Emerging roles of immune cells in luteal angiogenesis
Koumei Shirasuna A C , Takashi Shimizu A , Motozumi Matsui B and Akio Miyamoto A DA Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
B Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
C Present address: Division of Bioimaging Sciences, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 349-0498, Japan.
D Corresponding author. Email: akiomiya@obihiro.ac.jp
Reproduction, Fertility and Development 25(2) 351-361 https://doi.org/10.1071/RD12096
Submitted: 24 February 2012 Accepted: 1 August 2012 Published: 31 August 2012
Abstract
In the mammalian ovary, the corpus luteum (CL) is a unique transient endocrine organ displaying rapid angiogenesis and time-dependent accumulation of immune cells. The CL closely resembles ‘transitory tumours’, and the rate of luteal growth equals that of the fastest growing tumours. Recently, attention has focused on multiple roles of immune cells in luteal function, not only in luteolysis (CL disruption by immune responses involving T lymphocytes and macrophages), but also in CL development (CL remodelling by different immune responses involving neutrophils and macrophages). Neutrophils and macrophages regulate angiogenesis, lymphangiogenesis, and steroidogenesis by releasing cytokines in the CL. In addition, functional polarisation of neutrophils (proinflammatory N1 vs anti-inflammatory N2) and macrophages (proinflammatory M1 vs anti-inflammatory M2) has been demonstrated. This new concept concurs with the phenomenon of immune function within the luteal microenvironment: active development of the CL infiltrating anti-inflammatory N2 and M2 versus luteal regression together with proinflammatory N1 and M1. Conversely, excessive angiogenic factors and leucocyte infiltration result in indefinite disordered tumour development. However, the negative feedback regulator vasohibin-1 in the CL prevents excessive tumour-like vasculogenesis, suggesting that CL development has well coordinated time-dependent mechanisms. In this review, we discuss the physiological roles of immune cells involved in innate immunity (e.g. neutrophils and macrophages) in the local regulation of CL development with a primary focus on the cow.
Additional keywords: corpus luteum development, lymphangiogenesis, macrophages, neutrophils.
References
Adashi, E. Y. (1990). The potential relevance of cytokines to ovarian physiology: the emerging role of resident ovarian cells of the white blood cell series. Endocr. Rev. 11, 454–464.| The potential relevance of cytokines to ovarian physiology: the emerging role of resident ovarian cells of the white blood cell series.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXnvFKmsA%3D%3D&md5=acff705ca7b2bf8bf6e57adf225a41e7CAS | 2226351PubMed |
Al-Zi’abi, M. O., Fraser, H. M., and Watson, E. D. (2002). Cell death during natural and induced luteal regression in mares. Reproduction 123, 67–77.
| Cell death during natural and induced luteal regression in mares.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtV2gs7g%3D&md5=677cfe8907354e381a1a4574007602eaCAS | 11869188PubMed |
Ancelin, M., Chollet-Martin, S., Herve, M. A., Legrand, C., El Benna, J., and Perrot-Applanat, M. (2004). Vascular endothelial growth factor VEGF189 induces human neutrophil chemotaxis in extravascular tissue via an autocrine amplification mechanism. Lab. Invest. 84, 502–512.
| Vascular endothelial growth factor VEGF189 induces human neutrophil chemotaxis in extravascular tissue via an autocrine amplification mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtF2it74%3D&md5=1320c939befd14d369782e54b13c92fdCAS | 14968118PubMed |
Ardi, V. C., Van den Steen, P. E., Opdenakker, G., Schweighofer, B., Deryugina, E. I., and Quigley, J. P. (2009). Neutrophil MMP-9 proenzyme, unencumbered by TIMP-1, undergoes efficient activation in vivo and catalytically induces angiogenesis via a basic fibroblast growth factor (FGF-2)/FGFR-2 pathway. J. Biol. Chem. 284, 25 854–25 866.
| Neutrophil MMP-9 proenzyme, unencumbered by TIMP-1, undergoes efficient activation in vivo and catalytically induces angiogenesis via a basic fibroblast growth factor (FGF-2)/FGFR-2 pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWhtr%2FK&md5=4b78dfb816c0a04f3d0ff01e35678dc6CAS |
Aust, G., Simchen, C., Heider, U., Hmeidan, F. A., Blumenauer, V., and Spanel-Borowski, K. (2000). Eosinophils in the human corpus luteum: the role of RANTES and eotaxin in eosinophil attraction into periovulatory structures. Mol. Hum. Reprod. 6, 1085–1091.
| Eosinophils in the human corpus luteum: the role of RANTES and eotaxin in eosinophil attraction into periovulatory structures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFKnsg%3D%3D&md5=30fa4fd068a7af0c83b6a2343072b9c4CAS | 11101691PubMed |
Bauer, M., Reibiger, I., and Spanel-Borowski, K. (2001). Leucocyte proliferation in the bovine corpus luteum. Reproduction 121, 297–305.
| Leucocyte proliferation in the bovine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslSisbk%3D&md5=77e9a8c9e0d8d98537342b2f64d8570fCAS | 11226054PubMed |
Bausch, D., Pausch, T., Krauss, T., Hopt, U. T., Fernandez-del-Castillo, C., Warshaw, A. L., Thayer, S. P., and Keck, T. (2011). Neutrophil granulocyte derived MMP-9 is a VEGF independent functional component of the angiogenic switch in pancreatic ductal adenocarcinoma. Angiogenesis 14, 235–243.
| Neutrophil granulocyte derived MMP-9 is a VEGF independent functional component of the angiogenic switch in pancreatic ductal adenocarcinoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVagtrvK&md5=f99090a085647f1360884a8bf5d6deadCAS | 21442180PubMed |
Best, C. L., Pudney, J., Welch, W. R., Burger, N., and Hill, J. A. (1996). Localization and characterization of white blood cell populations within the human ovary throughout the menstrual cycle and menopause. Hum. Reprod. 11, 790–797.
| Localization and characterization of white blood cell populations within the human ovary throughout the menstrual cycle and menopause.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28zisF2mtg%3D%3D&md5=f3a82648ab9151628f9d8e186cd45c52CAS | 8671330PubMed |
Brännström, M., and Friden, B. (1997). Immune regulation of corpus luteum function. Semin. Reprod. Endocrinol. 15, 363–370.
| Immune regulation of corpus luteum function.Crossref | GoogleScholarGoogle Scholar | 9580945PubMed |
Brannstrom, M., and Norman, R. J. (1993). Involvement of leukocytes and cytokines in the ovulatory process and corpus luteum function. Hum. Reprod. 8, 1762–1775.
| 1:STN:280:DyaK2c7jt1aqtQ%3D%3D&md5=6f177c5753631adf1fb7f73a20ea2fd6CAS | 8300842PubMed |
Brännström, M., Giesecke, L., Moore, I. C., van den Heuvel, C. J., and Robertson, S. A. (1994a). Leukocyte subpopulations in the rat corpus luteum during pregnancy and pseudopregnancy. Biol. Reprod. 50, 1161–1167.
| Leukocyte subpopulations in the rat corpus luteum during pregnancy and pseudopregnancy.Crossref | GoogleScholarGoogle Scholar | 8025173PubMed |
Brannstrom, M., Pascoe, V., Norman, R. J., and McClure, N. (1994b). Localization of leukocyte subsets in the follicle wall and in the corpus luteum throughout the human menstrual cycle. Fertil. Steril. 61, 488–495.
| 1:STN:280:DyaK2c7osFygsg%3D%3D&md5=2d00dfe81509bfdba09043d443634d03CAS | 8137972PubMed |
Brännström, M., Bonello, N., Norman, R. J., and Robertson, S. A. (1995). Reduction of ovulation rate in the rat by administration of a neutrophil-depleting monoclonal antibody. J. Reprod. Immunol. 29, 265–270.
| Reduction of ovulation rate in the rat by administration of a neutrophil-depleting monoclonal antibody.Crossref | GoogleScholarGoogle Scholar | 8636929PubMed |
Brown, H. M., Robker, R. L., and Russell, D. L. (2010). Development and hormonal regulation of the ovarian lymphatic vasculature. Endocrinology 151, 5446–5455.
| Development and hormonal regulation of the ovarian lymphatic vasculature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKks7bE&md5=28c50f1183c2aaaa4939c6878737c97fCAS | 20843998PubMed |
Bukovský, A., Presl, J., Krabec, Z., and Bednarik, T. (1977). Ovarian function in adult rats treated with antithymocyte serum. Experientia 33, 280–281.
| Ovarian function in adult rats treated with antithymocyte serum.Crossref | GoogleScholarGoogle Scholar | 300334PubMed |
Bukulmez, O., and Arici, A. (2000). Leukocytes in ovarian function. Hum. Reprod. Update 6, 1–15.
| Leukocytes in ovarian function.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7nsV2ruw%3D%3D&md5=c2dd7eb4d6f6d0e181a85b4510df00afCAS | 10711825PubMed |
Cavender, J. L., and Murdoch, W. J. (1988). Morphological studies of the microcirculatory system of periovulatory ovine follicles. Biol. Reprod. 39, 989–997.
| Morphological studies of the microcirculatory system of periovulatory ovine follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M%2FovVekug%3D%3D&md5=7e4f9291f51a4badbfc7229c914abda7CAS | 3207814PubMed |
Chang, R. J., Gougeon, A., and Erickson, G. F. (1998). Evidence for a neutrophil–interleukin-8 system in human folliculogenesis. Am. J. Obstet. Gynecol. 178, 650–657.
| Evidence for a neutrophil–interleukin-8 system in human folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt12ls7s%3D&md5=b8292ca93c5f2f85ba0d0f209f3cf6acCAS | 9579426PubMed |
Coffelt, S. B., Hughes, R., and Lewis, C. E. (2009). Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim. Biophys. Acta 1796, 11–18.
| 1:CAS:528:DC%2BD1MXhtVenurvN&md5=fff5989fbfc069ac78362fa3a9a5e5ddCAS | 19269310PubMed |
Coussens, L. M., Tinkle, C. L., Hanahan, D., and Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490.
| MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvF2ksLg%3D&md5=e4c2fee5b6d2d153b230eeec8ae853faCAS | 11081634PubMed |
Cursiefen, C., Chen, L., Borges, L. P., Jackson, D., Cao, J., Radziejewski, C., D’Amore, P. A., Dana, M. R., Wiegand, S. J., and Streilein, J. W. (2004). VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest. 113, 1040–1050.
| VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFCqsLs%3D&md5=62aba1ab23e0bd6767fe66d49f3029f9CAS | 15057311PubMed |
Dadras, S. S., Paul, T., Bertoncini, J., Brown, L. F., Muzikansky, A., Jackson, D. G., Ellwanger, U., Garbe, C., Mihm, M. C., and Detmar, M. (2003). Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am. J. Pathol. 162, 1951–1960.
| Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival.Crossref | GoogleScholarGoogle Scholar | 12759251PubMed |
Emi, N., Kanzaki, H., Yoshida, M., Takakura, K., Kariya, M., Okamoto, N., Imai, K., and Mori, T. (1991). Lymphocytes stimulate progesterone production by cultured human granulosa luteal cells. Am. J. Obstet. Gynecol. 165, 1469–1474.
| 1:STN:280:DyaK38%2FmslOrtQ%3D%3D&md5=15aa6a2a47d567e28b775c82e18bd5c7CAS | 1957883PubMed |
Farin, C. E., Moeller, C. L., Sawyer, H. R., Gamboni, F., and Niswender, G. D. (1986). Morphometric analysis of cell types in the ovine corpus luteum throughout the estrous cycle. Biol. Reprod. 35, 1299–1308.
| Morphometric analysis of cell types in the ovine corpus luteum throughout the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s7lsl2jug%3D%3D&md5=903943163cb51c5a9107bcd64d4cc4b0CAS | 3828439PubMed |
Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., Worthen, G. S., and Albelda, S. M. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN. Cancer Cell 16, 183–194.
| Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVChs7vN&md5=946d3427d0a66257bfc1d37711036ca9CAS | 19732719PubMed |
Gaytan, F., Morales, C., Garcia-Pardo, L., Reymundo, C., Bellido, C., and Sanchez-Criado, J. E. (1998). Macrophages, cell proliferation, and cell death in the human menstrual corpus luteum. Biol. Reprod. 59, 417–425.
| Macrophages, cell proliferation, and cell death in the human menstrual corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFGntL4%3D&md5=4c5460ec11aa26824d0924d51e4b9516CAS | 9687316PubMed |
Good, D. J., Polverini, P. J., Rastinejad, F., Le Beau, M. M., Lemons, R. S., Frazier, W. A., and Bouck, N. P. (1990). A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl Acad. Sci. USA 87, 6624–6628.
| A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXls12lt70%3D&md5=cb083610fb12e42fc9f45dabefc8a553CAS | 1697685PubMed |
Gordon, S. (2003). Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35.
| Alternative activation of macrophages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVw%3D&md5=abe6b01672d18c959d12a1d2230a58d6CAS | 12511873PubMed |
Gospodarowicz, D., Cheng, J., Lui, G. M., Baird, A., Esch, F., and Bohlen, P. (1985). Corpus luteum angiogenic factor is related to fibroblast growth factor. Endocrinology 117, 2383–2391.
| Corpus luteum angiogenic factor is related to fibroblast growth factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsFalsg%3D%3D&md5=1b22b4ac8c6e396ae35f0f0c67efd05aCAS | 4065037PubMed |
Goto, J., Suganuma, N., Takata, K., Kitamura, K., Asahina, T., Kobayashi, H., Muranaka, Y., Furuhashi, M., and Kanayama, N. (2002). Morphological analyses of interleukin-8 effects on rat ovarian follicles at ovulation and luteinization in vivo. Cytokine 20, 168–173.
| Morphological analyses of interleukin-8 effects on rat ovarian follicles at ovulation and luteinization in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1yqtQ%3D%3D&md5=93dc9c1faa86e148a34f29e5677a382bCAS | 12543081PubMed |
Halme, J., Hammond, M. G., Syrop, C. H., and Talbert, L. M. (1985). Peritoneal macrophages modulate human granulosa-luteal cell progesterone production. J. Clin. Endocrinol. Metab. 61, 912–916.
| Peritoneal macrophages modulate human granulosa-luteal cell progesterone production.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2FgvVOktA%3D%3D&md5=0fb86788bb45c6afd57173e98b3eb21dCAS | 4044779PubMed |
Hein, W. R., Shelton, J. N., Simpson-Morgan, M. W., Seamark, R. F., and Morris, B. (1988). Flow and composition of lymph from the ovary and uterus of cows during pregnancy. J. Reprod. Fertil. 83, 309–323.
| Flow and composition of lymph from the ovary and uterus of cows during pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXltVCqurw%3D&md5=411dc5206c45fc23fa14c6e4d16f45baCAS | 3397945PubMed |
Heishi, T., Hosaka, T., Suzuki, Y., Miyashita, H., Oike, Y., Takahashi, T., Nakamura, T., Arioka, S., Mitsuda, Y., Takakura, T., Hojo, K., Matsumoto, M., Yamauchi, C., Ohta, H., Sonoda, H., and Sato, Y. (2010). Endogenous angiogenesis inhibitor vasohibin1 exhibits broad-spectrum antilymphangiogenic activity and suppresses lymph node metastasis. Am. J. Pathol. 176, 1950–1958.
| Endogenous angiogenesis inhibitor vasohibin1 exhibits broad-spectrum antilymphangiogenic activity and suppresses lymph node metastasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltlels7o%3D&md5=ec267b5aa5e08313090c321e3a195f11CAS | 20133819PubMed |
Heryanto, B., Girling, J. E., and Rogers, P. A. (2004). Intravascular neutrophils partially mediate the endometrial endothelial cell proliferative response to oestrogen in ovariectomised mice. Reproduction 127, 613–620.
| Intravascular neutrophils partially mediate the endometrial endothelial cell proliferative response to oestrogen in ovariectomised mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFOqu7g%3D&md5=ff323f500fdbfb542e40fbee4b2d6922CAS | 15129017PubMed |
Hosaka, T., Kimura, H., Heishi, T., Suzuki, Y., Miyashita, H., Ohta, H., Sonoda, H., Moriya, T., Suzuki, S., Kondo, T., and Sato, Y. (2009). Vasohibin-1 expression in endothelium of tumor blood vessels regulates angiogenesis. Am. J. Pathol. 175, 430–439.
| Vasohibin-1 expression in endothelium of tumor blood vessels regulates angiogenesis.Crossref | GoogleScholarGoogle Scholar | 19498005PubMed |
Hurwitz, A., Payne, D. W., Packman, J. N., Andreani, C. L., Resnick, C. E., Hernandez, E. R., and Adashi, E. Y. (1991). Cytokine-mediated regulation of ovarian function: interleukin-1 inhibits gonadotropin-induced androgen biosynthesis. Endocrinology 129, 1250–1256.
| Cytokine-mediated regulation of ovarian function: interleukin-1 inhibits gonadotropin-induced androgen biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtVGksr0%3D&md5=41136380873d8ed779d63d7e5dd4cb3dCAS | 1874169PubMed |
Ichikawa, S., Uchino, S., and Hirata, Y. (1987). Lymphatic and blood vasculature of the forming corpus luteum. Lymphology 20, 73–83.
| 1:STN:280:DyaL1c%2Fht1KltA%3D%3D&md5=d448934dc220c0bb431e107bbb0c6ff3CAS | 3657297PubMed |
Imakawa, K., Anthony, R. V., Kazemi, M., Marotti, K. R., Polites, H. G., and Roberts, R. M. (1987). Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm. Nature 330, 377–379.
| Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvF2itbo%3D&md5=2196e698c009f4b4d779c891d4db4002CAS | 2446135PubMed |
Jiemtaweeboon, S., Shirasuna, K., Nitta, A., Kobayashi, A., Schuberth, H. J., Shimizu, T., and Miyamoto, A. (2011). Evidence that polymorphonuclear neutrophils infiltrate into the developing corpus luteum and promote angiogenesis with interleukin-8 in the cow. Reprod. Biol. Endocrinol. 9, 79.
| 1:CAS:528:DC%2BC3MXns1yisro%3D&md5=8c62e9f7bdf12ec5e5e177d6daacea0cCAS | 21651784PubMed |
Joukov, V., Sorsa, T., Kumar, V., Jeltsch, M., Claesson-Welsh, L., Cao, Y., Saksela, O., Kalkkinen, N., and Alitalo, K. (1997). Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 16, 3898–3911.
| Proteolytic processing regulates receptor specificity and activity of VEGF-C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkslSgsrY%3D&md5=bca90488a076261fa69ed1d8db5c6454CAS | 9233800PubMed |
Karkkainen, M. J., Haiko, P., Sainio, K., Partanen, J., Taipale, J., Petrova, T. V., Jeltsch, M., Jackson, D. G., Talikka, M., Rauvala, H., Betsholtz, C., and Alitalo, K. (2004). Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80.
| Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWhtrzO&md5=d8116cb7b19ed9aba9db8a765c37154cCAS | 14634646PubMed |
Kimura, Y. N., Watari, K., Fotovati, A., Hosoi, F., Yasumoto, K., Izumi, H., Kohno, K., Umezawa, K., Iguchi, H., Shirouzu, K., Takamori, S., Kuwano, M., and Ono, M. (2007). Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis. Cancer Sci. 98, 2009–2018.
| Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVahur%2FJ&md5=738cb50eeee8fbf573ec61a73fe48fa8CAS | 17924976PubMed |
Kliem, H., Welter, H., Kraetzl, W. D., Steffl, M., Meyer, H. H., Schams, D., and Berisha, B. (2007). Expression and localisation of extracellular matrix degrading proteases and their inhibitors during the oestrous cycle and after induced luteolysis in the bovine corpus luteum. Reproduction 134, 535–547.
| Expression and localisation of extracellular matrix degrading proteases and their inhibitors during the oestrous cycle and after induced luteolysis in the bovine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKnurrP&md5=ff73e6b60e66b4862dd49df0527a68b3CAS | 17709571PubMed |
Kobayashi, S., Berisha, B., Amselgruber, W. M., Schams, D., and Miyamoto, A. (2001). Production and localisation of angiotensin II in the bovine early corpus luteum: a possible interaction with luteal angiogenic factors and prostaglandin F2 alpha. J. Endocrinol. 170, 369–380.
| Production and localisation of angiotensin II in the bovine early corpus luteum: a possible interaction with luteal angiogenic factors and prostaglandin F2 alpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1Skt74%3D&md5=1e143fb46b6a549a1049a9a026727b15CAS | 11479133PubMed |
Kobayashi, S., Acosta, T. J., Hayashi, K., Berisha, B., Ozawa, T., Ohtani, M., Schams, D., and Miyamoto, A. (2002). Intraluteal release of prostaglandin F2alpha and E2 during corpora lutea development in the cow. J. Reprod. Dev. 48, 583–590.
| Intraluteal release of prostaglandin F2alpha and E2 during corpora lutea development in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslWgtbs%3D&md5=56bb98907cc1b982b1c635e76d8bcf96CAS |
Koch, A. E., Polverini, P. J., Kunkel, S. L., Harlow, L. A., DiPietro, L. A., Elner, V. M., Elner, S. G., and Strieter, R. M. (1992). Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258, 1798–1801.
| Interleukin-8 as a macrophage-derived mediator of angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlslyktg%3D%3D&md5=13cafb757a40bc4e15db55f5f1549aa1CAS | 1281554PubMed |
Komatsu, K., Manabe, N., Kiso, M., Shimabe, M., and Miyamoto, H. (2003). Changes in localization of immune cells and cytokines in corpora lutea during luteolysis in murine ovaries. J. Exp. Zoolog. A Comp. Exp. Biol. 296, 152–159.
Liclican, E. L., Nguyen, V., Sullivan, A. B., and Gronert, K. (2010). Selective activation of the prostaglandin E2 circuit in chronic injury-induced pathologic angiogenesis. Invest. Ophthalmol. Vis. Sci. 51, 6311–6320.
| Selective activation of the prostaglandin E2 circuit in chronic injury-induced pathologic angiogenesis.Crossref | GoogleScholarGoogle Scholar | 20610836PubMed |
Lobel, B. L., and Levy, E. (1968). Enzymic correlates of development, secretory function and regression of follicles and corpora lutea in the bovine ovary. Acta Endocrinol. 59, S35–S51.
Loeb, L. (1906). The formation of the corpus luteum in the guinea pig. J. Am. Med. Assoc. XLVI, 416–423.
| The formation of the corpus luteum in the guinea pig.Crossref | GoogleScholarGoogle Scholar |
Maruyama, K., Ii, M., Cursiefen, C., Jackson, D. G., Keino, H., Tomita, M., Van Rooijen, N., Takenaka, H., D’Amore, P. A., Stein-Streilein, J., Losordo, D. W., and Streilein, J. W. (2005). Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J. Clin. Invest. 115, 2363–2372.
| Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSjsrfM&md5=37b84109f4fce0da9d4949e705318c06CAS | 16138190PubMed |
Matsuyama, S., and Takahashi, M. (1995). Immunoreactive (ir)-transforming growth factor (TGF)-beta in rat corpus luteum: ir-TGF beta is expressed by luteal macrophages. Endocr. J. 42, 203–217.
| Immunoreactive (ir)-transforming growth factor (TGF)-beta in rat corpus luteum: ir-TGF beta is expressed by luteal macrophages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntlSmsLg%3D&md5=f4137c4aee7064ad3b366ec74297a357CAS | 7627265PubMed |
McCracken, J. A., Schramm, W., Barcikowski, B., and Wilson, L. (1981). The identification of prostaglandin F2 alpha as a uterine luteolytic hormone and the hormonal control of its synthesis. Acta Vet. Scand. Suppl. 77, 71–88.
| 1:STN:280:DyaL38%2FmsFWgtw%3D%3D&md5=12479d1f145a9716d4761324f8bac177CAS | 7030035PubMed |
Meyer, M. D., Hansen, P. J., Thatcher, W. W., Drost, M., Badinga, L., Roberts, R. M., Li, J., Ott, T. L., and Bazer, F. W. (1995). Extension of corpus luteum lifespan and reduction of uterine secretion of prostaglandin F2 alpha of cows in response to recombinant interferon-tau. J. Dairy Sci. 78, 1921–1931.
| Extension of corpus luteum lifespan and reduction of uterine secretion of prostaglandin F2 alpha of cows in response to recombinant interferon-tau.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslyltr4%3D&md5=2fd386cf798114db6d99cddc9326c2caCAS | 8550901PubMed |
Miyamoto, A., Shirasuna, K., and Sasahara, K. (2009). Local regulation of corpus luteum development and regression in the cow: impact of angiogenic and vasoactive factors. Domest. Anim. Endocrinol. 37, 159–169.
| Local regulation of corpus luteum development and regression in the cow: impact of angiogenic and vasoactive factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKgt77O&md5=fa0f75217d655695a871ac1915fa6adaCAS | 19592192PubMed |
Moor, R. M., Hay, M. F., and Seamark, R. F. (1975). The sheep ovary: regulation of steroidogenic, haemodynamic and structural changes in the largest follicle and adjacent tissue before ovulation. J. Reprod. Fertil. 45, 595–604.
| The sheep ovary: regulation of steroidogenic, haemodynamic and structural changes in the largest follicle and adjacent tissue before ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XktFSlsA%3D%3D&md5=47a06eddb684590ef343ca8517b3a1cfCAS | 173846PubMed |
Mueller, M. D., Lebovic, D. I., Garrett, E., and Taylor, R. N. (2000). Neutrophils infiltrating the endometrium express vascular endothelial growth factor: potential role in endometrial angiogenesis. Fertil. Steril. 74, 107–112.
| Neutrophils infiltrating the endometrium express vascular endothelial growth factor: potential role in endometrial angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czmtlWkug%3D%3D&md5=7fcb379f1512eb2263b64ae9d76eb40eCAS | 10899506PubMed |
Murdoch, W. J. (1987). Treatment of sheep with prostaglandin F2 alpha enhances production of a luteal chemoattractant for eosinophils. Am. J. Reprod. Immunol. Microbiol. 15, 52–56.
| 1:CAS:528:DyaL1cXht1GisLc%3D&md5=2d66a852241a7a0a7c714ce0e159a796CAS | 3481220PubMed |
Murdoch, W. J., Colgin, D. C., and Ellis, J. A. (1997). Role of tumor necrosis factor-alpha in the ovulatory mechanism of ewes. J. Anim. Sci. 75, 1601–1605.
| 1:CAS:528:DyaK2sXjs1Glurc%3D&md5=ed93c20ee47df03a9bf5be594e0e14e3CAS | 9250523PubMed |
Nagamatsu, T., and Schust, D. J. (2010). The contribution of macrophages to normal and pathological pregnancies. Am. J. Reprod. Immunol. 63, 460–471.
| The contribution of macrophages to normal and pathological pregnancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1Kjt7c%3D&md5=9b42381a680a9a90bfcaac10def1a00fCAS | 20163399PubMed |
Nasu, T., Maeshima, Y., Kinomura, M., Hirokoshi-Kawahara, K., Tanabe, K., Sugiyama, H., Sonoda, H., Sato, Y., and Makino, H. (2009). Vasohibin-1, a negative feedback regulator of angiogenesis, ameliorates renal alterations in a mouse model of diabetic nephropathy. Diabetes 58, 2365–2375.
| Vasohibin-1, a negative feedback regulator of angiogenesis, ameliorates renal alterations in a mouse model of diabetic nephropathy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yrsr7J&md5=4221218dab83c7f1475d6a0ab9238fd6CAS | 19587360PubMed |
Nishimura, R., Bowolaksono, A., Acosta, T. J., Murakami, S., Piotrowska, K., Skarzynski, D. J., and Okuda, K. (2004). Possible role of interleukin-1 in the regulation of bovine corpus luteum throughout the luteal phase. Biol. Reprod. 71, 1688–1693.
| Possible role of interleukin-1 in the regulation of bovine corpus luteum throughout the luteal phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1yitrg%3D&md5=2128529efed815699f62f62aa048ad34CAS | 15253926PubMed |
Niswender, G. D., Juengel, J. L., Silva, P. J., Rollyson, M. K., and McIntush, E. W. (2000). Mechanisms controlling the function and life span of the corpus luteum. Physiol. Rev. 80, 1–29.
| 1:CAS:528:DC%2BD3cXmtl2jtg%3D%3D&md5=c0db02845cb334b9b91955bb69ade54cCAS | 10617764PubMed |
Nitta, A., Shirasuna, K., Haneda, S., Matsui, M., Shimizu, T., Matsuyama, S., Kimura, K., Bollwein, H., and Miyamoto, A. (2011). Possible involvement of IFNT in lymphangiogenesis in the corpus luteum during the maternal recognition period in the cow. Reproduction 142, 879–892.
| Possible involvement of IFNT in lymphangiogenesis in the corpus luteum during the maternal recognition period in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GqtLbJ&md5=1ac7aa2e9a8bf79c5aa723dac95f3a42CAS | 21933879PubMed |
Nozawa, H., Chiu, C., and Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12 493–12 498.
| Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos1OjurY%3D&md5=e5c5fdb300adfaa263781309757dcc6aCAS |
O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H., and Folkman, J. (1994). Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328.
| Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhvFWrsbY%3D&md5=a12d81d72bc9d2403e817176cbe38105CAS | 7525077PubMed |
O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., and Folkman, J. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.
| Endostatin: an endogenous inhibitor of angiogenesis and tumor growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXpsFSktQ%3D%3D&md5=f5ce7bc2c40b032194240c16cd599f27CAS | 9008168PubMed |
Okuda, K., and Sakumoto, R. (2003). Multiple roles of TNF super family members in corpus luteum function. Reprod. Biol. Endocrinol. 95, 1–10.
Otsuki, Y., Magari, S., and Sugimoto, O. (1986). Lymphatic capillaries in rabbit ovaries during ovulation: an ultrastructural study. Lymphology 19, 55–64.
| 1:STN:280:DyaL283otlCguw%3D%3D&md5=8121583b9699dfb4bb15040c7f4f3071CAS | 3736122PubMed |
Pate, J. L., and Landis Keyes, P. (2001). Immune cells in the corpus luteum: friends or foes? Reproduction 122, 665–676.
| Immune cells in the corpus luteum: friends or foes?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Ohurw%3D&md5=177e0cf4073ced0f153675ea8814ff7fCAS | 11690526PubMed |
Pate, J. L., Toyokawa, K., Walusimbi, S., and Brzezicka, E. (2010). The interface of the immune and reproductive systems in the ovary: lessons learned from the corpus luteum of domestic animal models. Am. J. Reprod. Immunol. 64, 275–286.
| The interface of the immune and reproductive systems in the ovary: lessons learned from the corpus luteum of domestic animal models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSgtrfO&md5=0778a2ff090fbcf7e01e1002afa1ee7dCAS | 20712810PubMed |
Penny, L. A. (2000). Monocyte chemoattractant protein 1 in luteolysis. Rev. Reprod. 5, 63–66.
| Monocyte chemoattractant protein 1 in luteolysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsleiurc%3D&md5=63fe499799b2e6ad5c4581d50b68ee54CAS | 10864849PubMed |
Penny, L. A., Armstrong, D., Bramley, T. A., Webb, R., Collins, R. A., and Watson, E. D. (1999). Immune cells and cytokine production in the bovine corpus luteum throughout the oestrous cycle and after induced luteolysis. J. Reprod. Fertil. 115, 87–96.
| Immune cells and cytokine production in the bovine corpus luteum throughout the oestrous cycle and after induced luteolysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs12is7o%3D&md5=91f0d03d3b7a4ebe43c8826b823cd008CAS | 10341726PubMed |
Petrovská, M., Dimitrov, D. G., and Michael, S. D. (1996). Quantitative changes in macrophage distribution in normal mouse ovary over the course of the estrous cycle examined with an image analysis system. Am. J. Reprod. Immunol. 36, 175–183.
| Quantitative changes in macrophage distribution in normal mouse ovary over the course of the estrous cycle examined with an image analysis system.Crossref | GoogleScholarGoogle Scholar | 8874714PubMed |
Piccard, H., Muschel, R. J., and Opdenakker, G. (2011). On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit. Rev. Oncol. Hematol. 82, 296–309.
| 21798756PubMed |
Połeć, A., Tanbo, T., and Fedorcsak, P. (2009). Cellular interaction regulates interleukin-8 secretion by granulosa-lutein cells and monocytes/macrophages. Am. J. Reprod. Immunol. 61, 85–94.
| Cellular interaction regulates interleukin-8 secretion by granulosa-lutein cells and monocytes/macrophages.Crossref | GoogleScholarGoogle Scholar | 19086996PubMed |
Polec, A., Raki, M., Abyholm, T., Tanbo, T. G., and Fedorcsak, P. (2011). Interaction between granulosa-lutein cells and monocytes regulates secretion of angiogenic factors in vitro. Hum. Reprod. 26, 2819–2829.
| Interaction between granulosa-lutein cells and monocytes regulates secretion of angiogenic factors in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Siur3L&md5=a181306853e1b2a6b8f769a4713535e1CAS | 21849298PubMed |
Quigley, J. P., and Deryugina, E. I. (2012). Combating angiogenesis early: potential of targeting tumor-recruited neutrophils in cancer therapy. Future Oncol. 8, 5–8.
| Combating angiogenesis early: potential of targeting tumor-recruited neutrophils in cancer therapy.Crossref | GoogleScholarGoogle Scholar | 22149028PubMed |
Robinson, R. S., Hammond, A. J., Mann, G. E., and Hunter, M. G. (2008). A novel physiological culture system that mimics luteal angiogenesis. Reproduction 135, 405–413.
| A novel physiological culture system that mimics luteal angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvVajuro%3D&md5=aa7304fa904fe95e04d33e9a9c505c6fCAS | 18299434PubMed |
Rodgers, R. J., Mitchell, M. D., and Simpson, E. R. (1988). Secretion of progesterone and prostaglandins by cells of bovine corpora lutea from three stages of the luteal phase. J. Endocrinol. 118, 121–126.
| Secretion of progesterone and prostaglandins by cells of bovine corpora lutea from three stages of the luteal phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktlaks7k%3D&md5=dbbfa32be058237d825939c5b0cc73adCAS | 2842428PubMed |
Sakurai, T., Suzuki, K., Yoshie, M., Hashimoto, K., Tachikawa, E., and Tamura, K. (2011). Stimulation of tube formation mediated through the prostaglandin EP2 receptor in rat luteal endothelial cells. J. Endocrinol. 209, 33–43.
| Stimulation of tube formation mediated through the prostaglandin EP2 receptor in rat luteal endothelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1Olsbk%3D&md5=b64917b5d38d37e13be2889172d72567CAS | 21273371PubMed |
Sales, K. J., List, T., Boddy, S. C., Williams, A. R., Anderson, R. A., Naor, Z., and Jabbour, H. N. (2005). A novel angiogenic role for prostaglandin F2alpha–FP receptor interaction in human endometrial adenocarcinomas. Cancer Res. 65, 7707–7716.
| 1:CAS:528:DC%2BD2MXpslaiur8%3D&md5=1214943e6eaded026524e91cc859ddb7CAS | 16140938PubMed |
Sato, Y. (2011). Is vasohibin-1 for more than angiogenesis inhibition? J. Biochem. 149, 229–230.
| Is vasohibin-1 for more than angiogenesis inhibition?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1elur0%3D&md5=76b08c88afc47f865d20767b2f9a8ba4CAS | 21217147PubMed |
Sato, Y., and Sonoda, H. (2007). The vasohibin family: a negative regulatory system of angiogenesis genetically programmed in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 27, 37–41.
| The vasohibin family: a negative regulatory system of angiogenesis genetically programmed in endothelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSrsb%2FK&md5=f986c670e1a0f063d933c09b6cb67763CAS | 17095714PubMed |
Schledzewski, K., Falkowski, M., Moldenhauer, G., Metharom, P., Kzhyshkowska, J., Ganss, R., Demory, A., Falkowska-Hansen, B., Kurzen, H., Ugurel, S., Geginat, G., Arnold, B., and Goerdt, S. (2006). Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J. Pathol. 209, 67–77.
| Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVSmtLs%3D&md5=16e1044dff955ba238e085d100380f51CAS | 16482496PubMed |
Shen, L., Smith, J. M., Shen, Z., Eriksson, M., Sentman, C., and Wira, C. R. (2007). Inhibition of human neutrophil degranulation by transforming growth factor-beta1. Clin. Exp. Immunol. 149, 155–161.
| Inhibition of human neutrophil degranulation by transforming growth factor-beta1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFKktLY%3D&md5=23eb1611b12700c3f5f3246879de1418CAS | 17403059PubMed |
Shimizu, T., Kaji, A., Murayama, C., Magata, F., Shirasuna, K., Wakamiya, K., Okuda, K., and Miyamoto, A. (2012). Effects of interleukin-8 on estradiol and progesterone production by bovine granulosa cells from large follicles and progesterone production by luteinizing granulosa cells in culture. Cytokine 57, 175–181.
| Effects of interleukin-8 on estradiol and progesterone production by bovine granulosa cells from large follicles and progesterone production by luteinizing granulosa cells in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yrsrfL&md5=5fc57d2b2f4e86b44ba05659c0a14aaeCAS | 22129622PubMed |
Shirasuna, K., Sasahara, K., Matsui, M., Shimizu, T., and Miyamoto, A. (2010). Prostaglandin F2alpha differentially affects mRNA expression relating to angiogenesis, vasoactivation and prostaglandins in the early and mid corpus luteum in the cow. J. Reprod. Dev. 56, 428–436.
| Prostaglandin F2alpha differentially affects mRNA expression relating to angiogenesis, vasoactivation and prostaglandins in the early and mid corpus luteum in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOhsLbE&md5=ec3a810a33a819a9ad2a110bbc1f1421CAS | 20484870PubMed |
Shirasuna, K., Jiemtaweeboon, S., Raddatz, S., Nitta, A., Schuberth, H. J., Bollwein, H., Shimizu, T., and Miyamoto, A. (2012a). Rapid accumulation of polymorphonuclear neutrophils in the corpus luteum during prostaglandin F(2alpha)-induced luteolysis in the cow. PLoS One 7, e29054.
| Rapid accumulation of polymorphonuclear neutrophils in the corpus luteum during prostaglandin F(2alpha)-induced luteolysis in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsFaktw%3D%3D&md5=d662ed98c14306ec3ada93977ace1549CAS | 22235260PubMed |
Shirasuna, K., Kobayashi, A., Nitta, A., Nibuno, S., Sasahara, K., Shimizu, T., Bollwein, H., and Miyamoto, A. (2012b). Possible action of vasohibin-1 as an inhibitor in the regulation of vascularization of the bovine corpus luteum. Reproduction 143, 491–500.
| Possible action of vasohibin-1 as an inhibitor in the regulation of vascularization of the bovine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntV2nsLo%3D&md5=67b594628159bb1349bb4646ddc8eb70CAS | 22367587PubMed |
Short, R. E., Staigmiller, R. B., Bellows, R. A., and Ford, S. P. (1995). Endocrine responses in cows fed ponderosa pine needles and the effects of stress, corpus luteum regression, progestin, and ketoprofen. J. Anim. Sci. 73, 198–205.
| 1:CAS:528:DyaK2MXjtVKhtbw%3D&md5=5391b5761de69af110650bc30cb99fcfCAS | 7601734PubMed |
Sica, A., Larghi, P., Mancino, A., Rubino, L., Porta, C., Totaro, M. G., Rimoldi, M., Biswas, S. K., Allavena, P., and Mantovani, A. (2008). Macrophage polarization in tumour progression. Semin. Cancer Biol. 18, 349–355.
| Macrophage polarization in tumour progression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVGmsLo%3D&md5=7222c13ae138ba76f398bc0c998fe2eeCAS | 18467122PubMed |
Singhal, P. C., Sankaran, R. T., Nahar, N., Shah, N., and Patel, P. (2000). Vasoactive agents modulate migration of monocytes across glomerular endothelial cells. J. Investig. Med. 48, 110–117.
| 1:CAS:528:DC%2BD3cXivF2htLs%3D&md5=4a16fff000646d0f458dd52333ae6e6eCAS | 10736970PubMed |
Spencer, T. E., Burghardt, R. C., Johnson, G. A., and Bazer, F. W. (2004). Conceptus signals for establishment and maintenance of pregnancy. Anim. Reprod. Sci. 82–83, 537–550.
| Conceptus signals for establishment and maintenance of pregnancy.Crossref | GoogleScholarGoogle Scholar | 15271478PubMed |
Standaert, F. E., Zamora, C. S., and Chew, B. P. (1991). Quantitative and qualitative changes in blood leukocytes in the porcine ovary. Am. J. Reprod. Immunol. 25, 163–168.
| 1:STN:280:DyaK387ltlaksQ%3D%3D&md5=b2bef43f23a1e14d9e9e0bf4ae9ebf07CAS | 1786085PubMed |
Tajima, T., Murata, T., Aritake, K., Urade, Y., Hirai, H., Nakamura, M., Ozaki, H., and Hori, M. (2008). Lipopolysaccharide induces macrophage migration via prostaglandin D(2) and prostaglandin E(2). J. Pharmacol. Exp. Ther. 326, 493–501.
| Lipopolysaccharide induces macrophage migration via prostaglandin D(2) and prostaglandin E(2).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVWqsrY%3D&md5=dd48a5177b5234a8ec1ed848e06d342cCAS | 18492946PubMed |
Tazzyman, S., Lewis, C. E., and Murdoch, C. (2009). Neutrophils: key mediators of tumour angiogenesis. Int. J. Exp. Pathol. 90, 222–231.
| Neutrophils: key mediators of tumour angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotV2ju7g%3D&md5=6f465e638d7ed4da608a78a66adc1c7eCAS | 19563607PubMed |
Tombran-Tink, J., Chader, G. G., and Johnson, L. V. (1991). PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp. Eye Res. 53, 411–414.
| PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsVyktrY%3D&md5=1355d390cce92255db13ef1a83e75b4bCAS | 1936177PubMed |
Townson, D. H., and Liptak, A. R. (2003). Chemokines in the corpus luteum: implications of leukocyte chemotaxis. Reprod. Biol. Endocrinol. 1, 94.
| Chemokines in the corpus luteum: implications of leukocyte chemotaxis.Crossref | GoogleScholarGoogle Scholar | 14613530PubMed |
Townson, D. H., O’Connor, C. L., and Pru, J. K. (2002). Expression of monocyte chemoattractant protein-1 and distribution of immune cell populations in the bovine corpus luteum throughout the estrous cycle. Biol. Reprod. 66, 361–366.
| Expression of monocyte chemoattractant protein-1 and distribution of immune cell populations in the bovine corpus luteum throughout the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVSltg%3D%3D&md5=646fd1195579493c92f1cea307168bcfCAS | 11804949PubMed |
Turner, E. C., Hughes, J., Wilson, H., Clay, M., Mylonas, K. J., Kipari, T., Duncan, W. C., and Fraser, H. M. (2011). Conditional ablation of macrophages disrupts ovarian vasculature. Reproduction 141, 821–831.
| Conditional ablation of macrophages disrupts ovarian vasculature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVCktb8%3D&md5=484e040c4b9665d0b1240172b9c4a258CAS | 21393340PubMed |
Wang, Y., and Oliver, G. (2010). Current views on the function of the lymphatic vasculature in health and disease. Genes Dev. 24, 2115–2126.
| Current views on the function of the lymphatic vasculature in health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWrtL7L&md5=945d91b95a315e9abae501ee70bd6272CAS | 20889712PubMed |
Watanabe, K., Hasegawa, Y., Yamashita, H., Shimizu, K., Ding, Y., Abe, M., Ohta, H., Imagawa, K., Hojo, K., Maki, H., Sonoda, H., and Sato, Y. (2004). Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. J. Clin. Invest. 114, 898–907.
| 1:CAS:528:DC%2BD2cXot12gtr8%3D&md5=6531e84165f0571d04258e2074182e2eCAS | 15467828PubMed |
Xu, F., and Stouffer, R. L. (2009). Existence of the lymphatic system in the primate corpus luteum. Lymphat. Res. Biol. 7, 159–168.
| Existence of the lymphatic system in the primate corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOkur%2FL&md5=8621e0cb3c113aeee487f4208517317cCAS | 19778204PubMed |
Yamada, Y., Nezu, J., Shimane, M., and Hirata, Y. (1997). Molecular cloning of a novel vascular endothelial growth factor, VEGF-D. Genomics 42, 483–488.
| Molecular cloning of a novel vascular endothelial growth factor, VEGF-D.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFOmtb0%3D&md5=fba1764c88e03f0f1b11d61bf073b8e9CAS | 9205122PubMed |
Yamashita, H., Abe, M., Watanabe, K., Shimizu, K., Moriya, T., Sato, A., Satomi, S., Ohta, H., Sonoda, H., and Sato, Y. (2006). Vasohibin prevents arterial neointimal formation through angiogenesis inhibition. Biochem. Biophys. Res. Commun. 345, 919–925.
| Vasohibin prevents arterial neointimal formation through angiogenesis inhibition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1Cmsbw%3D&md5=1030681c7684b74e3f5d85d03057ed60CAS | 16707096PubMed |
Yasuda, M., Shimizu, S., Tokuyama, S., Watanabe, T., Kiuchi, Y., and Yamamoto, T. (2000). A novel effect of polymorphonuclear leukocytes in the facilitation of angiogenesis. Life Sci. 66, 2113–2121.
| A novel effect of polymorphonuclear leukocytes in the facilitation of angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislOhs7c%3D&md5=4ec5d91496564b5ef916c3d47a455324CAS | 10823350PubMed |
Yoshinaga, K., Ito, K., Moriya, T., Nagase, S., Takano, T., Niikura, H., Yaegashi, N., and Sato, Y. (2008). Expression of vasohibin as a novel endothelium-derived angiogenesis inhibitor in endometrial cancer. Cancer Sci. 99, 914–919.
| Expression of vasohibin as a novel endothelium-derived angiogenesis inhibitor in endometrial cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslCrsbY%3D&md5=d8c0aea8dcefc8be49912c90cff357d3CAS | 18325046PubMed |
Zarco, L., Stabenfeldt, G. H., Quirke, J. F., Kindahl, H., and Bradford, G. E. (1988). Release of prostaglandin F-2 alpha and the timing of events associated with luteolysis in ewes with oestrous cycles of different lengths. J. Reprod. Fertil. 83, 517–526.
| Release of prostaglandin F-2 alpha and the timing of events associated with luteolysis in ewes with oestrous cycles of different lengths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlt1ejtb8%3D&md5=d7f41480eab5dfc75ed431ffb5a7131cCAS | 3166069PubMed |
Zheng, J., Redmer, D. A., and Reynolds, L. P. (1993). Vascular development and heparin-binding growth factors in the bovine corpus luteum at several stages of the estrous cycle. Biol. Reprod. 49, 1177–1189.
| Vascular development and heparin-binding growth factors in the bovine corpus luteum at several stages of the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXpvVE%3D&md5=12cbb2e24e21e3cf77e6aa9497fd797eCAS | 7506941PubMed |
Zittermann, S. I., and Issekutz, A. C. (2006). Endothelial growth factors VEGF and bFGF differentially enhance monocyte and neutrophil recruitment to inflammation. J. Leukoc. Biol. 80, 247–257.
| Endothelial growth factors VEGF and bFGF differentially enhance monocyte and neutrophil recruitment to inflammation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1OnsLw%3D&md5=92a9950f6b975469eb1ebbd79057835fCAS | 16818728PubMed |