Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

New insight into the castrated mouse epididymis based on comparative proteomics

Xin Liu A C , Wenjuan Wang B C and FuJun Liu A D
+ Author Affiliations
- Author Affiliations

A Central Laboratory, Yantai Yu-Huang-Ding Hospital, Qingdao University, Yantai 264000, Shandong, China.

B Reproduction Medical Center, Yantai Yu-Huang-Ding Hospital, Qingdao University, Yantai 264000, Shandong, China.

C These authors contributed equally to this paper.

D Corresponding author. Email: lfjyt@126.com

Reproduction, Fertility and Development 27(3) 551-556 https://doi.org/10.1071/RD13323
Submitted: 25 September 2013  Accepted: 11 January 2014   Published: 11 February 2014

Abstract

The mammalian epididymis is an important male accessory gland where the spermatozoa gain the ability to fertilise the egg. To further understand the effects of testicular factors on the epididymis, the proteome of castrated adult mice and sham controls was compared using high-resolution two-dimensional gel electrophoresis following identification of proteins by matrix-assisted laser desorption ionisation time-of-flight/time-of-flight mass spectrometry. Twenty-three differentially expressed proteins (11 upregulated and 12 downregulated) were identified in epididymides from castrated. Bioinformatic analysis indicated that these castration-responsive proteins participated in energy metabolism and the antigen processing and presentation pathway. The differential expression levels were further validated by western blotting. The differentially expressed proteins may serve as potential candidates in studies of epididymal function and male infertility.

Additional keywords: bioinformatics, regression, sperm maturation, testicular factors.


References

Avram, C., Yeung, C. H., Nieschlag, E., and Cooper, T. G. (2004). Regulation of the initial segment of the murine epididymis by dihydrotestosterone and testicular exocrine secretions studied by expression of specific proteins and gene expression. Cell Tissue Res. 317, 13–22.
Regulation of the initial segment of the murine epididymis by dihydrotestosterone and testicular exocrine secretions studied by expression of specific proteins and gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVKmur0%3D&md5=e89084309498ac4893d8186645a9ec5fCAS | 15197647PubMed |

Bustos, , Obregón, E., and Esponda, P. (2009). Increase in apoptosis and of the stress protein HSP70 in the mouse epididymis produced by the antiandrogen flutamide. Int. J. Morphol. 27, 463–468.
Increase in apoptosis and of the stress protein HSP70 in the mouse epididymis produced by the antiandrogen flutamide.Crossref | GoogleScholarGoogle Scholar |

Chauvin, T. R., and Griswold, M. D. (2004). Androgen-regulated genes in the murine epididymis. Biol. Reprod. 71, 560–569.
Androgen-regulated genes in the murine epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWgurw%3D&md5=0e08c453b981679c33387e125e346d3cCAS | 15115731PubMed |

Cooper, T. G. (1998). Interactions between epididymal secretions and spermatozoa. J. Reprod. Fertil. Suppl. 53, 119–136.
| 1:CAS:528:DyaK1MXitVekurY%3D&md5=2ec64ae2dff00e84c68567771cb9c2a7CAS | 10645272PubMed |

Cooper, T. G. (2007). Sperm maturation in the epididymis: a new look at an old problem. Asian J. Androl. 9, 533–539.
Sperm maturation in the epididymis: a new look at an old problem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVSltrc%3D&md5=b6b8b07a3c685f5495856a18eaf98cb1CAS | 17589792PubMed |

Cyr, D. G., and Robaire, B. (1992). Regulation of sulfated glycoprotein-2 (clusterin) messenger ribonucleic acid in the rat epididymis. Endocrinology 130, 2160–2166.
| 1:CAS:528:DyaK38Xit1ynt7Y%3D&md5=4b62a804f1078ec34a4b9708902ae243CAS | 1547732PubMed |

Dirks, A. J., Hofer, T., Marzetti, E., Pahor, M., and Leeuwenburgh, C. (2006). Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Res. Rev. 5, 179–195.
Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslGgurw%3D&md5=4ead7e4c332328f53b993209d3930ee3CAS | 16647308PubMed |

Dyson, A. L., and Orgebin-Crist, M. C. (1973). Effect of hypophysectomy, castration and androgen replacement upon the fertilizing ability of rat epididymal spermatozoa. Endocrinology 93, 391–402.
Effect of hypophysectomy, castration and androgen replacement upon the fertilizing ability of rat epididymal spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhtVGqsQ%3D%3D&md5=7cbe10b74968ea2ad0ac587163db3e1dCAS | 4718882PubMed |

Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516.
Apoptosis: a review of programmed cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlWmtb4%3D&md5=363940c5fac45eddda9641e1dd9d47c8CAS | 17562483PubMed |

Görg, A., Weiss, W., and Dunn, M. J. (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665–3685.
Current two-dimensional electrophoresis technology for proteomics.Crossref | GoogleScholarGoogle Scholar | 15543535PubMed |

Gotham, S. M., Fryer, P. J., and Paterson, W. R. (1988). The measurement of insoluble proteins using a modified Bradford assay. Anal. Biochem. 173, 353–358.
The measurement of insoluble proteins using a modified Bradford assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvVKlt7g%3D&md5=38bb315d14bf6f6a88e82d51a659a3d3CAS | 3189814PubMed |

Grima, J., Zwain, I., Lockshin, R. A., Bardin, C. W., and Cheng, C. Y. (1990). Diverse secretory patterns of clusterin by epididymis and prostate/seminal vesicles undergoing cell regression after orchiectomy. Endocrinology 126, 2989–2997.
Diverse secretory patterns of clusterin by epididymis and prostate/seminal vesicles undergoing cell regression after orchiectomy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksFKht7k%3D&md5=6809c2030493e7a9701533c064efb43eCAS | 2351105PubMed |

Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999). Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730.
| 1:CAS:528:DyaK1MXhsFeqtrc%3D&md5=9e50592b06b3afbf08cdf1ba7d06e0a6CAS | 10022859PubMed |

Hamzeh, M., and Robaire, B. (2010). Identification of early response genes and pathway activated by androgens in the initial segment and caput regions of the regressed rat epididymis. Endocrinology 151, 4504–4514.
Identification of early response genes and pathway activated by androgens in the initial segment and caput regions of the regressed rat epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2qtrvK&md5=b1e4a3a51441a136b1d23bae62586bf5CAS | 20660069PubMed |

Hinton, B. T., Lan, Z. J., Rudolph, D. B., Labus, J. C., and Lye, R. J. (1998). Testicular regulation of epididymal gene expression. J. Reprod. Fertil. Suppl. 53, 47–57.
| 1:CAS:528:DyaK1MXitVekur8%3D&md5=af27ac64867ac6f99fe2f5a002cd16f5CAS | 10645265PubMed |

Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.
Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCkurnI&md5=b7e7568816f0cdaa4dd979e4d66b59c8CAS |

Juang, H. H., Hsieh, M. L., and Tsui, K. H. (2004). Testosterone modulates mitochondrial aconitase in the full-length human androgen receptor-transfected PC-3 prostatic carcinoma cells. J. Mol. Endocrinol. 33, 121–132.
Testosterone modulates mitochondrial aconitase in the full-length human androgen receptor-transfected PC-3 prostatic carcinoma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFOlt7w%3D&md5=964912fb682805cc82e4839c50834c5fCAS | 15291747PubMed |

Kanai, K., Kanamura, S., Watanabe, J., Asada-Kubota, M., and Yoshikawa, M. (1983). Effect of castration and testosterone replacement on high glucose 6-phosphatase activity in principal cells of the mouse epididymis. Anat Rec. 207, 289–295.
Effect of castration and testosterone replacement on high glucose 6-phosphatase activity in principal cells of the mouse epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtVKmsbw%3D&md5=369ff21bef4f7b9bbb49d544291e1b64CAS | 6316810PubMed |

Martins, I., Kepp, O., Galluzzi, L., Senovilla, L., Schlemmer, F., Adjemian, S., Menger, L., Michaud, M., Zitvogel, L., and Kroemer, G. (2010). Surface-exposed calreticulin in the interaction between dying cells and phagocytes. Ann. N. Y. Acad. Sci. 1209, 77–82.
Surface-exposed calreticulin in the interaction between dying cells and phagocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSrtLzI&md5=10e2c0ab3337449aea452f4cd4a17720CAS | 20958319PubMed |

Misra, U. K., Gonzalez-Gronow, M., Gawdi, G., and Pizzo, S. V. (2005). The role of MTJ-1 in cell surface translocation of GRP78, a receptor for alpha 2-macroglobulin-dependent signaling. J. Immunol. 174, 2092–2097.
| 1:CAS:528:DC%2BD2MXhtV2rsLY%3D&md5=9010882eaf8d09af48e019498ea4865cCAS | 15699139PubMed |

Moore, H. D., and Bedford, J. M. (1979). Short-term effects of androgen withdrawal on the structure of different epithelial cells in the rat epididymis. Anat. Rec. 193, 293–311.
Short-term effects of androgen withdrawal on the structure of different epithelial cells in the rat epididymis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M7ktlSmtQ%3D%3D&md5=dfefce3b9e8d4c194658936a8dd62ba5CAS | 426300PubMed |

Obeid, M. (2008). ERP57 membrane translocation dictates the immunogenicity of tumor cell death by controlling the membrane translocation of calreticulin. J. Immunol. 181, 2533–2543.
| 1:CAS:528:DC%2BD1cXptlKqu7o%3D&md5=f083c433110ab44e08284ae1700b0e1cCAS | 18684944PubMed |

Robaire, B., and Hamzeh, M. (2011). Androgen action in the epididymis. J. Androl. 32, 592–599.
Androgen action in the epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCru7zF&md5=04d5093742fe43d72fe80863ee0effc2CAS | 21764895PubMed |

Robaire, B., and Viger, R. S. (1995). Regulation of epididymal epithelial cell functions. Biol. Reprod. 52, 226–236.
Regulation of epididymal epithelial cell functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt12lurs%3D&md5=017822b9f51f6e05d37172d90beeab8fCAS | 7711192PubMed |

Saggerson, E. D. (1974). Lipogenesis in rat and guinea-pig isolated epididymal fat-cells. Biochem. J. 140, 211–224.
| 1:CAS:528:DyaE2cXkvVymurg%3D&md5=0cfd322b0ecc64d926f3079bf6eeb282CAS | 4156167PubMed |

Setchell, B. P., Sanchez-Partida, L. G., and Chairussyuhur, A. (1993). Epididymal constituents and related substances in the storage of spermatozoa: a review. Reprod. Fertil. Dev. 5, 601–612.
Epididymal constituents and related substances in the storage of spermatozoa: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFCluro%3D&md5=e3b14ef018dfd83f4144ec4e0cf93184CAS | 9627723PubMed |

Suryawanshi, A. R., Khan, S. A., Joshi, C. S., and Khole, V. V. (2012). Epididymosome-mediated acquisition of MMSDH, an androgen-dependent and developmentally regulated epididymal sperm protein. J. Androl. 33, 963–974.
Epididymosome-mediated acquisition of MMSDH, an androgen-dependent and developmentally regulated epididymal sperm protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSqt77I&md5=f9b2a88a952dce4cbaf19cd3f1aff626CAS | 22207704PubMed |