and Wulff, C. (2007). Regulation of tight junction proteins occludin and claudin 5 in the primate ovary during the ovulatory cycle and after inhibition of vascular endothelial growth factor. Mol. Hum. Reprod. 13, 781–789.
| Regulation of tight junction proteins occludin and claudin 5 in the primate ovary during the ovulatory cycle and after inhibition of vascular endothelial growth factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaqtrzF&md5=a95de94af1ea0cea07da1330ebe79cb7CAS | 18006538PubMed |
Rodewald, M., Herr, D., Duncan, W. C., Fraser, H. M., Hack, G., Konrad, R., Gagsteiger, F., Kreienberg, R., and Wulff, C. (2009). Molecular mechanisms of ovarian hyperstimulation syndrome: paracrine reduction of endothelial claudin 5 by hCG in vitro is associated with increased endothelial permeability. Hum. Reprod. 24, 1191–1199.
| Molecular mechanisms of ovarian hyperstimulation syndrome: paracrine reduction of endothelial claudin 5 by hCG in vitro is associated with increased endothelial permeability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFejt7Y%3D&md5=66c5bdc237856c12eb887b142c0c4e54CAS | 19168871PubMed |
Schenker, J. G., and Polishuk, W. Z. (1976). The role of prostaglandins in ovarian hyperstimulation syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 6, 47–52.
| The role of prostaglandins in ovarian hyperstimulation syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksFOgsrg%3D&md5=f970de6df14a5f155dfaa0fe58e58119CAS | 985762PubMed |
Scotti, L., Abramovich, D., Pascuali, N., de Zúñiga, I., Oubina, A., Kopcow, L., Lange, S., Owen, G., Tesone, M., and Parborell, F. (2013). Involvement of the ANGPTs/Tie-2 system in ovarian hyperstimulation syndrome (OHSS). Mol. Cell. Endocrinol. 365, 223–230.
| Involvement of the ANGPTs/Tie-2 system in ovarian hyperstimulation syndrome (OHSS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12ksL%2FF&md5=ab6f40aacbccd29bca4cf38b67915358CAS | 23123737PubMed |
Suri, C., Jones, P. F., Patan, S., Bartunkova, S., Maisonpierre, P. C., Davis, S., Sato, T. N., and Yancopoulos, G. D. (1996). Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180.
| Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXit1GhtQ%3D%3D&md5=1d067f0630630911d3a607aab44f7ed0CAS | 8980224PubMed |
Taddei, A., Giampietro, C., Conti, A., Orsenigo, F., Breviario, F., Pirazzoli, V., Potente, M., Daly, C., Dimmeler, S., and Dejana, E. (2008). Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat. Cell Biol. 10, 923–934.
| Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1SmtLw%3D&md5=2c561fd3e65d38b0b7e9166d3c2af666CAS | 18604199PubMed |
Umeda, K., Ikenouchi, J., Katahira-Tayama, S., Furuse, K., Sasaki, H., Nakayama, M., Matsui, T., Tsukita, S., Furuse, M., and Tsukita, S. (2006). ZO-1 and ZO-2 independently determine where claudins are polymerised in tight-junction strand formation. Cell 126, 741–754.
| ZO-1 and ZO-2 independently determine where claudins are polymerised in tight-junction strand formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1akur8%3D&md5=aa1fee4becbd72d9afe36772304bf0a6CAS | 16923393PubMed |
Valdes, T. I., Kreutzer, D., and Moussy, F. (2002). The chick chorioallantoic membrane as a novel in vivo model for the testing of biomaterials. J. Biomed. Mater. Res. 62, 273–282.
| The chick chorioallantoic membrane as a novel in vivo model for the testing of biomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFajtrk%3D&md5=377ef3a557820536390d45a77a7e2a5bCAS | 12209948PubMed |
Villasante, A., Pacheco, A., Ruiz, A., Pellicer, A., and Garcia-Velasco, J. A. (2007). Vascular endothelial cadherin regulates vascular permeability: implications for ovarian hyperstimulation syndrome. J. Clin. Endocrinol. Metab. 92, 314–321.
| Vascular endothelial cadherin regulates vascular permeability: implications for ovarian hyperstimulation syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVKgtg%3D%3D&md5=53afc65d0db280242c08a7589d66a63eCAS | 17032719PubMed |
von Otte, S., Paletta, J. R., Becker, S., Konig, S., Fobker, M., Greb, R. R., Kiesel, L., Assmann, G., Diedrich, K., and Nofer, J. R. (2006). Follicular fluid high-density lipoprotein-associated sphingosine 1-phosphate is a novel mediator of ovarian angiogenesis. J. Biol. Chem. 281, 5398–5405.
| Follicular fluid high-density lipoprotein-associated sphingosine 1-phosphate is a novel mediator of ovarian angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVejs7c%3D&md5=27252b9dc7274917aadc686ab951eaabCAS | 16365044PubMed |
Wójciak-Stothard, B., Potempa, S., Eichholtz, T., and Ridley, A. J. (2001). Rho and Rac but not Cdc42 regulate endothelial cell permeability. J. Cell Sci. 114, 1343–1355.
| 11257000PubMed |
Zaidise, I., Friedman, M., Lindenbaum, E. S., Askenazi, R., Peretz, B. A., and Paldi, E. (1983). Serotonin and the ovarian hyperstimulation syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 15, 55–60.
| Serotonin and the ovarian hyperstimulation syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkvVaqsbg%3D&md5=e8d7d8bc992c1dd6993cffdef2e06b21CAS | 6411504PubMed |
Zehendner, C. M., Librizzi, L., de Curtis, M., Kuhlmann, C. R., and Luhmann, H. J. (2011). Caspase-3 contributes to ZO-1 and Cl-5 tight-junction disruption in rapid anoxic neurovascular unit damage. PLoS ONE 6, e16760.
| Caspase-3 contributes to ZO-1 and Cl-5 tight-junction disruption in rapid anoxic neurovascular unit damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVylsr4%3D&md5=d0d10c70037489de0f8462d8bb010fa1CAS | 21364989PubMed |