Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

LAPS-FSH: a new and effective long-acting follicle-stimulating hormone analogue for the treatment of infertility

Sunyoung Jung A B D , Youngjin Park C D , YoungHoon Kim C , Yu Yon Kim C , Hyun-Ji Choi A B , Woo-Chan Son A B E and SeChang Kwon C E
+ Author Affiliations
- Author Affiliations

A Department of Pathology, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea.

B Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea.

C Hanmi Research Center, Hwaseong-si, Gyeonggi-do, 445-813, Korea.

D The authors consider that the first two authors should be regarded as joint first authors.

E Corresponding authors. Emails: ksc3397@hanmi.co.kr; wcson32@hanmail.net

Reproduction, Fertility and Development 26(8) 1142-1153 https://doi.org/10.1071/RD13118
Submitted: 13 April 2013  Accepted: 15 August 2013   Published: 18 September 2013

Abstract

Although several long-acting follicle-stimulating hormone (FSH) therapies have been developed to enhance the ovarian response, a disadvantage of FSH therapy is its relatively short half-life, which requires women to receive one to two injections per day for almost 2 weeks. In the present study, we developed a novel FSH analogue by conjugating recombinant human FSH (rhFSH) and the constant region of the human immunoglobulin G4 fragment via non-peptidyl linkers. The efficacy of the FSH analogue was evaluated in vitro by cAMP level assessments, pharmacokinetic studies and a determination of ovarian weight and by comparing these findings with the results from other FSH analogues. In addition, the total number of antral and Graafian follicles was determined after 7 days of treatment with control, 6 µg kg–1 follitropin β, 6, 12 or 42 µg kg–1 corifollitropin α or 3, 6 or 12 µg kg–1 long acting protein/peptide discovery-follicle-stimulating hormone (LAPS-FSH). As a result, the animals treated with 12 µg kg–1 LAPS-FSH produced additional and larger healthy follicles. These data demonstrate that LAPS-FSH promotes growth and inhibits atresia of the ovarian follicle compared with other available drugs, suggesting that our new drug enhances the efficacy and duration of treatment. It is expected that our new FSH analogue will result in a higher chance of pregnancy in patients who are unresponsive to other drugs.

Additional keywords: fertility drug, Graafian follicles, immunoglobulins, ovulation, pregnancy.


References

Avecillas, J. F., Falcone, T., and Arroliga, A. C. (2004). Ovarian hyperstimulation syndrome. Crit. Care Clin. 20, 679–695.
Ovarian hyperstimulation syndrome.Crossref | GoogleScholarGoogle Scholar | 15388196PubMed |

Baenziger, J. U., and Green, E. D. (1988). Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochim. Biophys. Acta 947, 287–306.
Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFOisrc%3D&md5=679b71c09d23ca03e900d1e5c47b7f7fCAS | 3130893PubMed |

Barbieri, R. L., and Hornstein, M. D. (1999). Assisted reproduction – in vitro fertilization success is improved by ovarian stimulation with exogenous gonadotrophins and pituitary suppression with gonadotrophin-releasing hormone analogues. Endocr. Rev. 20, 249–252.
Assisted reproduction – in vitro fertilization success is improved by ovarian stimulation with exogenous gonadotrophins and pituitary suppression with gonadotrophin-releasing hormone analogues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktVaqtL8%3D&md5=6a1152988ccd7ae8262034aeee440e41CAS | 10368770PubMed |

Beck, A., Wurch, T., and Corvaia, N. (2008). Therapeutic antibodies and derivatives: from the bench to the clinic. Curr. Pharm. Biotechnol. 9, 421–422.
Therapeutic antibodies and derivatives: from the bench to the clinic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSitr3I&md5=c8e597acddb93140a229af8e11eb7878CAS | 19075681PubMed |

Beck, A., Wurch, T., Bailly, C., and Corvaia, N. (2010). Strategies and challenges for the next generation of therapeutic antibodies. Nat. Rev. Immunol. 10, 345–352.
Strategies and challenges for the next generation of therapeutic antibodies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltV2ksb8%3D&md5=73659ddea3a5f26c1734608186c4e829CAS | 20414207PubMed |

Bouloux, P. M., Handelsman, D. J., Jockenhovel, F., Nieschlag, E., Rabinovici, J., Frasa, W. L., de Bie, J. J., Voortman, G., and Itskovitz-Eldor, J. (2001). First human exposure to FSH-CTP in hypogonadotrophic hypogonadal males. Hum. Reprod. 16, 1592–1597.
First human exposure to FSH-CTP in hypogonadotrophic hypogonadal males.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslWlsrk%3D&md5=03034a0ffe0f36f36c0c7c67d04475cfCAS | 11473948PubMed |

Britt, K. L., Drummond, A. E., Cox, V. A., Dyson, M., Wreford, N. G., Jones, M. E., Simpson, E. R., and Findlay, J. K. (2000). An age-related ovarian phenotype in mice with targeted disruption of the Cyp 19 (aromatase) gene. Endocrinology 141, 2614–2623.
An age-related ovarian phenotype in mice with targeted disruption of the Cyp 19 (aromatase) gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1WmurY%3D&md5=de490508d5c4a377a89bd44b3155a57aCAS | 10875266PubMed |

Budev, M. M., Arroliga, A. C., and Falcone, T. (2005). Ovarian hyperstimulation syndrome. Crit. Care Med. 33, S301–S306.
Ovarian hyperstimulation syndrome.Crossref | GoogleScholarGoogle Scholar | 16215351PubMed |

Canfield, S. M., and Morrison, S. L. (1991). The binding affinity of human IgG for its high-affinity Fc receptor is determined by multiple amino acids in the CH2 domain and is modulated by the hinge region. J. Exp. Med. 173, 1483–1491.
The binding affinity of human IgG for its high-affinity Fc receptor is determined by multiple amino acids in the CH2 domain and is modulated by the hinge region.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3jslaqtg%3D%3D&md5=9a3fde6959ba8d718ba5ed9083f12695CAS | 1827828PubMed |

Cheng, G., Weihua, Z., Makinen, S., Makela, S., Saji, S., Warner, M., Gustafsson, J. A., and Hovatta, O. (2002). A role for the androgen receptor in follicular atresia of oestrogen receptor beta knockout mouse ovary. Biol. Reprod. 66, 77–84.
A role for the androgen receptor in follicular atresia of oestrogen receptor beta knockout mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1ylug%3D%3D&md5=4afc24122c3345f32854e46f55aab425CAS | 11751267PubMed |

Christin-Maitre, S., Vasseur, C., Fauser, B., and Bouchard, P. (2000). Bioassays of gonadotrophins. Methods 21, 51–57.
Bioassays of gonadotrophins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVGitrk%3D&md5=ad76eedf9d8acb8b61d21342531929a1CAS | 10764606PubMed |

Clément, F., Monniaux, D., Stark, J., Hardy, K., Thalabard, J. C., Franks, S., and Claude, D. (2001). Mathematical model of FSH-induced cAMP production in ovarian follicles. Am. J. Physiol. Endocrinol. Metab. 281, E35–E53.
| 11404221PubMed |

Dumont, J. A., Low, S. C., Peters, R. T., and Bitonti, A. J. (2006). Monomeric Fc fusions: impact on pharmacokinetic and biological activity of protein therapeutics. BioDrugs 20, 151–160.
Monomeric Fc fusions: impact on pharmacokinetic and biological activity of protein therapeutics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2rtrvM&md5=dffd3dc4247a4b2e180b4648ac36e26bCAS | 16724863PubMed |

Durlinger, A. L., Kramer, P., Karels, B., de Jong, F. H., Uilenbroek, J. T., Grootegoed, J. A., and Themmen, A. P. (1999). Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology 140, 5789–5796.
Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns12htLc%3D&md5=e7e5c0a24a837ff5044cca7be0472e45CAS | 10579345PubMed |

Enskog, A., Henriksson, M., Unander, M., Nilsson, L., and Brannstrom, M. (1999). Prospective study of the clinical and laboratory parameters of patients in whom ovarian hyperstimulation syndrome developed during controlled ovarian hyperstimulation for in vitro fertilisation. Fertil. Steril. 71, 808–814.
Prospective study of the clinical and laboratory parameters of patients in whom ovarian hyperstimulation syndrome developed during controlled ovarian hyperstimulation for in vitro fertilisation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3ks1Slug%3D%3D&md5=fec854e68b9f6cf330e56e4407cfb68fCAS | 10231037PubMed |

Fares, F. A., Suganuma, N., Nishimori, K., LaPolt, P. S., Hsueh, A. J., and Boime, I. (1992). Design of a long-acting follitropin agonist by fusing the C-terminal sequence of the chorionic gonadotrophin beta subunit to the follitropin beta subunit. Proc. Natl. Acad. Sci. USA 89, 4304–4308.
Design of a long-acting follitropin agonist by fusing the C-terminal sequence of the chorionic gonadotrophin beta subunit to the follitropin beta subunit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktVWgtLY%3D&md5=80785be8187c1fa89b9eae54d3cb11ffCAS | 1374895PubMed |

Fauser, B. C., Mannaerts, B. M., Devroey, P., Leader, A., Boime, I., and Baird, D. T. (2009). Advances in recombinant DNA technology: corifollitropin alfa, a hybrid molecule with sustained follicle-stimulating activity and reduced injection frequency. Hum. Reprod. Update 15, 309–321.
Advances in recombinant DNA technology: corifollitropin alfa, a hybrid molecule with sustained follicle-stimulating activity and reduced injection frequency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSqtb4%3D&md5=3371782b17ca7456dbcc01bceefd2131CAS | 19182099PubMed |

Filicori, M., Cognigni, G. E., Taraborrelli, S., Spettoli, D., Ciampaglia, W., Tabarelli De Fatis, C., Pocognoli, P., Cantelli, B., and Boschi, S. (2001). Luteinising hormone activity in menotropins optimises folliculogenesis and treatment in controlled ovarian stimulation. J. Clin. Endocrinol. Metab. 86, 337–343.
Luteinising hormone activity in menotropins optimises folliculogenesis and treatment in controlled ovarian stimulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtVGntrw%3D&md5=baf780c742d66a00ea28f9092a7b4664CAS | 11232021PubMed |

Garcia-Velasco, J. A., and Pellicer, A. (2003). New concepts in the understanding of the ovarian hyperstimulation syndrome. Curr. Opin. Obstet. Gynecol. 15, 251–256.
New concepts in the understanding of the ovarian hyperstimulation syndrome.Crossref | GoogleScholarGoogle Scholar | 12858114PubMed |

Hsueh, A. J. W., Adashi, E. Y., Jones, P. B. C., and Welsh, T. H. (1984). Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr. Rev. 5, 76–127.
Hormonal regulation of the differentiation of cultured ovarian granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvVGrtrc%3D&md5=2e07b444eeba8bb0e9ca9c0ef097eafdCAS |

Jacobs, M. M. (1978). Studies on ovarian and uterine weight responses to follicle-stimulating hormone. Tex. Rep. Biol. Med. 36, 121–132.
| 1:CAS:528:DyaE1MXhs1yjtw%3D%3D&md5=bd4033f6d04ea0534c7062a063328158CAS | 725785PubMed |

Jefferis, R. (2009a). Glycosylation as a strategy to improve antibody-based therapeutics. Nat. Rev. Drug Discov. 8, 226–234.
Glycosylation as a strategy to improve antibody-based therapeutics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVShtb0%3D&md5=2b8c626ecc570535833594f03b7efc13CAS | 19247305PubMed |

Jefferis, R. (2009b). Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol. Sci. 30, 356–362.
Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFClsro%3D&md5=f340fcef36178ff69d3da36074e8b36cCAS | 19552968PubMed |

Jiang, X. R., Song, A., Bergelson, S., Arroll, T., Parekh, B., May, K., Chung, S., Strouse, R., Mire-Sluis, A., and Schenerman, M. (2011). Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat. Rev. Drug Discov. 10, 101–111.
Advances in the assessment and control of the effector functions of therapeutic antibodies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlelu70%3D&md5=873621b0242716696771a6f7677ced91CAS | 21283105PubMed |

Klein, J., Lobel, L., Pollak, S., Lustbader, B., Ogden, R. T., Sauer, M. V., and Lustbader, J. W. (2003). Development and characterisation of a long-acting recombinant hFSH agonist. Hum. Reprod. 18, 50–56.
Development and characterisation of a long-acting recombinant hFSH agonist.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Ghsw%3D%3D&md5=676860971568094f73838f29af22dd2aCAS | 12525440PubMed |

Lo, K. M., Sudo, Y., Chen, J., Li, Y., Lan, Y., Kong, S. M., Chen, L., An, Q., and Gillies, S. D. (1998). High-level expression and secretion of Fc-X fusion proteins in mammalian cells. Protein Eng. 11, 495–500.
High-level expression and secretion of Fc-X fusion proteins in mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVaitr8%3D&md5=86917626a14373572fbc29cb947c742eCAS | 9725629PubMed |

Loutradis, D., Drakakis, P., Vlismas, A., and Antsaklis, A. (2009). Corifollitropin alfa, a long-acting follicle-stimulating hormone agonist for the treatment of infertility. Curr. Opin. Investig. Drugs 10, 372–380.
| 1:CAS:528:DC%2BC3cXnt1Kiurc%3D&md5=3569d6d61a71c04dbbb1c0cde8618283CAS | 19337959PubMed |

Low, S. C., Nunes, S. L., Bitonti, A. J., and Dumont, J. A. (2005). Oral and pulmonary delivery of FSH-Fc fusion proteins via neonatal Fc receptor-mediated transcytosis. Hum. Reprod. 20, 1805–1813.
Oral and pulmonary delivery of FSH-Fc fusion proteins via neonatal Fc receptor-mediated transcytosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2lu78%3D&md5=eaf638c37965070482978a66aeaee5beCAS | 15817590PubMed |

Mannaerts, B., Uilenbroek, J., Schot, P., and De Leeuw, R. (1994). Folliculogenesis in hypophysectomised rats after treatment with recombinant human follicle-stimulating hormone. Biol. Reprod. 51, 72–81.
Folliculogenesis in hypophysectomised rats after treatment with recombinant human follicle-stimulating hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkt1Ogt7w%3D&md5=28c9a896f81146d816f01cd84074dc43CAS | 7918877PubMed |

Matzuk, M. M., Hsueh, A. J., Lapolt, P., Tsafriri, A., Keene, J. L., and Boime, I. (1990). The biological role of the carboxyl-terminal extension of human chorionic gonadotrophin [corrected] beta-subunit. Endocrinology 126, 376–383.
The biological role of the carboxyl-terminal extension of human chorionic gonadotrophin [corrected] beta-subunit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXptF2htg%3D%3D&md5=d07b0d13db0b0b2616c860bef478d99eCAS | 2293995PubMed |

Meachem, S. J., McLachlan, R. I., de Kretser, D. M., Robertson, D. M., and Wreford, N. G. (1996). Neonatal exposure of rats to recombinant follicle stimulating hormone increases adult Sertoli and spermatogenic cell numbers. Biol. Reprod. 54, 36–44.
Neonatal exposure of rats to recombinant follicle stimulating hormone increases adult Sertoli and spermatogenic cell numbers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSisLrP&md5=578e9326ae2980d190589f568cdfff8dCAS | 8837998PubMed |

Minegishi, T., Tano, M., Shinozaki, H., Nakamura, K., Abe, Y., Ibuki, Y., and Miyamoto, K. (1997). Dual coupling and down-regulation of human FSH receptor in CHO cells. Life Sci. 60, 2043–2050.
Dual coupling and down-regulation of human FSH receptor in CHO cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVClsrk%3D&md5=cbcd9c7e81ee9e964f83511c80e38206CAS | 9180358PubMed |

Okuma, Y., Saito, K., O’Connor, A. E., Phillips, D. J., de Kretser, D. M., and Hedger, M. P. (2005). Reciprocal regulation of activin A and inhibin B by interleukin-1 (IL-1) and follicle-stimulating hormone (FSH) in rat Sertoli cells in vitro. J. Endocrinol. 185, 99–110.
Reciprocal regulation of activin A and inhibin B by interleukin-1 (IL-1) and follicle-stimulating hormone (FSH) in rat Sertoli cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslGgsL4%3D&md5=16585a429553e08ca763a06a1fd08981CAS | 15817831PubMed |

Osman, P. (1985). Rate and course of atresia during follicular development in the adult cyclic rat. J. Reprod. Fertil. 73, 261–270.
Rate and course of atresia during follicular development in the adult cyclic rat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M7gslyitQ%3D%3D&md5=e74d45b963bf1cbfa2c31369e2465da0CAS | 4038517PubMed |

Rannikko, A., Pakarinen, P., Manna, P. R., Beau, I., Misrahi, M., Aittomaki, K., and Huhtaniemi, I. (2002). Functional characterisation of the human FSH receptor with an inactivating Ala189Val mutation. Mol. Hum. Reprod. 8, 311–317.
Functional characterisation of the human FSH receptor with an inactivating Ala189Val mutation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlCju7w%3D&md5=bd81ca0dabd9dfd47a4793ad73b471d9CAS | 11912278PubMed |

Reichert, J. M. (2010). Antibodies to watch in 2010. MAbs 2, 84–100.
Antibodies to watch in 2010.Crossref | GoogleScholarGoogle Scholar | 20065640PubMed |

Sekino, T. (1975). [Scanning and transmission electron microscopic studies on the retinal vessels of spontaneously hypertensive rats (SHR) (author’s transl)]. Nippon Ganka Gakkai Zasshi 79, 887–903.
| 1:STN:280:DyaE287lslOltg%3D%3D&md5=2892bb26c02b8f548272968548d6c85fCAS | 1241248PubMed |

Steelman, S. L., and Pohley, F. M. (1953). Assay of the follicle-stimulating hormone based on the augmentation with human chorionic gonadotrophin. Endocrinology 53, 604–616.
Assay of the follicle-stimulating hormone based on the augmentation with human chorionic gonadotrophin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXnvVKktw%3D%3D&md5=0a8f4227aa2a614a95968791d07377e1CAS | 13116950PubMed |

Sugahara, T., Sato, A., Kudo, M., Ben-Menahem, D., Pixley, M. R., Hsueh, A. J., and Boime, I. (1996). Expression of biologically active fusion genes encoding the common alpha subunit and the follicle-stimulating hormone beta subunit. Role of a linker sequence. J. Biol. Chem. 271, 10 445–10 448.
Expression of biologically active fusion genes encoding the common alpha subunit and the follicle-stimulating hormone beta subunit. Role of a linker sequence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivVaqsLw%3D&md5=ecd5e1f710277752cac4252254717ea8CAS |

Weenen, C., Pena, J. E., Pollak, S. V., Klein, J., Lobel, L., Trousdale, R. K., Palmer, S., Lustbader, E. G., Ogden, R. T., and Lustbader, J. W. (2004). Long-acting follicle-stimulating hormone analogues containing n-linked glycosylation exhibited increased bioactivity compared with o-linked analogues in female rats. J. Clin. Endocrinol. Metab. 89, 5204–5212.
Long-acting follicle-stimulating hormone analogues containing n-linked glycosylation exhibited increased bioactivity compared with o-linked analogues in female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVemtrw%3D&md5=b1c13953c38155801af24298bae935e3CAS | 15472227PubMed |

Ying, S. Y., Czvik, J., Becker, A., Ling, N., Ueno, N., and Guillemin, R. (1987). Secretion of follicle-stimulating hormone and production of inhibin are reciprocally related. Proc. Natl. Acad. Sci. USA 84, 4631–4635.
Secretion of follicle-stimulating hormone and production of inhibin are reciprocally related.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksFagsbc%3D&md5=8a4d6a079f3ed94cdc6a9cbba5ca4014CAS | 3110772PubMed |

Young, B. (2006). Female reproductive system. In ‘Wheater’s Functional Histology: A Text and Colour Atlas’. pp. 359–391. (Churchill Livingstone/Elsevier: Philadelphia.)

Zheng, X. X., Steele, A. W., Nickerson, P. W., Steurer, W., Steiger, J., and Strom, T. B. (1995). Administration of noncytolytic IL-10/Fc in murine models of lipopolysaccharide-induced septic shock and allogeneic islet transplantation. J. Immunol. 154, 5590–5600.
| 1:CAS:528:DyaK2MXlsVyku70%3D&md5=b044e0eb705ad6335c730339106d8f93CAS | 7730658PubMed |