Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Selection of pre- versus postpubertal pig oocytes for parthenogenetic activation and somatic cell nuclear transfer

H. S. Pedersen A D , Y. Liu A , R. Li A , S. Purup A , P. Løvendahl B , P. Holm C , P. Hyttel C and H. Callesen A
+ Author Affiliations
- Author Affiliations

A Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark.

B Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark.

C Department of Veterinary Clinical and Animal Science, University of Copenhagen, DK-1870 Frederiksberg C, Denmark.

D Corresponding author. Email: hanne.skovsgaard@agrsci.dk

Reproduction, Fertility and Development 27(3) 544-550 https://doi.org/10.1071/RD13283
Submitted: 2 September 2013  Accepted: 10 January 2014   Published: 24 February 2014

Abstract

Pig oocytes have been used increasingly for in vitro production techniques in recent years. The slaughterhouse-derived oocytes that are often used are mostly of prepubertal origin. The aims of the present study were to compare the developmental competence between pre- and postpubertal pig oocytes, and to develop a simple and practical method for the selection of prepubertal pig oocytes for parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) based on oocyte morphology after IVM and oocyte inside zona pellucida (ZP) diameter (‘small’ ≤110 µm; ‘medium’ >110 µm; ‘large’ ≥120 µm). Meiotic competence and blastocyst rates after PA and SCNT of prepubertal oocytes increased with oocyte size, with the large prepubertal oocytes reaching a level similar to postpubertal oocytes after SCNT. Blastocyst cell number was not related to oocyte inside ZP diameter and oocyte donor to the same extent as blastocyst rate. Very low blastocyst rates were obtained after PA of morphologically bad pre- and postpubertal oocytes. In conclusion, measurement of inside ZP diameter combined with morphological selection is useful to remove incompetent oocytes. Further studies are needed to clarify the relative importance of cytoplasmic volume and stage in oocyte growth phase.

Additional keywords: developmental competence, oocyte diameter, oocyte morphology.


References

Al-Mashhadi, R. H., Sorensen, C. B., Kragh, P. M., Christoffersen, C., Mortensen, M. B., Tolbod, L. P., Thim, T., Du, Y. T., Li, J., Liu, Y., Moldt, B., Schmidt, M., Vajta, G., Larsen, T., Purup, S., Bolund, L., Nielsen, L. B., Callesen, H., Falk, E., Mikkelsen, J. G., and Bentzon, J. F. (2013). Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci. Transl. Med. 5, 166ra1.
Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant.Crossref | GoogleScholarGoogle Scholar | 23283366PubMed |

Bagg, M. A., Vassena, R., Papasso-Brambilla, E., Grupen, C. G., Armstrong, D. T., and Gandolfi, F. (2004). Changes in ovarian, follicular, and oocyte morphology immediately after the onset of puberty are not accompanied by an increase in oocyte developmental competence in the pig. Theriogenology 62, 1003–1011.
Changes in ovarian, follicular, and oocyte morphology immediately after the onset of puberty are not accompanied by an increase in oocyte developmental competence in the pig.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2czos1CrsA%3D%3D&md5=00585a9c7f37c13e8c9bbbe959cb58beCAS | 15289043PubMed |

Bagg, M. A., Nottle, M. B., Armstrong, D. T., and Grupen, C. G. (2007). Relationship between follicle size and oocyte developmental competence in prepubertal and adult pigs. Reprod. Fertil. Dev. 19, 797–803.
Relationship between follicle size and oocyte developmental competence in prepubertal and adult pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWhtrzN&md5=2b788f96fba86cf4ceab3a9a58ddd9afCAS | 17897582PubMed |

Ebner, T., Moser, M., Sommergruber, M., and Tews, G. (2003). Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: a review. Hum. Reprod. Update 9, 251–262.
Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: a review.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3szivFWqsA%3D%3D&md5=e99f1e81504d2a35748f1926f0655dacCAS | 12859046PubMed |

Fair, T., Hulshof, S. C. J., Hyttel, P., Greve, T., and Boland, M. (1997). Oocyte ultrastructure in bovine primordial to early tertiary follicles. Anat. Embryol. 195, 327–336.
Oocyte ultrastructure in bovine primordial to early tertiary follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3mtFOrtg%3D%3D&md5=aa13b101791b48d8151b54b781836c6eCAS | 9108198PubMed |

Grupen, C. G., McIlfatrick, S. M., Ashman, R. J., Boquest, A. C., Armstrong, D. T., and Nottle, M. B. (2003). Relationship between donor animal age, follicular fluid steroid content and oocyte developmental competence in the pig. Reprod. Fertil. Dev. 15, 81–87.
Relationship between donor animal age, follicular fluid steroid content and oocyte developmental competence in the pig.Crossref | GoogleScholarGoogle Scholar | 12895404PubMed |

Gupta, M. K., Uhm, S. J., and Lee, H. T. (2008). Sexual maturity and reproductive phase of oocyte donor influence the developmental ability and apoptosis of cloned and parthenogenetic porcine embryos. Anim. Reprod. Sci. 108, 107–121.
Sexual maturity and reproductive phase of oocyte donor influence the developmental ability and apoptosis of cloned and parthenogenetic porcine embryos.Crossref | GoogleScholarGoogle Scholar | 17869033PubMed |

Hiraga, K., Hoshino, Y., Tanemura, K., and Sato, E. (2013). Selection of in vitro-matured porcine oocytes based on localization patterns of lipid droplets to evaluate developmental competence. J. Reprod. Dev. 59, 405–408.
Selection of in vitro-matured porcine oocytes based on localization patterns of lipid droplets to evaluate developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1SitrbF&md5=d62514e291898ceb28bf5b3eb5b9a82cCAS | 23594924PubMed |

Hunter, M. G. (2000). Oocyte maturation and ovum quality in pigs. Rev. Reprod. 5, 122–130.
Oocyte maturation and ovum quality in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsleiu7k%3D&md5=949b173fb745a6b5c3108b852815cb03CAS | 10864857PubMed |

Hyttel, P., Xu, K. P., Smith, S., and Greve, T. (1986). Ultrastructure of in-vitro oocyte maturation in cattle. J. Reprod. Fertil. 78, 615–625.
Ultrastructure of in-vitro oocyte maturation in cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s7ht1equg%3D%3D&md5=9fdb4142278b2841aaed1902f2bf4d63CAS | 3806520PubMed |

Ikeda, K., and Takahashi, Y. (2003). Comparison of maturational and developmental parameters of oocytes recovered from prepubertal and adult pigs. Reprod. Fertil. Dev. 15, 215–221.
Comparison of maturational and developmental parameters of oocytes recovered from prepubertal and adult pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntV2msLc%3D&md5=e46238f2d7502ac208d1a147a928f16bCAS | 12921696PubMed |

Jakobsen, J. E., Li, J., Kragh, P. M., Moldt, B., Lin, L., Liu, Y., Schmidt, M., Winther, K. D., Schyth, B. D., Holm, I. E., Vajta, G., Bolund, L., Callesen, H., Jorgensen, A. L., Nielsen, A. L., and Mikkelsen, J. G. (2011). Pig transgenesis by Sleeping Beauty DNA transposition. Transgenic Res. 20, 533–545.
Pig transgenesis by Sleeping Beauty DNA transposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslKhsbc%3D&md5=dc9de636e8844fa24117a3cd5a5cc731CAS | 20803249PubMed |

Kanayama, N., Miyano, T., and Lee, J. (2002). Acquisition of meiotic competence in growing pig oocytes correlates with their ability to activate Cdc2 kinase and MAP kinase. Zygote 10, 261–270.
Acquisition of meiotic competence in growing pig oocytes correlates with their ability to activate Cdc2 kinase and MAP kinase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFGlsrs%3D&md5=b468566d906edda436afa491605ce8ccCAS | 12214808PubMed |

Kim, J., You, J., Hyun, S. H., Lee, G., Lim, J., and Lee, E. (2010). Developmental competence of morphologically poor oocytes in relation to follicular size and oocyte diameter in the pig. Mol. Reprod. Dev. 77, 330–339.
| 1:CAS:528:DC%2BC3cXisFemtrY%3D&md5=f7e0cdd818a5439f3ce98002edec7dffCAS | 20029826PubMed |

Kragh, P. M., Vajta, G., Corydon, T. J., Purup, S., Bolund, L., and Callesen, H. (2004). Production of transgenic porcine blastocysts by hand-made cloning. Reprod. Fertil. Dev. 16, 315–318.
Production of transgenic porcine blastocysts by hand-made cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Gntrs%3D&md5=ff528618332015350b2c89fe002f6396CAS | 15304204PubMed |

Li, J., Svarcova, O., Villemoes, K., Kragh, P. M., Schmidt, M., Bogh, I. B., Zhang, Y., Du, Y., Lin, L., Purup, S., Xue, Q., Bolund, L., Yang, H., Maddox-Hyttel, P., and Vajta, G. (2008). High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos. Theriogenology 70, 800–808.
High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVamt7%2FE&md5=388a03fefceb70ff3c19f7fe06a9b6acCAS | 18573521PubMed |

Li, J., Pedersen, H. S., Li, R., Adamsen, J., Liu, Y., Schmidt, M., Purup, S., and Callesen, H. (2013). Developmental potential of pig embryos reconstructed by use of sow versus pre-pubertal gilt oocytes after somatic cell nuclear transfer. Zygote 18, 1–10.
Developmental potential of pig embryos reconstructed by use of sow versus pre-pubertal gilt oocytes after somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar |

Liu, Y., Ostrup, O., Li, J., Vajta, G., Kragh, P. M., Purup, S., and Callesen, H. (2011). Cell colony formation induced by Xenopus egg extract as a marker for improvement of cloned blastocyst formation in the pig. Cell. Reprogram. 13, 521–526.
| 1:CAS:528:DC%2BC3MXhs1yktL3I&md5=1438b5c316afadd1e1c7c98e9c03bd2fCAS | 22043808PubMed |

Lucas, X., Martinez, E. A., Roca, J., Vazquez, J. M., Gil, M. A., Pastor, L. M., and Alabart, J. L. (2002). Relationship between antral follicle size, oocyte diameters and nuclear maturation of immature oocytes in pigs. Theriogenology 58, 871–885.
Relationship between antral follicle size, oocyte diameters and nuclear maturation of immature oocytes in pigs.Crossref | GoogleScholarGoogle Scholar |

Luo, Y., Li, J., Liu, Y., Lin, L., Du, Y., Li, S., Yang, H., Vajta, G., Callesen, H., Bolund, L., and Sørensen, C. (2011). High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res. 20, 975–988.
High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKrt7%2FL&md5=1c3fe6319836c2a5c4d8620e8578442aCAS | 21181439PubMed |

Marchal, R., Feugang, J. M., Perreau, C., Venturi, E., Terqui, M., and Mermillod, P. (2001). Meiotic and developmental competence of prepubertal and adult swine oocytes. Theriogenology 56, 17–29.
Meiotic and developmental competence of prepubertal and adult swine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslaktro%3D&md5=7f31dd269e66bb17c9581f0a129e53aaCAS | 11467513PubMed |

Marchal, R., Vigneron, C., Perreau, C., Bali-Papp, A., and Mermillod, P. (2002). Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology 57, 1523–1532.
Effect of follicular size on meiotic and developmental competence of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zhtFykug%3D%3D&md5=f85cf371ecb0b233e6b7a5763e279715CAS | 12054210PubMed |

Mikkelsen, A. L., and Lindenberg, S. (2001). Morphology of in-vitro matured oocytes: impact on fertility potential and embryo quality. Hum. Reprod. 16, 1714–1718.
Morphology of in-vitro matured oocytes: impact on fertility potential and embryo quality.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvnsFyguw%3D%3D&md5=a480c0d0547eb76be41a73a0851b91f2CAS | 11473970PubMed |

Motlik, J., Crozet, N., and Fulka, J. (1984). Meiotic competence in vitro of pig oocytes isolated from early antral follicles. J. Reprod. Fertil. 72, 323–328.
Meiotic competence in vitro of pig oocytes isolated from early antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M%2Fot1yitg%3D%3D&md5=e737cfc49619330190dcd1c34a127df0CAS | 6392543PubMed |

O’Brien, J. K., Dwarte, D., Ryan, J. P., Maxwell, W. M. C., and Evans, G. (2000). Comparison of in vitro maturation, in vitro fertilization, metabolism and ultrastructure of oocytes from prepubertal and adult pigs. Reprod. Domest. Anim. 35, 101–107.

Pedersen, H. S., Li, R., Liu, Y., Løvendahl, P., Holm, P., Hyttel, P., and Callesen, H. (2013). Development capacity of pre- and postpubertal pig oocytes evaluated by somatic cell nuclear transfer and parthenogenetic activation. Reprod. Fertil. Dev. 25, 241–242.
Development capacity of pre- and postpubertal pig oocytes evaluated by somatic cell nuclear transfer and parthenogenetic activation.Crossref | GoogleScholarGoogle Scholar |

Peura, T. T., Lewis, I. M., and Trounson, A. O. (1998). The effect of recipient oocyte volume on nuclear transfer in cattle. Mol. Reprod. Dev. 50, 185–191.
The effect of recipient oocyte volume on nuclear transfer in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislWksL0%3D&md5=a9e9d5ea0457252badb3aa208dab0822CAS | 9590535PubMed |

Rath, D., Freitag, K., Niemann, H., and Sieg, B. (1998). Continuous control of porcine embryo development in vitro. Theriogenology 49, 215.
Continuous control of porcine embryo development in vitro.Crossref | GoogleScholarGoogle Scholar |

Schmidt, M., Winter, K. D., Dantzer, V., Li, J., Kragh, P. M., Du, Y., Lin, L., Liu, Y., Vajta, G., Sangild, P. T., Callesen, H., and Agerholm, J. S. (2011). Maternal endometrial oedema may increase perinatal mortality of cloned and transgenic piglets. Reprod. Fertil. Dev. 23, 645–653.
Maternal endometrial oedema may increase perinatal mortality of cloned and transgenic piglets.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MrntFeruw%3D%3D&md5=ef40c9c1c5e718e32c62e307df8608e3CAS | 21635813PubMed |

Sherrer, E. S., Rathbun, T. J., and Davis, D. L. (2004). Fertilization and blastocyst development in oocytes obtained from prepubertal and adult pigs. J. Anim. Sci. 82, 102–108.
| 1:CAS:528:DC%2BD2cXlsFWkuw%3D%3D&md5=e7cb073ed7bedd11dd1d0b4fbde79639CAS | 14753353PubMed |

Sun, Q. Y., Wu, G. M., Lai, L., Park, K. W., Cabot, R., Cheong, H. T., Day, B. N., Prather, R. S., and Schatten, H. (2001). Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction 122, 155–163.
Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVGis7g%3D&md5=f53b1a86b5042ba936eb70f04c388dd1CAS | 11425340PubMed |

Vajta, G., Peura, T. T., Holm, P., Páldi, A., Greve, T., Trounson, A. O., and Callesen, H. (2000). New method for culture of zona-included or zona-free embryos: The well of the well (WOW) system. Mol. Reprod. Dev. 55, 256–264.
New method for culture of zona-included or zona-free embryos: The well of the well (WOW) system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFelsbY%3D&md5=acb12d12abe4f98d768094ae49452444CAS | 10657044PubMed |

Vajta, G., Lewis, I. M., Trounson, A. O., Purup, S., Maddox-Hyttel, P., Schmidt, M., Pedersen, H. G., Greve, T., and Callesen, H. (2003). Handmade somatic cell cloning in cattle: analysis of factors contributing to high efficiency in vitro. Biol. Reprod. 68, 571–578.
Handmade somatic cell cloning in cattle: analysis of factors contributing to high efficiency in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVChsw%3D%3D&md5=0517e9a4bf8a3dd9a44f7276a42d2a37CAS | 12533421PubMed |

Westhusin, M. E., Collas, P., Marek, D., Sullivan, E., Stepp, P., Pryor, J., and Barnes, F. (1996). Reducing the amount of cytoplasm available for early embryonic development decreases the quality but not quantity of embryos produced by in vitro fertilization and nuclear transplantation. Theriogenology 46, 243–252.
Reducing the amount of cytoplasm available for early embryonic development decreases the quality but not quantity of embryos produced by in vitro fertilization and nuclear transplantation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVKmsg%3D%3D&md5=ae5e9552d786bf971b9b32ec2fcc2a74CAS | 16727894PubMed |

Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M. K., and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
Birth of piglets derived from porcine zygotes cultured in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1yksQ%3D%3D&md5=62cc057dabae319dcd3d5d413bf001b2CAS | 11751272PubMed |

Zakhartchenko, V., Stojkovic, M., Brem, G., and Wolf, E. (1997). Karyoplast–cytoplast volume ratio in bovine nuclear transfer embryos: effect on developmental potential. Mol. Reprod. Dev. 48, 332–338.
Karyoplast–cytoplast volume ratio in bovine nuclear transfer embryos: effect on developmental potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsVCrsLs%3D&md5=27b27bcfe009f273b0f8b71c0aad086cCAS | 9322244PubMed |