Quantitative analysis of sperm mRNA in the pig: relationship with early embryo development and capacitation
Jae Yeon Hwang A , Brendan P. Mulligan A , Hyung-Min Kim A , Byoung-Chul Yang B and Chang-Kyu Lee A CA Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Science, Seoul National University, Seoul 151-921, Korea.
B National Institute of Animal Science, Rural Department Administration, Suwon 441-706, Korea.
C Corresponding author. Email: leeck@snu.ac.kr
Reproduction, Fertility and Development 25(5) 807-817 https://doi.org/10.1071/RD12160
Submitted: 23 May 2012 Accepted: 5 July 2012 Published: 20 August 2012
Abstract
Although it is well known that mRNA is present in mammalian spermatozoa, the relevance of mRNA to capacitation and early embryo development in the pig remains unclear. In the present study, we investigated differences in the abundance of selected mRNAs coding for MYC, CYP19, ADAM2, PRM1 and PRM2 in purified porcine spermatozoa depending on embryo cleavage rate and capacitation (n = 20 semen samples). Semen samples were used in IVF procedures, with subsequent embryo development classified into one of two groups based on cleavage rate (i.e. high (>75%) and low (<75%) cleavage groups) and mRNA abundance in purified spermatozoa compared between these two groups. In addition, mRNA abundance was compared between capacitated and non-capacitated spermatozoa. Comparison of mRNA levels between porcine spermatozoa revealed that the abundance of MYC, CYP19, ADAM2, PRM1 and PRM2 mRNA was significantly greater in the high cleavage group (n = 10 high cleavage group semen samples) than in the low cleavage group (n = 10; P < 0.05). Significant downregulation of MYC mRNA was observed in capacitated spermatozoa (n = 12; P < 0.05). The results of the present study suggest that the amount of specific mRNAs could be used for estimating the quality of spermatozoa in the pig.
Additional keywords: IVF, RNA, spermatozoa.
References
Aoki, V. W., Liu, L., Jones, K. P., Hatasaka, H. H., Gibson, M., Peterson, C. M., and Carrell, D. T. (2006). Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil. Steril. 86, 1408–1415.| Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWnurnL&md5=28d20e80d4e456b5f59032e95f8882f6CAS | 17011555PubMed |
Aquila, S., Sisci, D., Gentile, M., Middea, E., Siciliano, L., and Ando, S. (2002). Human ejaculated spermatozoa contain active P450 aromatase. J. Clin. Endocrinol. Metab. 87, 3385–3390.
| Human ejaculated spermatozoa contain active P450 aromatase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVGju7g%3D&md5=6763fa8ed64338ab307bc2ca5ba782f5CAS | 12107254PubMed |
Bissonnette, N., Levesque-Sergerie, J. P., Thibault, C., and Boissonneault, G. (2009). Spermatozoal transcriptome profiling for bull sperm motility: a potential tool to evaluate semen quality. Reproduction 138, 65–80.
| Spermatozoal transcriptome profiling for bull sperm motility: a potential tool to evaluate semen quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFemsb0%3D&md5=d40a30050c60b40926762b3d652f5416CAS | 19423662PubMed |
Boerke, A., Dieleman, S. J., and Gadella, B. M. (2007). A possible role for sperm RNA in early embryo development. Theriogenology 68, S147–S155.
| A possible role for sperm RNA in early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitLc%3D&md5=ce2c0db397c4d85586ef9b5c64fc0521CAS | 17583784PubMed |
Braun, R. E. (2001). Packaging paternal chromosomes with protamine. Nat. Genet. 28, 10–12.
| Packaging paternal chromosomes with protamine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt1Wquro%3D&md5=afd294d92f0ba451ef0f5655240df684CAS | 11326265PubMed |
Brewer, G., and Ross, J. (1988). Poly(A) shortening and degradation of the 3′ A+U-rich sequences of human c-myc mRNA in a cell-free system. Mol. Cell. Biol. 8, 1697–1708.
| 1:CAS:528:DyaL1cXhvF2htbY%3D&md5=7a2faa24d41b3deaad0c7321c1040bdeCAS | 3380094PubMed |
Bronson, R. A., Fusi, F. M., Calzi, F., Doldi, N., and Ferrari, A. (1999). Evidence that a functional fertilin-like ADAM plays a role in human sperm–oolemmal interactions. Mol. Hum. Reprod. 5, 433–440.
| Evidence that a functional fertilin-like ADAM plays a role in human sperm–oolemmal interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtl2hsL4%3D&md5=004ec5fc48b457b56e713aa13ec1ca1fCAS | 10338366PubMed |
Carreau, S., and Isabelle, G. D. (2007). Transcripts of aromatase and estrogen receptors and significance of other RNAs in human spermatozoa. Arch. Androl. 53, 249–255.
| Transcripts of aromatase and estrogen receptors and significance of other RNAs in human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVyhtw%3D%3D&md5=4ba74248802cfadafff8fb2cff0ec47aCAS | 18309897PubMed |
Consortium for Developing a Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching (1988). ‘Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching .’ (Champaign, IL.)
Dean, T. R., Allen, S. V., and Miller, E. S. (2005). In vitro selection of phage RB69 RegA RNA binding sites yields UAA triplets. Virology 336, 26–36.
| In vitro selection of phage RB69 RegA RNA binding sites yields UAA triplets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslKiurs%3D&md5=e050737c4dfbb59e0ab4ad7bed2d5b26CAS | 15866068PubMed |
Depa-Martynow, M., Kempisty, B., Lianeri, M., Jagodzinski, P. P., and Jedrzejczak, P. (2007). Association between fertilin beta, protamines 1 and 2 and spermatid-specific linker histone H1-like protein mRNA levels, fertilization ability of human spermatozoa, and quality of preimplantation embryos. Folia Histochem. Cytobiol. 45, S79–S85.
| 18292840PubMed |
Dye, B. T., Miller, D. J., and Ahlquist, P. (2005). In vivo self-interaction of nodavirus RNA replicase protein a revealed by fluorescence resonance energy transfer. J. Virol. 79, 8909–8919.
| In vivo self-interaction of nodavirus RNA replicase protein a revealed by fluorescence resonance energy transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFOjsLw%3D&md5=71b298ef1e18d8e337416596e76908cfCAS | 15994785PubMed |
García-Herrero, S., Meseguer, M., Martínez-Conejero, J. A., Remohí, J., Pellicer, A., and Garrido, N. (2010). The transcriptome of spermatozoa used in homologous intrauterine insemination varies considerably between samples that achieve pregnancy and those that do not. Fertil. Steril. 94, 1360–1373.
| The transcriptome of spermatozoa used in homologous intrauterine insemination varies considerably between samples that achieve pregnancy and those that do not.Crossref | GoogleScholarGoogle Scholar | 19796764PubMed |
Giordano, R., Magnano, A. R., Zaccagnini, G., Pittoggi, C., Moscufo, N., Lorenzini, R., and Spadafora, C. (2000). Reverse transcriptase activity in mature spermatozoa of mouse. J. Cell Biol. 148, 1107–1113.
| Reverse transcriptase activity in mature spermatozoa of mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitVaqsb0%3D&md5=af34dba53f3be4689c3fa61d43bce442CAS | 10725323PubMed |
Guntas, G., Mitchell, S. F., and Ostermeier, M. (2004). A molecular switch created by in vitro recombination of nonhomologous genes. Chem. Biol. 11, 1483–1487.
| A molecular switch created by in vitro recombination of nonhomologous genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWjsbnP&md5=61943aa831d7a197ffdc77da7b4933deCAS | 15555998PubMed |
Gur, Y., and Breitbart, H. (2006). Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev. 20, 411–416.
| Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhslaqurk%3D&md5=1b956614a8230ddf55083549ffe959f2CAS | 16449571PubMed |
Gur, Y., and Breitbart, H. (2008). Protein synthesis in sperm: dialog between mitochondria and cytoplasm. Mol. Cell. Endocrinol. 282, 45–55.
| Protein synthesis in sperm: dialog between mitochondria and cytoplasm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVegtL4%3D&md5=4eb5ccbc19b50c9c979011c5607812a1CAS | 18226442PubMed |
Jedrzejczak, P., Januchowski, R., Taszarek-Hauke, G., Laddach, R., Pawelczyk, L., and Jagodzinski, P. P. (2006). Quantitative analysis of CCR5 chemokine receptor and cytochrome P450 aromatase transcripts in swim-up spermatozoa isolated from fertile and infertile men. Arch. Androl. 52, 335–341.
| Quantitative analysis of CCR5 chemokine receptor and cytochrome P450 aromatase transcripts in swim-up spermatozoa isolated from fertile and infertile men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVagsrs%3D&md5=4242550c561ecf7303d4bb23f89c7f01CAS | 16873132PubMed |
Kempisty, B., Depa-Martynow, M., Lianeri, M., Jedrzejczak, P., Darul-Wasowicz, A., and Jagodzinski, P. P. (2007). Evaluation of protamines 1 and 2 transcript contents in spermatozoa from asthenozoospermic men. Folia Histochem. Cytobiol. 45, S109–S113.
| 18292846PubMed |
Kempisty, B., Antosik, P., Bukowska, D., Jackowska, M., Lianeri, M., Jaskowski, J. M., and Jagodzinski, P. P. (2008). Analysis of selected transcript levels in porcine spermatozoa, oocytes, zygotes and two-cell stage embryos. Reprod. Fertil. Dev. 20, 513–518.
| Analysis of selected transcript levels in porcine spermatozoa, oocytes, zygotes and two-cell stage embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFagsrs%3D&md5=78f6119b58001cbda9a5186c23c82b2aCAS | 18462614PubMed |
Krawetz, S. A. (2005). Paternal contribution: new insights and future challenges. Nat. Rev. Genet. 6, 633–642.
| Paternal contribution: new insights and future challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntFeqtbo%3D&md5=6329de2adf9ecfd35ddcc04f0ff4cd66CAS | 16136654PubMed |
Kumar, G., Patel, D., and Naz, R. K. (1993). c-MYC mRNA is present in human sperm cells. Cell. Mol. Biol. Res. 39, 111–117.
| 1:CAS:528:DyaK3sXmt1antr0%3D&md5=759ef3b7cf1d05be289ccad574cd0a18CAS | 8220581PubMed |
Lalancette, C., Miller, D., Li, Y., and Krawetz, S. A. (2008). Paternal contributions: new functional insights for spermatozoal RNA. J. Cell. Biochem. 104, 1570–1579.
| Paternal contributions: new functional insights for spermatozoal RNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvVOjt7w%3D&md5=cea1625ce6cf21e52f806511e566d80dCAS | 18393352PubMed |
Lalancette, C., Platts, A. E., Johnson, G. D., Emery, B. R., Carrell, D. T., and Krawetz, S. A. (2009). Identification of human sperm transcripts as candidate markers of male fertility. J. Mol. Med. 87, 735–748.
| Identification of human sperm transcripts as candidate markers of male fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1ersbo%3D&md5=96e56bbb90635ee9063625cbea144f9fCAS | 19466390PubMed |
Lambard, S., Galeraud-Denis, I., Bouraima, H., Bourguiba, S., Chocat, A., and Carreau, S. (2003). Expression of aromatase in human ejaculated spermatozoa: a putative marker of motility. Mol. Hum. Reprod. 9, 117–124.
| Expression of aromatase in human ejaculated spermatozoa: a putative marker of motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslygtLs%3D&md5=70db19dbbf2765b470dbb4ffb7b0d554CAS | 12606587PubMed |
Lambard, S., Galeraud-Denis, I., Martin, G., Levy, R., Chocat, A., and Carreau, S. (2004). Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. Mol. Hum. Reprod. 10, 535–541.
| Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVWnsr8%3D&md5=0134bae127940ecb4dcc20669880a4a7CAS | 15100385PubMed |
Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.
| Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=c02316d2aa02af4c464251269a77c9c9CAS | 11846609PubMed |
Miller, D., Tang, P. Z., Skinner, C., and Lilford, R. (1994). Differential RNA fingerprinting as a tool in the analysis of spermatozoal gene expression. Hum. Reprod. 9, 864–869.
| 1:CAS:528:DyaK2MXivVOjug%3D%3D&md5=a59f204174b5be15d9a5c7c489b14705CAS | 7929733PubMed |
Miller, D., Briggs, D., Snowden, H., HamLington, J., Rollinson, S., Lilford, R., and Krawetz, S. A. (1999). A complex population of RNAs exists in human ejaculate spermatozoa: implications for understanding molecular aspects of spermiogenesis. Gene 237, 385–392.
| A complex population of RNAs exists in human ejaculate spermatozoa: implications for understanding molecular aspects of spermiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVWlt7o%3D&md5=bb4964084c2abd509d141ebbb2b82489CAS | 10521662PubMed |
Miller, D., Ostermeier, G. C., and Krawetz, S. A. (2005). The controversy, potential and roles of spermatozoal RNA. Trends Mol. Med. 11, 156–163.
| The controversy, potential and roles of spermatozoal RNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVylsLc%3D&md5=3c6d21d31392d6dd6e28f0db4be0ef6aCAS | 15823753PubMed |
Naz, R. K., Ahmad, K., and Kumar, G. (1991). Presence and role of c-myc proto-oncogene product in mammalian sperm cell function. Biol. Reprod. 44, 842–850.
| Presence and role of c-myc proto-oncogene product in mammalian sperm cell function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXit1Klu78%3D&md5=21d6ffcfc711557be630a5a703184042CAS | 1868142PubMed |
Oliva, R., and Dixon, G. H. (1991). Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog. Nucleic Acid Res. Mol. Biol. 40, 25–94.
| Vertebrate protamine genes and the histone-to-protamine replacement reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlt1ymt7Y%3D&md5=d6793c84a5fbe5428232ee039606241bCAS | 2031084PubMed |
Ostermeier, G. C., Dix, D. J., Miller, D., Khatri, P., and Krawetz, S. A. (2002). Spermatozoal RNA profiles of normal fertile men. Lancet 360, 772–777.
| Spermatozoal RNA profiles of normal fertile men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmsl2nsLg%3D&md5=8401d1d6d653d88453e885fa89646f85CAS | 12241836PubMed |
Ostermeier, G. C., Miller, D., Huntriss, J. D., Diamond, M. P., and Krawetz, S. A. (2004). Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429, 154.
| Reproductive biology: delivering spermatozoan RNA to the oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVKgs7k%3D&md5=93bda454cca4d3556c1922b05255b47dCAS | 15141202PubMed |
Park, C. H., Lee, S. G., Choi, D. H., and Lee, C. K. (2009). A modified swim-up method reduces polyspermy during in vitro fertilization of porcine oocytes. Anim. Reprod. Sci. 115, 169–181.
| A modified swim-up method reduces polyspermy during in vitro fertilization of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 19131192PubMed |
Robertson, K. M., Simpson, E. R., Lacham-Kaplan, O., and Jones, M. E. (2001). Characterization of the fertility of male aromatase knockout mice. J. Androl. 22, 825–830.
| 1:CAS:528:DC%2BD3MXnt1Sqtr4%3D&md5=1b66636551a4e23cf958f2faa1508275CAS | 11545296PubMed |
Sakakibara, K., Kubota, K., Worku, B., Ryer, E. J., Miller, J. P., Koff, A., Kent, K. C., and Liu, B. (2005). PDGF-BB regulates p27 expression through ERK-dependent RNA turn-over in vascular smooth muscle cells. J. Biol. Chem. 280, 25 470–25 477.
| PDGF-BB regulates p27 expression through ERK-dependent RNA turn-over in vascular smooth muscle cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslyltbY%3D&md5=fa7b667b1e5dfc715b18592813a6dddfCAS |
Sassone-Corsi, P. (2002). Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296, 2176–2178.
| Unique chromatin remodeling and transcriptional regulation in spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFGhsb8%3D&md5=46fe4bdb1d44d112cbb9dc6fef9d697eCAS | 12077401PubMed |
Sorg, J. A., Miller, N. C., and Schneewind, O. (2005). Substrate recognition of type III secretion machines: testing the RNA signal hypothesis. Cell. Microbiol. 7, 1217–1225.
| Substrate recognition of type III secretion machines: testing the RNA signal hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps12htLY%3D&md5=460e4f482fc27393acc95ac242fb27b6CAS | 16098210PubMed |
Steger, K., Wilhelm, J., Konrad, L., Stalf, T., Greb, R., Diemer, T., Kliesch, S., Bergmann, M., and Weidner, W. (2008). Both protamine-1 to protamine-2 mRNA ratio and Bcl2 mRNA content in testicular spermatids and ejaculated spermatozoa discriminate between fertile and infertile men. Hum. Reprod. 23, 11–16.
| Both protamine-1 to protamine-2 mRNA ratio and Bcl2 mRNA content in testicular spermatids and ejaculated spermatozoa discriminate between fertile and infertile men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWgsb3M&md5=33d4f783f5f90916a20853ac83e79cedCAS | 18003625PubMed |
Tiwari, A., Singh, D., Kumar, O. S., and Sharma, M. K. (2008). Expression of cytochrome P450 aromatase transcripts in buffalo (Bubalus bubalis)-ejaculated spermatozoa and its relationship with sperm motility. Domest. Anim. Endocrinol. 34, 238–249.
| Expression of cytochrome P450 aromatase transcripts in buffalo (Bubalus bubalis)-ejaculated spermatozoa and its relationship with sperm motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVCisrc%3D&md5=684a090c0af5c60e5a6370e652170b92CAS | 17851018PubMed |
Yang, C. C., Lin, Y. S., Hsu, C. C., Wu, S. C., Lin, E. C., and Cheng, W. T. (2009). Identification and sequencing of remnant messenger RNAs found in domestic swine (Sus scrofa) fresh ejaculated spermatozoa. Anim. Reprod. Sci. 113, 143–155.
| Identification and sequencing of remnant messenger RNAs found in domestic swine (Sus scrofa) fresh ejaculated spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFeltbo%3D&md5=7a9a912c87fbf9a9f4fa4e12116c9f42CAS | 18786788PubMed |
Zhao, C., Guo, X. J., Shi, Z. H., Wang, F. Q., Huang, X. Y., Huo, R., Zhu, H., Wang, X. R., Liu, J. Y., Zhou, Z. M., and Sha, J. H. (2009). Role of translation by mitochondrial-type ribosomes during sperm capacitation: an analysis based on a proteomic approach. Proteomics 9, 1385–1399.
| Role of translation by mitochondrial-type ribosomes during sperm capacitation: an analysis based on a proteomic approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVWltbk%3D&md5=360f6a51a29dbbeb321869336e1c00daCAS | 19253287PubMed |