Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Differential resistance of mammalian sperm chromatin to oxidative stress as assessed by a two-tailed comet assay

María Enciso A C , Stephen D. Johnston B and Jaime Gosálvez A
+ Author Affiliations
- Author Affiliations

A Unidad de Genética, Edificio de Biología, Universidad Autónoma de Madrid, C/Darwin n° 2, 28049 Madrid, Spain.

B School of Agriculture and Food Science, University of Queensland, Gatton, Qld 4343, Australia.

C Corresponding author. Email: mariaencisolorences@gmail.com

Reproduction, Fertility and Development 23(5) 633-637 https://doi.org/10.1071/RD10269
Submitted: 19 October 2010  Accepted: 11 January 2011   Published: 5 May 2011

Abstract

Protamines of eutherian species are cysteine-rich molecules that become cross-linked by disulfide bonds during epididymal transit, whereas the protamines of most marsupial species lack cysteine residuals. The present study made use of the differences in protamine structure between eutherian and metatherian mammal spermatozoa to examine the comparative resistance of sperm DNA to oxidative damage in three eutherian species (Mus musculus, Homo sapiens, Sus domesticus) and three metatherian species (Vombatus ursinus, Phascolarctos cinereus, Macropus giganteus). Sperm DNA fragmentation of samples exposed to increasing concentrations of hydrogen peroxide was assessed by means of the two-tailed comet assay. The sperm DNA of the marsupial species studied were significantly more sensitive to oxidative stress than the spermatozoa of eutherian species. Such susceptibility is consistent with the lack of disulfide cross-linking in marsupial sperm chromatin and suggests that the oxidation of thiols to disulfides for chromatin condensation during epididymal transit in eutherian mammals is likely to be important in order to provide stability and protect these cells from the genotoxic effects of adverse environments.


References

Ausió, J. (1995). Histone H1 and the evolution of the nuclear sperm-specific proteins. In ‘Advances in Spermatozoal Phylogeny and Taxonomy’. (Eds B. G. M. Jamieson, J. Ausió and J. L. Justine.) pp. 447–462. (Mémoires du Muséum National d’Histoire Naturelle: Paris.)

Balhorn, R. (1989). Mammalian protamines: structure and molecular interactions. In ‘Molecular Biology of Chromosome Function’. (Ed. K. V. Adolph.) pp. 366–395. (Springer-Verlag: New York.)

Bedford, J. M. (1991). The coevolution of mammalian gametes. In ‘A Comparative Overview of Mammalian Fertilization’. (Eds B. S. Dunbar and M. G. O’Rand.) pp. 3–35. (Plenum Press: New York.)

Bennetts, L. E., and Aitken, R. J. (2005). A comparative study of oxidative DNA damage in mammalian spermatozoa. Mol. Reprod. Dev. 71, 77–87.
A comparative study of oxidative DNA damage in mammalian spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVOqsrk%3D&md5=bbb23cf1ee68c0768e81595b1d15aec6CAS | 15736137PubMed |

Cummins, J. M. (1980). Decondensation of sperm nuclei of Australian marsupials: effects of air drying and of calcium and magnesium. Gamete Res. 3, 351–367.
Decondensation of sperm nuclei of Australian marsupials: effects of air drying and of calcium and magnesium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXnslKgsg%3D%3D&md5=7eb9ce792c45203394813b4ab934a711CAS |

Enciso, M., Sarasa, J., Agarwal, A., Fernández, J. L., and Gosálvez, J. (2009). A two-tailed comet assay for assessing DNA damage in spermatozoa. Reprod. Biomed. Online 18, 609–616.
A two-tailed comet assay for assessing DNA damage in spermatozoa.Crossref | GoogleScholarGoogle Scholar | 19549437PubMed |

Evenson, D., Jost, L., Marshall, D., Zinaman, M., Clegg, G., Purvis, K., de Angelis, P., and Claussen, O. (1999). Utility of sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum. Reprod. 14, 1039–1049.
Utility of sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3jslGqtA%3D%3D&md5=7c50de213343733f1a163ae381d6f089CAS | 10221239PubMed |

IUPAC-IUB (1970). Abbreviations and symbols for the description of the conformation of polypeptide chains. Tentative rules (1969). Biochem. J. 9, 3471–3479.

Johnston, S. D., MacCallum, C., Blyde, D., McClean, R., Lisle, A., and Holt, W. V. (2006). An investigation into the similarities and differences governing the cryopreservation success of koala (Phascolarctos cinereus: goldfuss) and common wombat (Vombatus ursinus: shaw) spermatozoa. Cryobiology 53, 218–228.
An investigation into the similarities and differences governing the cryopreservation success of koala (Phascolarctos cinereus: goldfuss) and common wombat (Vombatus ursinus: shaw) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1OmsLk%3D&md5=b1f8cf45d6a4eedb30958304971bf085CAS | 16889764PubMed |

Johnston, S. D., López-Fernández, C., Gosálbez, A., Zee, Y., Holt, W. V., Allen, C., and Gosálvez, J. (2007). The relationship between sperm morphology and chromatin integrity in the koala (Phascolarctos cinereus) as assessed by the sperm chromatin dispersion test (SCDt). J. Androl. 28, 891–899.
The relationship between sperm morphology and chromatin integrity in the koala (Phascolarctos cinereus) as assessed by the sperm chromatin dispersion test (SCDt).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCqtr%2FP&md5=e5f5bcc813d355f34092a0a025db08d4CAS | 17609294PubMed |

López-Fernández, C., Pérez-Llano, B., García-Casado, P., Sala, R., Gosálbez, A., Arroyo, F., Fernández, J. L., and Gosálvez, J. (2008). Sperm DNA fragmentation in a random sample of the Spanish boar livestock. Anim. Reprod. Sci. 103, 87–98.
Sperm DNA fragmentation in a random sample of the Spanish boar livestock.Crossref | GoogleScholarGoogle Scholar | 17174491PubMed |

McClean, R., Holt, W. V., Zee, Y. P., Lisle, A., and Johnston, S. D. (2008). The effect of cryoprotectant on kangaroo sperm ultrastructure and mitochondrial function. Cryobiology 57, 297–303.
The effect of cryoprotectant on kangaroo sperm ultrastructure and mitochondrial function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVChtbrJ&md5=ea46f121fbdbdf03046f48c97e6a7509CAS | 18805409PubMed |

Retief, J. D., Rees, J. S., Westerman, M., and Dixon, G. H. (1995). Convergent evolution of cysteine residues in sperm protamines of one genus of marsupials, the Planigales. Mol. Biol. Evol. 12, 708–712.
| 1:CAS:528:DyaK2MXmsVOqsLo%3D&md5=776109a1d733fde726e925594ad5a4fdCAS | 7659023PubMed |

Sarabia, L., Maurer, I., and Bustos-Obregón, E. (2009). Melatonin prevents damage elicited by the organophosphorous pesticide diazinon on mouse sperm DNA. Ecotoxicol. Environ. Saf. 72, 663–668.
Melatonin prevents damage elicited by the organophosphorous pesticide diazinon on mouse sperm DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaqurzJ&md5=98108ce20e9c7141df739e9260a0652dCAS | 18571725PubMed |

Villani, P., Eleuteri, P., Grollino, M. G., Rescia, M., Altavista, P., Spanò, M., Pacchierotti, F., and Cordelli, E. (2010). Sperm DNA fragmentation induced by DNAse I and hydrogen peroxide: an in vitro comparative study among different mammalian species. Reproduction 140, 445–452.
Sperm DNA fragmentation induced by DNAse I and hydrogen peroxide: an in vitro comparative study among different mammalian species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Cmsr7O&md5=b95045cc9c791921ec47c0f5a981127dCAS | 20584992PubMed |

Zee, Y. P., López-Fernández, C., Arroyo, F., Johnston, S. D., Holt, W. V., and Gosalvez, J. (2009). Evidence that single-stranded DNA breaks are a normal feature of koala sperm chromatin, while double-stranded DNA breaks are indicative of DNA damage. Reproduction 138, 267–278.
Evidence that single-stranded DNA breaks are a normal feature of koala sperm chromatin, while double-stranded DNA breaks are indicative of DNA damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlemt7g%3D&md5=1e6dcf367e7ae37d8c05272712b2a099CAS | 19494045PubMed |