Actin nucleator Arp2/3 complex is essential for mouse preimplantation embryo development
Shao-Chen Sun A B , Qing-Ling Wang A , Wei-Wei Gao A , Yong-Nan Xu A , Hong-Lin Liu B , Xiang-Shun Cui A and Nam-Hyung Kim A CA Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea.
B College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
C Corresponding author. Email: nhkim@chungbuk.ac.kr
Reproduction, Fertility and Development 25(4) 617-623 https://doi.org/10.1071/RD12011
Submitted: 12 January 2012 Accepted: 15 May 2012 Published: 15 June 2012
Abstract
The Arp2/3 complex is a critical actin nucleator, which promotes actin assembly and is widely involved in a diverse range of actin-related processes such as cell locomotion, phagocytosis and the establishment of cell polarity. Previous studies showed that the Arp2/3 complex regulates spindle migration and asymmetric division during mouse oocyte maturation; however, the role of the Arp2/3 complex in early mouse embryo development is still unknown. The results of the present study show that the Arp2/3 complex is critical for cytokinesis during mouse embryo development. The Arp2/3 complex was concentrated at the cortex of each cell at the 2- to 8-cell stage and the peripheral areas of the morula and blastocyst. Inhibition of the Arp2/3 complex by the specific inhibitor CK666 at the zygote stage caused a failure in cell division; mouse embryos failed to undergo compaction and lost apical–basal polarity. The actin level decreased in the CK666-treated group, and two or more nuclei were observed within a single cell, indicating a failure of cell division. Addition of CK666 at the 8-cell stage caused a failure of blastocyst formation, and CDX2 staining confirmed the loss of embryo polarity and the failure of trophectoderm and inner cell mass formation. Taken together, these data suggest that the Arp2/3 complex may regulate mouse embryo development via its effect on cell division.
Additional keywords: blastocyst, cytokinesis, inner cell mass, microfilament, trophectoderm.
References
Alarcon, V. B. (2010). Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo. Biol. Reprod. 83, 347–358.| Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrsrrJ&md5=3c3db90ce52ba1507812472712c0db2aCAS | 20505164PubMed |
Bailly, M., Ichetovkin, I., Grant, W., Zebda, N., Machesky, L. M., Segall, J. E., and Condeelis, J. (2001). The F-actin side-binding activity of the Arp2/3 complex is essential for actin nucleation and lamellipod extension. Curr. Biol. 11, 620–625.
| The F-actin side-binding activity of the Arp2/3 complex is essential for actin nucleation and lamellipod extension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlenu7k%3D&md5=16c4d9f38a306221b7c6e3eca320110eCAS | 11369208PubMed |
Campellone, K. G., and Welch, M. D. (2010). A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11, 237–251.
| A nucleator arms race: cellular control of actin assembly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFSqu7g%3D&md5=19a94fcb9259c03f9037506b34c16703CAS | 20237478PubMed |
Eckert, J. J., McCallum, A., Mears, A., Rumsby, M. G., Cameron, I. T., and Fleming, T. P. (2004a). PKC signalling regulates tight-junction membrane assembly in the pre-implantation mouse embryo. Reproduction 127, 653–667.
| PKC signalling regulates tight-junction membrane assembly in the pre-implantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Ohu78%3D&md5=e2587ded7f34167e887e5e43c8819516CAS | 15175502PubMed |
Eckert, J. J., McCallum, A., Mears, A., Rumsby, M. G., Cameron, I. T., and Fleming, T. P. (2004b). Specific PKC isoforms regulate blastocoel formation during mouse preimplantation development. Dev. Biol. 274, 384–401.
| Specific PKC isoforms regulate blastocoel formation during mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVyqsrw%3D&md5=2ac198958890d834b5e78462082f852cCAS | 15385166PubMed |
Georgiou, M., Marinari, E., Burden, J., and Baum, B. (2008). Cdc42, Par6 and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr. Biol. 18, 1631–1638.
| Cdc42, Par6 and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGmtrjJ&md5=88eb4e0fe819f2031554749545c37c12CAS | 18976918PubMed |
Goley, E. D., and Welch, M. D. (2006). The ARP2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol. 7, 713–726.
| The ARP2/3 complex: an actin nucleator comes of age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVCmurs%3D&md5=e9465180e2ee0bd446bda8338375fb96CAS | 16990851PubMed |
Ma, L., Rohatgi, R., and Kirschner, M. W. (1998). The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42. Proc. Natl. Acad. Sci. USA 95, 15362–15367.
| The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFaltg%3D%3D&md5=c6916c0468867f3064d1ad23a1820922CAS | 9860974PubMed |
Marikawa, Y., and Alarcon, V. B. (2009). Establishment of trophectoderm and inner cell mass lineages in the mouse embryo. Mol. Reprod. Dev. 76, 1019–1032.
| Establishment of trophectoderm and inner cell mass lineages in the mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFent7rL&md5=55e56dd1ab5763431ef9cadb34b20c81CAS | 19479991PubMed |
Moreau, V., Galan, J. M., Devilliers, G., Haguenauer-Tsapis, R., and Winsor, B. (1997). The yeast actin-related protein Arp2p is required for the internalization step of endocytosis. Mol. Biol. Cell 8, 1361–1375.
| 1:CAS:528:DyaK2sXkvVamsbo%3D&md5=ecdad04020e35bbd260b4b376061afbaCAS | 9243513PubMed |
Nolen, B. J., Tomasevic, N., Russell, A., Pierce, D. W., Jia, Z., McCormick, C. D., Hartman, J., Sakowicz, R., and Pollard, T. D. (2009). Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature 460, 1031–1034.
| Characterization of two classes of small molecule inhibitors of Arp2/3 complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Ogtbw%3D&md5=1e135d1969a8f852a0d1d33e5058c7bdCAS | 19648907PubMed |
Pelham, R. J., and Chang, F. (2002). Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature 419, 82–86.
| Actin dynamics in the contractile ring during cytokinesis in fission yeast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmslahuro%3D&md5=063165beae0120a22a1b28a8f6b26f16CAS | 12214236PubMed |
Pollard, T. D. (2007). Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 36, 451–477.
| Regulation of actin filament assembly by Arp2/3 complex and formins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVagsr4%3D&md5=060ae6edbf776761ffd04db74eb9da13CAS | 17477841PubMed |
Pollard, T. D. (2010). Mechanics of cytokinesis in eukaryotes. Curr. Opin. Cell Biol. 22, 50–56.
| Mechanics of cytokinesis in eukaryotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWqsbk%3D&md5=f01f99e7ae98694c0a69d4d2f5272c35CAS | 20031383PubMed |
Rawe, V. Y., Payne, C., and Schatten, G. (2006). Profilin and actin-related proteins regulate microfilament dynamics during early mammalian embryogenesis. Hum. Reprod. 21, 1143–1153.
| Profilin and actin-related proteins regulate microfilament dynamics during early mammalian embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFWjtLg%3D&md5=abc433657ce595b47f6a212de4cd54aeCAS | 16428331PubMed |
Rogers, S. L., Wiedemann, U., Stuurman, N., and Vale, R. D. (2003). Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol. 162, 1079–1088.
| Molecular requirements for actin-based lamella formation in Drosophila S2 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVWjsLY%3D&md5=fe474e2729f8cb93baac8d973df02d96CAS | 12975351PubMed |
Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., and Kirschner, M. W. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231.
| The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislent70%3D&md5=b9e5c2a78068348679cc24977ce48bd8CAS | 10219243PubMed |
Roh-Johnson, M., and Goldstein, B. (2009). In vivo roles for Arp2/3 in cortical actin organization during C. elegans gastrulation. J. Cell Sci. 122, 3983–3993.
| In vivo roles for Arp2/3 in cortical actin organization during C. elegans gastrulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWhurbE&md5=5f8d00339cf85e4499b35b604a3621f9CAS | 19889970PubMed |
Rossant, J. (2004). Lineage development and polar asymmetries in the peri-implantation mouse blastocyst. Semin. Cell Dev. Biol. 15, 573–581.
| Lineage development and polar asymmetries in the peri-implantation mouse blastocyst.Crossref | GoogleScholarGoogle Scholar | 15271303PubMed |
Rouiller, I., Xu, X. P., Amann, K. J., Egile, C., Nickell, S., Nicastro, D., Li, R., Pollard, T. D., Volkmann, N., and Hanein, D. (2008). The structural basis of actin filament branching by the Arp2/3 complex. J. Cell Biol. 180, 887–895.
| The structural basis of actin filament branching by the Arp2/3 complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlKmtb0%3D&md5=7575bf93c7c5555ddaef8a1d91c15fecCAS | 18316411PubMed |
Schaerer-Brodbeck, C., and Riezman, H. (2000). Functional interactions between the p35 subunit of the Arp2/3 complex and calmodulin in yeast. Mol. Biol. Cell 11, 1113–1127.
| 1:CAS:528:DC%2BD3cXlt1Wlu74%3D&md5=9afb47d5eef2805dfd4e5d9ee4af65f5CAS | 10749918PubMed |
Steffen, A., Faix, J., Resch, G. P., Linkner, J., Wehland, J., Small, J. V., Rottner, K., and Stradal, T. E. (2006). Filopodia formation in the absence of functional WAVE and Arp2/3 complexes. Mol. Biol. Cell 17, 2581–2591.
| Filopodia formation in the absence of functional WAVE and Arp2/3 complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVCisr8%3D&md5=24ebeb8bf77903a50fd4887418d3e615CAS | 16597702PubMed |
Stephenson, R. O., Yamanaka, Y., and Rossant, J. (2010). Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development 137, 3383–3391.
| Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSntLrI&md5=f0a218c563215ac7eb01ee4b60123b6cCAS | 20826529PubMed |
Sun, S. C., and Kim, N. H. (2011). GM130: new insights into oocyte asymmetric division. Cell Cycle 10, 2419.
| GM130: new insights into oocyte asymmetric division.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xktlarug%3D%3D&md5=1695ebda2436b948456b3f11cf5810e1CAS | 21734461PubMed |
Sun, S. C., Sun, Q. Y., and Kim, N. H. (2011a). JMY is required for asymmetric division and cytokinesis in mouse oocytes. Mol. Hum. Reprod. 17, 296–304.
| JMY is required for asymmetric division and cytokinesis in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 21266449PubMed |
Sun, S. C., Wang, Z. B., Xu, Y. N., Lee, S. E., Cui, X. S., and Kim, N. H. (2011b). Arp2/3 complex regulates asymmetric division and cytokinesis in mouse oocytes. PLoS ONE 6, e18392.
| Arp2/3 complex regulates asymmetric division and cytokinesis in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVWks7s%3D&md5=ad34b61d54cf415f089ae8c65103b048CAS | 21494665PubMed |
Sun, S. C., Xu, Y. N., Li, Y. H., Lee, S. E., Jin, Y. X., Cui, X. S., and Kim, N. H. (2011c). WAVE2 regulates meiotic spindle stability, peripheral positioning and polar body emission in mouse oocytes. Cell Cycle 10, 1853–1860.
| WAVE2 regulates meiotic spindle stability, peripheral positioning and polar body emission in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1eku7zE&md5=e0b52a4384c742cdf220f71dbc2088b4CAS | 21543895PubMed |
Tadros, W., and Lipshitz, H. D. (2009). The maternal-to-zygotic transition: a play in two acts. Development 136, 3033–3042.
| The maternal-to-zygotic transition: a play in two acts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSisbfM&md5=28b2ae83cf4302c22bba756a4f0886adCAS | 19700615PubMed |
Welch, M. D., DePace, A. H., Verma, S., Iwamatsu, A., and Mitchison, T. J. (1997). The human Arp2/3 complex is composed of evolutionarily-conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138, 375–384.
| The human Arp2/3 complex is composed of evolutionarily-conserved subunits and is localized to cellular regions of dynamic actin filament assembly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvFCjsr8%3D&md5=9722c6524f13afb05ac5f16ab52f8f06CAS | 9230079PubMed |
Xiong, H., Mohler, W. A., and Soto, M. C. (2011). The branched actin nucleator Arp2/3 promotes nuclear migrations and cell polarity in the C. elegans zygote. Dev. Biol. 357, 356–369.
| The branched actin nucleator Arp2/3 promotes nuclear migrations and cell polarity in the C. elegans zygote.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSjtbrE&md5=a89cfe9d97de48b2b28d2a4641f43e1eCAS | 21798253PubMed |
Yae, K., Keng, V. W., Koike, M., Yusa, K., Kouno, M., Uno, Y., Kondoh, G., Gotow, T., Uchiyama, Y., Horie, K., and Takeda, J. (2006). Sleeping beauty transposon-based phenotypic analysis of mice: lack of Arpc3 results in defective trophoblast outgrowth. Mol. Cell. Biol. 26, 6185–6196.
| Sleeping beauty transposon-based phenotypic analysis of mice: lack of Arpc3 results in defective trophoblast outgrowth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1yltL8%3D&md5=0f980125d42d2bd2d63231008acbe831CAS | 16880528PubMed |
Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., Segall, J., Eddy, R., Miki, H., Takenawa, T., and Condeelis, J. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J. Cell Biol. 168, 441–452.
| Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWktLc%3D&md5=bdedb0cdaa14ffd518c43a972e73170cCAS | 15684033PubMed |
Yi, K., Unruh, J. R., Deng, M., Slaughter, B. D., Rubinstein, B., and Li, R. (2011). Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3 complex-driven cytoplasmic streaming in mouse oocytes. Nat. Cell Biol. 13, 1252–1258.
| Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3 complex-driven cytoplasmic streaming in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFylsL7M&md5=a2ed1eb8ec92e1e3874080c19af1f9d4CAS | 21874009PubMed |
Yurttas, P., Morency, E., and Coonrod, S. A. (2010). Use of proteomics to identify highly abundant maternal factors that drive the egg-to-embryo transition. Reproduction 139, 809–823.
| Use of proteomics to identify highly abundant maternal factors that drive the egg-to-embryo transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgsLw%3D&md5=0265e58d4b6608e7bc5fce49998bac27CAS | 20106898PubMed |