Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Microtubule organisation, pronuclear formation and embryonic development of mouse oocytes after intracytoplasmic sperm injection or parthenogenetic activation and then slow-freezing with 1,2-propanediol

Dun-Gao Li A C D , Yan Zhu B D , Feng-Ying Xing A , Shan-Gang Li A , Xue-Jin Chen A E and Man-Xi Jiang A E
+ Author Affiliations
- Author Affiliations

A Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

B Key Laboratory of Contraceptive Drugs and Devices of National Population and Family Planning Committee, Shanghai Institute of Planned Parenthood Research, 2140 Xie Tu Road, Shanghai 200032, China.

C College of Wildlife Resource, Northeast Forestry University, Harbin 150040, China.

D These authors contributed equally to this work.

E Corresponding author. Emails: manxijiang2002@yahoo.com.cn; chenxuej@yahoo.com.cn

Reproduction, Fertility and Development 25(4) 609-616 https://doi.org/10.1071/RD12124
Submitted: 22 March 2012  Accepted: 7 May 2012   Published: 28 May 2012

Abstract

The goal of this study was to investigate the effect of cryopreservation on oocytes at different times after intracytoplasmic sperm injection (ICSI) and parthenogenetic activation. The study was performed in mouse oocytes fertilised by ICSI, or in artificially-activated oocytes, which were cryopreserved immediately, one hour or five hours later through slow-freezing. After thawing, the rates of survival, fertilisation–activation, embryonic development of oocytes–zygotes and changes in the cytoskeleton and ploidy were observed. Our results reveal a significant difference in survival rates of 0-, 1- and 5-h cryopreserved oocytes following ICSI and artificial activation. Moreover, significant differences in two pronuclei (PN) development existed between the 0-, 1- and 5-h groups of oocytes frozen after ICSI, while the rates of two-PN development of activated oocytes were different between the 1-h and 5-h groups. Despite these initial differences, there was no difference in the rate of blastocyst formation from two-PN zygotes following ICSI or artificial activation. However, compared with ICSI or artificially-activated oocytes cryopreserved at 5 h, many oocytes from the 0- and 1-h cryopreservation groups developed to zygotes with abnormal ploidy; this suggests that too little time before cryopreservation can result in some activated oocytes forming abnormal ploidy. However, our results also demonstrate that spermatozoa can maintain normal fertilisation capacity in frozen ICSI oocytes and the procedure of freeze–thawing did not affect the later development of zygotes.

Additional keywords: ICSI, ploidy, spindle.


References

Anger, J. T., Gilbert, B. R., and Goldstein, M. (2003). Cryopreservation of sperm: indications, methods and results. J. Urol. 170, 1079–1084.
Cryopreservation of sperm: indications, methods and results.Crossref | GoogleScholarGoogle Scholar | 14501696PubMed |

Arav, A., Zeron, Y., Leslie, S. B., Behboodi, E., Anderson, G. B., and Crowe, J. H. (1996). Phase transition temperature and chilling sensitivity of bovine oocytes. Cryobiology 33, 589–599.
Phase transition temperature and chilling sensitivity of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s7jtVyqsQ%3D%3D&md5=75ff2ad28cda8770f618e2502b5f682aCAS | 8975686PubMed |

Boiso, I., Marti, M., Santalo, J., Ponsa, M., Barri, P. N., and Veiga, A. (2002). A confocal microscopy analysis of the spindle and chromosome configurations of human oocytes cryopreserved at the germinal vesicle and metaphase II stage. Hum. Reprod. 17, 1885–1891.
A confocal microscopy analysis of the spindle and chromosome configurations of human oocytes cryopreserved at the germinal vesicle and metaphase II stage.Crossref | GoogleScholarGoogle Scholar | 12093855PubMed |

Bouquet, M., Selva, J., and Auroux, M. (1992). The incidence of chromosomal abnormalities in frozen–thawed mouse oocytes after in vitro fertilization. Hum. Reprod. 7, 76–80.
| 1:STN:280:DyaK383gt1emsw%3D%3D&md5=75dd44d27eb87614fea6a55b789c4eceCAS | 1551965PubMed |

Bouquet, M., Selva, J., and Auroux, M. (1995). Effects of cooling and equilibration in DMSO, and cryopreservation of mouse oocytes, on the rates of in vitro fertilization, development and chromosomal abnormalities. Mol. Reprod. Dev. 40, 110–115.
Effects of cooling and equilibration in DMSO, and cryopreservation of mouse oocytes, on the rates of in vitro fertilization, development and chromosomal abnormalities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFyrs7s%3D&md5=ad3360024bc0686cbfcc8e640beb82c9CAS | 7702864PubMed |

Carroll, J., Depypere, H., and Matthews, C. D. (1990). Freeze–thaw-induced changes of the zona pellucida explain decreased rates of fertilization in frozen–thawed mouse oocytes. J. Reprod. Fertil. 90, 547–553.
Freeze–thaw-induced changes of the zona pellucida explain decreased rates of fertilization in frozen–thawed mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M%2Fms1artw%3D%3D&md5=d5fb50815a22c0d7b2f39e678387a337CAS | 2250252PubMed |

Chang, C. C., Sung, L. Y., Lin, C. J., Kort, H. I., Yang, X., Tian, X. C., and Nagy, Z. P. (2010). The oocyte spindle is preserved by 1,2-propanediol during slow-freezing. Fertil. Steril. 93, 1430–1439.
The oocyte spindle is preserved by 1,2-propanediol during slow-freezing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslyjtLw%3D&md5=e7c4e3b4cd32f9e2cb770d0f500d764aCAS | 19324351PubMed |

Chatot, C. L., Ziomek, C. A., Bavister, B. D., Lewis, J. L., and Torres, I. (1989). An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86, 679–688.
| 1:STN:280:DyaL1Mzkt1emtA%3D%3D&md5=af36e5a7868a120439a9f0cc1975a358CAS | 2760894PubMed |

Chen, C. (1986). Pregnancy after human oocyte cryopreservation. Lancet 327, 884–886.
Pregnancy after human oocyte cryopreservation.Crossref | GoogleScholarGoogle Scholar |

Chen, S. U., Lien, Y. R., Chen, H. F., Chang, L. J., Tsai, Y. Y., and Yang, Y. S. (2005). Observational clinical follow-up of oocyte cryopreservation using a slow-freezing method with 1,2-propanediol plus sucrose followed by ICSI. Hum. Reprod. 20, 1975–1980.
Observational clinical follow-up of oocyte cryopreservation using a slow-freezing method with 1,2-propanediol plus sucrose followed by ICSI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2ksrs%3D&md5=9ab0fa95f3e49e169d99ac34b5357501CAS | 15790604PubMed |

Cobo, A., Rubio, C., Gerli, S., Ruiz, A., Pellicer, A., and Remohi, J. (2001). Use of fluorescence in situ hybridization to assess the chromosomal status of embryos obtained from cryopreserved oocytes. Fertil. Steril. 75, 354–360.
Use of fluorescence in situ hybridization to assess the chromosomal status of embryos obtained from cryopreserved oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7ktlCgug%3D%3D&md5=ba22f79afe4db4aefb1f2640fa91aee6CAS | 11172839PubMed |

de Melo-Martin, I., and Cholst, I. N. (2008). Researching human oocyte cryopreservation: ethical issues. Fertil. Steril. 89, 523–528.
Researching human oocyte cryopreservation: ethical issues.Crossref | GoogleScholarGoogle Scholar | 17511993PubMed |

Eroglu, A., Toth, T. L., and Toner, M. (1998). Alterations of the cytoskeleton and polyploidy induced by cryopreservation of metaphase II mouse oocytes. Fertil. Steril. 69, 944–957.
Alterations of the cytoskeleton and polyploidy induced by cryopreservation of metaphase II mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3lt1Wrsw%3D%3D&md5=1082a6f424632e7a522cf1e8c63412a9CAS | 9591507PubMed |

Fabbri, R., Porcu, E., Marsella, T., Rocchetta, G., Venturoli, S., and Flamigni, C. (2001). Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum. Reprod. 16, 411–416.
Human oocyte cryopreservation: new perspectives regarding oocyte survival.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3jsFSnsw%3D%3D&md5=67550f39ff6d8e33edb6b8ed08f820f0CAS | 11228204PubMed |

Glenister, P. H., Wood, M. J., Kirby, C., and Whittingham, D. G. (1987). Incidence of chromosome anomalies in first-cleavage mouse embryos obtained from frozen–thawed oocytes fertilized in vitro. Gamete Res. 16, 205–216.
Incidence of chromosome anomalies in first-cleavage mouse embryos obtained from frozen–thawed oocytes fertilized in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7lsVaksw%3D%3D&md5=78ce3c9ccd0d7724b70ef013cb2cc08cCAS | 3506911PubMed |

Gook, D. A., and Edgar, D. H. (1999). Cryopreservation of the human female gamete: current and future issues. Hum. Reprod. 14, 2938–2940.
Cryopreservation of the human female gamete: current and future issues.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FmvFyjsw%3D%3D&md5=a31005c08a90deada3c0e119305cd486CAS | 10601074PubMed |

Gook, D. A., and Edgar, D. H. (2007). Human oocyte cryopreservation. Hum. Reprod. Update 13, 591–605.
Human oocyte cryopreservation.Crossref | GoogleScholarGoogle Scholar | 17846105PubMed |

Gook, D. A., Osborn, S. M., and Johnston, W. I. (1993). Cryopreservation of mouse and human oocytes using 1,2-propanediol and the configuration of the meiotic spindle. Hum. Reprod. 8, 1101–1109.
| 1:STN:280:DyaK2c%2Fhtlehsg%3D%3D&md5=ab11604115ce0657d5add36096366c43CAS | 8408494PubMed |

Gualtieri, R., Iaccarino, M., Mollo, V., Prisco, M., Iaccarino, S., and Talevi, R. (2009). Slow cooling of human oocytes: ultrastructural injuries and apoptotic status. Fertil. Steril. 91, 1023–1034.
Slow cooling of human oocytes: ultrastructural injuries and apoptotic status.Crossref | GoogleScholarGoogle Scholar | 18367177PubMed |

Huang, J. Y., Chen, H. Y., Tan, S. L., and Chian, R. C. (2007). Effect of choline-supplemented sodium-depleted slow-freezing versus vitrification on mouse oocyte meiotic spindles and chromosome abnormalities. Fertil. Steril. 88, 1093–1100.
Effect of choline-supplemented sodium-depleted slow-freezing versus vitrification on mouse oocyte meiotic spindles and chromosome abnormalities.Crossref | GoogleScholarGoogle Scholar | 17544423PubMed |

Jiang, M. X., Zhu, Y., Zhu, Z. Y., Sun, Q. Y., and Chen, D. Y. (2005). Effects of cooling, cryopreservation and heating on sperm proteins, nuclear DNA and fertilization capability in mouse. Mol. Reprod. Dev. 72, 129–134.
Effects of cooling, cryopreservation and heating on sperm proteins, nuclear DNA and fertilization capability in mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlClsLg%3D&md5=2a8a0b751a015f48bbb6723c94784b89CAS | 15915517PubMed |

Katz-Jaffe, M. G., Larman, M. G., Sheehan, C. B., and Gardner, D. K. (2008). Exposure of mouse oocytes to 1,2-propanediol during slow-freezing alters the proteome. Fertil. Steril. 89, 1441–1447.
Exposure of mouse oocytes to 1,2-propanediol during slow-freezing alters the proteome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12qsLnL&md5=66df8657419f4879230db88d729a1d7fCAS | 17980362PubMed |

Kawase, Y., Iwata, T., Ueda, O., Kamada, N., Tachibe, T., Aoki, Y., Jishage, K., and Suzuki, H. (2002). Effect of partial incision of the zona pellucida by piezo-micromanipulator for in vitro fertilization using frozen–thawed mouse spermatozoa on the developmental rate of embryos transferred at the 2-cell stage. Biol. Reprod. 66, 381–385.
Effect of partial incision of the zona pellucida by piezo-micromanipulator for in vitro fertilization using frozen–thawed mouse spermatozoa on the developmental rate of embryos transferred at the 2-cell stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVSltQ%3D%3D&md5=9300b4a95aa1ed28b53909eb388eefb5CAS | 11804952PubMed |

Kimura, Y., and Yanagimachi, R. (1995). Intracytoplasmic sperm injection in the mouse. Biol. Reprod. 52, 709–720.
Intracytoplasmic sperm injection in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksFWhtrk%3D&md5=bbf1e4b23c35837ceb68502afef5efacCAS | 7779992PubMed |

Küpker, W., Schlegel, P. N., Al-Hasani, S., Fornara, P., Johannisson, R., Sandmann, J., Schill, T., Bals-Pratsch, M., Ludwig, M., and Diedrich, K. (2000). Use of frozen–thawed testicular sperm for intracytoplasmic sperm injection. Fertil. Steril. 73, 453–458.
Use of frozen–thawed testicular sperm for intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 10688995PubMed |

Kuretake, S., Kimura, Y., Hoshi, K., and Yanagimachi, R. (1996). Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol. Reprod. 55, 789–795.
Fertilization and development of mouse oocytes injected with isolated sperm heads.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls1Gkt7c%3D&md5=e4c5072b200dfd5de7b95b30ee8478d8CAS | 8879491PubMed |

Magli, M. C., Lappi, M., Ferraretti, A. P., Capoti, A., Ruberti, A., and Gianaroli, L. (2010). Impact of oocyte cryopreservation on embryo development. Fertil. Steril. 93, 510–516.
Impact of oocyte cryopreservation on embryo development.Crossref | GoogleScholarGoogle Scholar | 19342025PubMed |

Martínez-Burgos, M., Herrero, L., Megías, D., Salvanes, R., Montoya, M. C., Cobo, A. C., and Garcia-Velasco, J. A. (2011). Vitrification versus slow-freezing of oocytes: effects on morphologic appearance, meiotic spindle configuration and DNA damage. Fertil. Steril. 95, 374–377.
Vitrification versus slow-freezing of oocytes: effects on morphologic appearance, meiotic spindle configuration and DNA damage.Crossref | GoogleScholarGoogle Scholar | 20828688PubMed |

Men, H., Monson, R. L., Parrish, J. J., and Rutledge, J. J. (2003). Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture. Cryobiology 47, 73–81.
Degeneration of cryopreserved bovine oocytes via apoptosis during subsequent culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVGmur4%3D&md5=cc51dfe05631a0d6ec52d744a9d35d55CAS | 12963414PubMed |

Morris, G. J., Acton, E., and Avery, S. (1999). A novel approach to sperm cryopreservation. Hum. Reprod. 14, 1013–1021.
A novel approach to sperm cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3jslGqsA%3D%3D&md5=a5d3a395c713302667ad8631431c3208CAS | 10221235PubMed |

Nakagata, N. (1989). High survival rate of unfertilized mouse oocytes after vitrification. J. Reprod. Fertil. 87, 479–483.
High survival rate of unfertilized mouse oocytes after vitrification.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c%2Fps1Siug%3D%3D&md5=9250b9631e0acc151e2cbb0ec0f4ab72CAS | 2600904PubMed |

Nakagata, N. (2000). Cryopreservation of mouse spermatozoa. Mamm. Genome 11, 572–576.
Cryopreservation of mouse spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFCksbo%3D&md5=73d39c5256b73be3b574949d274f323fCAS | 10886025PubMed |

Nakagata, N. (2011). Cryopreservation of mouse spermatozoa and in vitro fertilization. Methods Mol. Biol. 693, 57–73.
Cryopreservation of mouse spermatozoa and in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Wmu7nN&md5=6ee56c9ecdf45e8b7ef6446aeea492d6CAS | 21080274PubMed |

Nakagata, N., Ueda, S., Yamanouchi, K., Okamoto, M., Matsuda, Y., Tsuchiya, K., Nishimura, M., Oda, S., Koyasu, K., Azuma, S., and Toyoda, Y. (1995). Cryopreservation of wild mouse spermatozoa. Theriogenology 43, 635–643.
Cryopreservation of wild mouse spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVCisA%3D%3D&md5=084798b6b93bbfc64b95c346061e00f8CAS | 16727655PubMed |

O’Neill, G. T., Rolfe, L. R., and Kaufman, M. H. (1991). Developmental potential and chromosome constitution of strontium-induced mouse parthenogenones. Mol. Reprod. Dev. 30, 214–219.
Developmental potential and chromosome constitution of strontium-induced mouse parthenogenones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xjs1Sgsw%3D%3D&md5=ea9317eef296525ac6208c3d01cb00baCAS | 1793599PubMed |

Parkening, T. A., Tsunoda, Y., and Chang, M. C. (1976). Effects of various low temperatures, cryoprotective agents and cooling rates on the survival, fertilizability and development of frozen–thawed mouse eggs. J. Exp. Zool. 197, 369–374.
Effects of various low temperatures, cryoprotective agents and cooling rates on the survival, fertilizability and development of frozen–thawed mouse eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlslCqs7c%3D&md5=ba00d3a43f38bbc846b5e43cb2bba4a5CAS | 965915PubMed |

Perry, A. C., Wakayama, T., Cooke, I. M., and Yanagimachi, R. (2000). Mammalian oocyte activation by the synergistic action of discrete sperm-head components: induction of calcium transients and involvement of proteolysis. Dev. Biol. 217, 386–393.
Mammalian oocyte activation by the synergistic action of discrete sperm-head components: induction of calcium transients and involvement of proteolysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Wrtw%3D%3D&md5=436ff5f01f02e7f44bdcacec94947206CAS | 10625562PubMed |

Ruffing, N. A., Steponkus, P. L., Pitt, R. E., and Parks, J. E. (1993). Osmometric behaviour, hydraulic conductivity and incidence of intracellular ice formation in bovine oocytes at different developmental stages. Cryobiology 30, 562–580.
Osmometric behaviour, hydraulic conductivity and incidence of intracellular ice formation in bovine oocytes at different developmental stages.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7jvFemug%3D%3D&md5=42d4795a7c84d001a02ee2c3cf768b8dCAS | 8306705PubMed |

Sathananthan, A. H., Ng, S. C., Trounson, A. O., Bongso, A., Ratnam, S. S., Ho, J., Mok, H., and Lee, M. N. (1988). The effects of ultrarapid freezing on meiotic and mitotic spindles of mouse oocytes and embryos. Gamete Res. 21, 385–401.
The effects of ultrarapid freezing on meiotic and mitotic spindles of mouse oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7itFyjsw%3D%3D&md5=6f2cb6854f9c6fe2f895931c9df80b65CAS | 3220431PubMed |

Shamonki, M. I., and Oktay, K. (2005). Oocyte and ovarian tissue cryopreservation: indications, techniques, and applications. Semin. Reprod. Med. 23, 266–276.
Oocyte and ovarian tissue cryopreservation: indications, techniques, and applications.Crossref | GoogleScholarGoogle Scholar | 16059833PubMed |

Shinmen, A., Honda, A., Ohkawa, M., Hirose, M., Ogonuki, N., Yuzuriha, M., Miki, H., Mochida, K., Inoue, K., Abe, K., Ito, M., and Ogura, A. (2007). Efficient production of intersubspecific hybrid mice and embryonic stem cells by intracytoplasmic sperm injection. Mol. Reprod. Dev. 74, 1081–1088.
Efficient production of intersubspecific hybrid mice and embryonic stem cells by intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1als7s%3D&md5=dd7361fbfc92079037da703078c1a838CAS | 17290420PubMed |

Stachecki, J. J., and Willadsen, S. M. (2000). Cryopreservation of mouse oocytes using a medium with low sodium content: effect of plunge temperature. Cryobiology 40, 4–12.
Cryopreservation of mouse oocytes using a medium with low sodium content: effect of plunge temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFGjsr4%3D&md5=0872d53a33bb04e59784b085cb91f2eaCAS | 10679145PubMed |

Stachecki, J. J., Cohen, J., and Willadsen, S. (1998a). Detrimental effects of sodium during mouse oocyte cryopreservation. Biol. Reprod. 59, 395–400.
Detrimental effects of sodium during mouse oocyte cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFGnt7k%3D&md5=fbea694ce73b1d8612220266e63795e2CAS | 9687313PubMed |

Stachecki, J. J., Cohen, J., and Willadsen, S. M. (1998b). Cryopreservation of unfertilized mouse oocytes: the effect of replacing sodium with choline in the freezing medium. Cryobiology 37, 346–354.
Cryopreservation of unfertilized mouse oocytes: the effect of replacing sodium with choline in the freezing medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtFGgtbY%3D&md5=5b86a3fd683e62e31c14f62102e1e93fCAS | 9917351PubMed |

Stachecki, J. J., Cohen, J., Schimmel, T., and Willadsen, S. M. (2002). Fetal development of mouse oocytes and zygotes cryopreserved in a nonconventional freezing medium. Cryobiology 44, 5–13.
Fetal development of mouse oocytes and zygotes cryopreserved in a nonconventional freezing medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlSqtrk%3D&md5=9415f6013ed74f2b90ade94855e7c8a1CAS | 12061843PubMed |

Szczygiel, M. A., Kusakabe, H., Yanagimachi, R., and Whittingham, D. G. (2002). Intracytoplasmic sperm injection is more efficient than in vitro fertilization for generating mouse embryos from cryopreserved spermatozoa. Biol. Reprod. 67, 1278–1284.
Intracytoplasmic sperm injection is more efficient than in vitro fertilization for generating mouse embryos from cryopreserved spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsV2rtLw%3D&md5=e48d1342f1f045e82f2ca229f46f978cCAS | 12297546PubMed |

Tada, N., Sato, M., Yamanoi, J., Mizorogi, T., Kasai, K., and Ogawa, S. (1990). Cryopreservation of mouse spermatozoa in the presence of raffinose and glycerol. J. Reprod. Fertil. 89, 511–516.
Cryopreservation of mouse spermatozoa in the presence of raffinose and glycerol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsV2msbY%3D&md5=a388d131074a0b38b1767efa94bcb9efCAS | 2401978PubMed |

Toner, M., Cravalho, E. G., and Armant, D. R. (1990). Water transport and estimated transmembrane potential during freezing of mouse oocytes. J. Membr. Biol. 115, 261–272.
Water transport and estimated transmembrane potential during freezing of mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3czisFanug%3D%3D&md5=e8d0b878a7d3671ec55a19fa09baebd8CAS | 2374161PubMed |

Tournaye, H., Goossens, E., Verheyen, G., Frederickx, V., De Block, G., Devroey, P., and Van Steirteghem, A. (2004). Preserving the reproductive potential of men and boys with cancer: current concepts and future prospects. Hum. Reprod. Update 10, 525–532.
Preserving the reproductive potential of men and boys with cancer: current concepts and future prospects.Crossref | GoogleScholarGoogle Scholar | 15319377PubMed |

Vincent, C., Pickering, S. J., and Johnson, M. H. (1990). The hardening effect of dimethylsulphoxide on the mouse zona pellucida requires the presence of an oocyte and is associated with a reduction in the number of cortical granules present. J. Reprod. Fertil. 89, 253–259.
The hardening effect of dimethylsulphoxide on the mouse zona pellucida requires the presence of an oocyte and is associated with a reduction in the number of cortical granules present.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksFGgsbo%3D&md5=cce9b80f193127e9430f5bebb567024cCAS | 2374118PubMed |

Wakayama, T., and Yanagimachi, R. (1998). Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat. Biotechnol. 16, 639–641.
Development of normal mice from oocytes injected with freeze-dried spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkt1Gns7k%3D&md5=be8f13be223751e6d934a4b414216d90CAS | 9661196PubMed |

Wakayama, T., Whittingham, D. G., and Yanagimachi, R. (1998). Production of normal offspring from mouse oocytes injected with spermatozoa cryopreserved with or without cryoprotection. J. Reprod. Fertil. 112, 11–17.
Production of normal offspring from mouse oocytes injected with spermatozoa cryopreserved with or without cryoprotection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVKqsbg%3D&md5=54b43fac6f46e19de17341814a09ff54CAS | 9538325PubMed |

Whittingham, D. G. (1977). Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at –196 degrees C. J. Reprod. Fertil. 49, 89–94.
Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at –196 degrees C.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2s%2Fps1OhsQ%3D%3D&md5=11a351054ab5436dd3662267dab2985cCAS | 833794PubMed |

Yavetz, H., Lessing, J. B., Niv, Y., Amit, A., Barak, Y., Yovel, I., David, M. P., Peyser, M. R., Yogev, L., Homonnai, Z., and Paz, G. (1991). The efficiency of cryopreserved semen versus fresh semen for in vitro fertilization/embryo transfer. J. In Vitro Fert. Embryo Transf. 8, 145–148.
The efficiency of cryopreserved semen versus fresh semen for in vitro fertilization/embryo transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FhtlGgtg%3D%3D&md5=d8a6118bba3c7a642ea962c7680117baCAS | 1919260PubMed |

Zeron, Y., Pearl, M., Borochov, A., and Arav, A. (1999). Kinetic and temporal factors influence chilling injury to germinal vesicle and mature bovine oocytes. Cryobiology 38, 35–42.
Kinetic and temporal factors influence chilling injury to germinal vesicle and mature bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVait7k%3D&md5=8afebecb8312fc65f90f0326ca6776adCAS | 10079127PubMed |

Zhu, Z. Y., Chen, D. Y., Li, J. S., Lian, L., Lei, L., Han, Z. M., and Sun, Q. Y. (2003). Rotation of meiotic spindle is controlled by microfilaments in mouse oocytes. Biol. Reprod. 68, 943–946.
Rotation of meiotic spindle is controlled by microfilaments in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFGks74%3D&md5=29ff96599d4f817e37958d9bcdc646b7CAS | 12604646PubMed |