Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Epigenetic control of development and expression of quantitative traits

Hélène Jammes A B C , Claudine Junien A B and Pascale Chavatte-Palmer A B
+ Author Affiliations
- Author Affiliations

A INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France.

B ENVA, Biologie du Développement et Reproduction, F-94704 Maisons-Alfort, France.

C Corresponding author. Email: helene.jammes@jouy.inra.fr

Reproduction, Fertility and Development 23(1) 64-74 https://doi.org/10.1071/RD10259
Published: 7 December 2010

Abstract

In recent years, it has become increasingly clear that epigenetic regulation of gene expression is critical during embryo development and subsequently during pre- and post-natal life. The phenotype of an individual is the result of complex interactions between genotype and current, past and ancestral environment leading to a lifelong remodelling of its epigenome. Practically, if the genome was compared with the hardware in a computer, the epigenome would be the software that directs the computer’s operation. This review points to the importance of epigenetic processes for genome function in various biological processes, such as embryo development and the expression of quantitative traits.

Additional keywords: breeding, embryonic development, epigenetic, quantitative traits.


References

Attig, L., Gabory, A., and Junien, C. (2010). Early nutrition and epigenetic programming: chasing shadows. Curr. Opin. Clin. Nutr. Metab. Care 13, 284–293.
Early nutrition and epigenetic programming: chasing shadows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVOqtbw%3D&md5=c96bab0bafe366fbc47c6e6af5080aeeCAS | 20375884PubMed |

Baar, K. (2010). Epigenetic control of skeletal muscle fibre type. Acta Physiol. (Oxf.) 199, 477–487..
| 1:CAS:528:DC%2BC3cXpvVOrs74%3D&md5=d8a462a8d9d112090dffed0d59ad9b75CAS | 20345412PubMed |

Beaujean, N., Martin, C., Debey, P., and Renard, J. P. (2005). Reprogramming and epigenesis. Med. Sci. (Paris) 21, 412–421..
| 15811307PubMed |

Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., and Gutierrez-Adan, A. (2008). Epigenetic differences between male and female bovine blastocysts produced in vitro. Physiol. Genomics 32, 264–272.
Epigenetic differences between male and female bovine blastocysts produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Wjurw%3D&md5=2e47e271f21f04cbd0848815cbbe0d64CAS | 17986520PubMed |

Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., and Gutierrez-Adan, A. (2010). Sex determines the expression level of one-third of the actively expressed genes in bovine blastocysts. Proc. Natl. Acad. Sci. USA 107, 3394–3399.
Sex determines the expression level of one-third of the actively expressed genes in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFymtbo%3D&md5=81f401ea6083fbb5f061a9ec601829e5CAS |

Boissonnas, C., El Abdalaoui, H., Haelewyn, V., Fauque, P., Dupont, J. M., Gut, I. G., Vaiman, A., Jouannet, P., Tost, J., and Jammes, H. (2010). Specific epigenetic alterations of IGF2–H19 locus in spermatozoa from infertile men. Eur. J. Hum. Genet. 18, 73–80.
Specific epigenetic alterations of IGF2–H19 locus in spermatozoa from infertile men.Crossref | GoogleScholarGoogle Scholar | 19584898PubMed |

Cedar, H., and Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304.
Linking DNA methylation and histone modification: patterns and paradigms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksF2rsL0%3D&md5=a74635c7511bc28346997cac7fa663c9CAS | 19308066PubMed |

Chen, T. H. H., Chiu, Y. H., and Boucher, B. J. (2006). Transgenerational effects of betel-quid chewing on the development of the metabolic syndrome in the Keelung Community-based Integrated Screening Program. Am. J. Clin. Nutr. 83, 688–692..
| 1:CAS:528:DC%2BD28XislSrs7s%3D&md5=0054b245f4ef01784899d7ab685f53f5CAS | 16522918PubMed |

Chen, T., and Li, E. (2004). Structure and function of eukaryotic DNA methyltransferases. Curr. Top. Dev. Biol. 60, 55–89.
Structure and function of eukaryotic DNA methyltransferases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVWjtbY%3D&md5=dd32cd94ea9a19908814b00f25c6e18fCAS | 15094296PubMed |

Clifton, V. L. (2010). Review: sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta 31, S33–S39.
Review: sex and the human placenta: mediating differential strategies of fetal growth and survival.Crossref | GoogleScholarGoogle Scholar | 20004469PubMed |

Constant, F., Guillomot, M., Heyman, Y., Vignon, X., Laigre, P., Servely, J. L., Renard, J. P., and Chavatte-Palmer, P. (2006). Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois. Biol. Reprod. 75, 122–130.
Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmtlyisbs%3D&md5=b8b8420b4291bccee3966374d7407d6dCAS | 16571872PubMed |

Daelemans, C., Ritchie, M. E., Smits, G., Abu-Amero, S., Sudbery, I. M., et al. (2010). High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta. BMC Genet. 11, 25.
High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta.Crossref | GoogleScholarGoogle Scholar | 20403199PubMed |

Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. USA 98, 13 734–13 738.
Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVyntrs%3D&md5=dddb614e93045519edfb29e4356d2c63CAS |

de Montera, B., El Zeihery, D., Muller, S., Jammes, H., Brem, G., et al. (2010). Quantification of leukocyte genomic 5-methylcytosine levels reveals epigenetic plasticity in healthy adult cloned cattle. Cell. Reprogram. 12, 175–181..
| 1:CAS:528:DC%2BC3cXlvVahtLw%3D&md5=eb10db0fe1ae0e8b5f5c657efe2beac7CAS | 20677931PubMed |

Doherty, A. S., Mann, M. R., Tremblay, K. D., Bartolomei, M. S., and Schultz, R. M. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62, 1526–1535.
Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2hsrc%3D&md5=6885ad4b7ac06e78f0bcc2702e97b3d4CAS | 10819752PubMed |

Ertzeid, G., and Storeng, R. (2001). The impact of ovarian stimulation on implantation and fetal development in mice. Hum. Reprod. 16, 221–225.
The impact of ovarian stimulation on implantation and fetal development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFGrs70%3D&md5=646bb0bc7beff626dbd4604fec32e63cCAS | 11157810PubMed |

Everts, R. E., Chavatte-Palmer, P., Razzak, A., Hue, I., Green, C. A., et al. (2008). Aberrant gene expression patterns in placentomes is associated with phenotypically normal and abnormal cattle cloned by somatic cell nuclear transfer. Physiol. Genomics 33, 65–77.
Aberrant gene expression patterns in placentomes is associated with phenotypically normal and abnormal cattle cloned by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Wisro%3D&md5=dcbd890bed082f66f8865675eda7fab9CAS | 18089771PubMed |

Farin, P. W., Piedrahita, J. A., and Farin, C. E. (2006). Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 65, 178–191.
Errors in development of fetuses and placentas from in vitro-produced bovine embryos.Crossref | GoogleScholarGoogle Scholar | 16266745PubMed |

Farthing, C. R., Ficz, G., Ng, R. K., Chan, C. F., Andrews, S., Dean, W., Hemberger, M., and Reik, W. (2008). Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet. 4, e1000116.
Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes.Crossref | GoogleScholarGoogle Scholar | 18584034PubMed |

Fauque, P., Jouannet, P., Lesaffre, C., Ripoche, M. A., Dandolo, L., Vaiman, D., and Jammes, H. (2007). Assisted reproductive technology affects developmental kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse embryos. BMC Dev. Biol. 7, 116.
Assisted reproductive technology affects developmental kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse embryos.Crossref | GoogleScholarGoogle Scholar | 17949482PubMed |

Fauque, P., Mondon, F., Letourneur, F., Ripoche, M.-A., Journot, L., et al. (2010). In vitro fertilization and embryo culture strongly impact the placental transcriptome in the mouse model. PLoS ONE 5, e9218.
In vitro fertilization and embryo culture strongly impact the placental transcriptome in the mouse model.Crossref | GoogleScholarGoogle Scholar | 20169163PubMed |

Feldman, B., Poueymirou, W., Papaioannou, V. E., DeChiara, T. M., and Goldfarb, M. (1995). Requirement of FGF-4 for postimplantation mouse development. Science 267, 246–249.
Requirement of FGF-4 for postimplantation mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt1ensbo%3D&md5=96948bdd967c047d16f18ea411ae0c0eCAS | 7809630PubMed |

Gabory, A., Attig, L., and Junien, C. (2009). Sexual dimorphism in environmental epigenetic programming. Mol. Cell. Endocrinol. 304, 8–18.
Sexual dimorphism in environmental epigenetic programming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1ylsLY%3D&md5=426bfa942ca46ef53e9bd6b2720db75cCAS | 19433243PubMed |

Gallou-Kabani, C., Vige, A., Gross, M. S., Boileau, C., Rabes, J. P., Fruchart-Najib, J., Jais, J. P., and Junien, C. (2007). Resistance to high-fat diet in the female progeny of obese mice fed a control diet during the periconceptual, gestation and lactation periods. Am. J. Physiol. Endocrinol. Metab. 292, E1095–E1100.
Resistance to high-fat diet in the female progeny of obese mice fed a control diet during the periconceptual, gestation and lactation periods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1Kjs70%3D&md5=ae549734bc9f50b7e736938d4ef07b77CAS | 17164437PubMed |

Gebert, C., Wrenzycki, C., Herrmann, D., Groger, D., Thiel, J., et al. (2009). DNA methylation in the IGF2 intragenic DMR is re-established in a sex-specific manner in bovine blastocysts after somatic cloning. Genomics 94, 63–69.
DNA methylation in the IGF2 intragenic DMR is re-established in a sex-specific manner in bovine blastocysts after somatic cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVOqs7Y%3D&md5=2c545af8f9c351470374b30fb936d9a4CAS | 19341790PubMed |

Genovese, P., Núñez, M., Pombo, C., and Bielli, A. (2010). Undernutrition during foetal and post-natal life affects testicular structure and reduces the number of Sertoli cells in the adult rat. Reprod. Domest. Anim. 45, 233–236.
Undernutrition during foetal and post-natal life affects testicular structure and reduces the number of Sertoli cells in the adult rat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjgs1OktQ%3D%3D&md5=05efdc1a173f6e19130589e746c90bf9CAS | 19281598PubMed |

Gheorghe, C. P., Goyal, R., Mittal, A., and Longo, L. D. (2010). Gene expression in the placenta: maternal stress and epigenetic responses. Int. J. Dev. Biol. 54, 507–523.
Gene expression in the placenta: maternal stress and epigenetic responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVaju7s%3D&md5=cc664f04f752ce29b442f14035c6df28CAS | 19876832PubMed |

Goldberg, A. D., Allis, C. D., and Bernstein, E. C. (2007). Epigenetics: a landscape takes shape. Cell 128, 635–638.
Epigenetics: a landscape takes shape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis12ju74%3D&md5=205a40343c8c42e68832740f47096713CAS | 17320500PubMed |

Gregg, C., Zhang, J., Weissbourd, B., Luo, S., Schroth, G. P., Haig, D.,, and Dulac, C. (2010). High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329, 643–648.
High-resolution analysis of parent-of-origin allelic expression in the mouse brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1ehtbs%3D&md5=19a7ce635018edf859dbf3266c5f6745CAS | 20616232PubMed |

Grieshammer, U., McGrew, M. J., and Rosenthal, N. (1995). Role of methylation in maintenance of positionally restricted transgene expression in developing muscle. Development 121, 2245–2253..
| 1:CAS:528:DyaK2MXmsl2ksrg%3D&md5=68d94b887c42c77f564f9035d833f1afCAS | 7635067PubMed |

Guasconi, V., and Puri, P. L. (2009). Chromatin: the interface between extrinsic cues and the epigenetic regulation of muscle regeneration. Trends Cell Biol. 19, 286–294.
Chromatin: the interface between extrinsic cues and the epigenetic regulation of muscle regeneration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Ckt7o%3D&md5=3568f28d0d53125daf491e81026ec6a5CAS | 19394225PubMed |

Hajkova, P., Jeffries, S. J., Lee, C., Miller, N., Jackson, S. P., and Surani, M. A. (2010). Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329, 78–82.
Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVeqsL8%3D&md5=a53305d6ff8b594f8ea58e4a9c75a46dCAS | 20595612PubMed |

Han, D. W., Im, Y. B., Do, J. T., Gupta, M. K., Uhm, S. J., Kim, J. H., Schöler, H. R., and Lee, H. T. (2008). Methylation status of putative differentially methylated regions of porcine IGF2 and H19. Mol. Reprod. Dev. 75, 777–784.
Methylation status of putative differentially methylated regions of porcine IGF2 and H19.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFGhsbo%3D&md5=ced001eafb11f1b49e1ab80e8cb856a0CAS | 18247333PubMed |

Hiendleder, S., Wirtz, M., Mund, C., Klempt, M., Reichenbach, H.-D., et al. (2006). Tissue-specific effects of in vitro-fertilization procedures on genomic cytosine methylation levels in overgrown and normal sized bovine fetuses. Biol. Reprod. 75, 17–23.
Tissue-specific effects of in vitro-fertilization procedures on genomic cytosine methylation levels in overgrown and normal sized bovine fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlyisL0%3D&md5=e81118d0099780d244c4398a7ddef404CAS | 16554415PubMed |

Ho, D. H., and Burggren, W. W. (2010). Epigenetics and transgenerational transfer: a physiological perspective. J. Exp. Biol. 213, 3–16.
Epigenetics and transgenerational transfer: a physiological perspective.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MfisVOrtw%3D%3D&md5=6880671450b4bbade5f8a480fc3f6a54CAS | 20008356PubMed |

Holliday, R., and Pugh, J. E. (1975). DNA modification mechanisms and gene activity during development. Science 187, 226–232.
DNA modification mechanisms and gene activity during development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXht1Sitrw%3D&md5=e620006c011ba9121e92eaca51e53c94CAS | 1111098PubMed |

Houshdaran, S., Cortessis, V. K., Siegmund, K., Yang, A., Laird, P. W., and Sokol, R. Z. (2007). Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS ONE 2, e1289.
Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm.Crossref | GoogleScholarGoogle Scholar | 18074014PubMed |

Humblot, P., Holm, P., Lonergan, P., Wrenzycki, C., Lequarre, A. S., et al. (2005). Effect of stage of follicular growth during superovulation on developmental competence of bovine oocytes. Theriogenology 63, 1149–1166.
Effect of stage of follicular growth during superovulation on developmental competence of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2Fot1Kltg%3D%3D&md5=0b4630507a1c8385113023ca171fd44bCAS | 15710200PubMed |

Illingworth, R. S., and Bird, A. P. (2009). CpG islands – ‘a rough guide’. FEBS Lett. 583, 1713–1720.
CpG islands – ‘a rough guide’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVCmsrc%3D&md5=ced03aae6fec7022230e3fc3b00705baCAS | 19376112PubMed |

Ito, S., D’Alessio, A. C., Taranova, O. V., Hong, K., Sowers, L. C., and Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133.
Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovFCntro%3D&md5=7afbfd4f8e0c64964fc3a7963e0516ecCAS | 20639862PubMed |

Jenuwein, T. (2006). The epigenetic magic of histone lysine methylation. FEBS J. 273, 3121–3135.
The epigenetic magic of histone lysine methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Cqu7s%3D&md5=9c6613b05e6345d27b651bb8b3498cd3CAS | 16857008PubMed |

Jiang, L., Jobst, P., Lai, L. X., Samuel, M., Ayares, D., Prather, R. S., and Tian, X. C. (2007). Expression levels of growth-regulating imprinted genes in cloned piglets. Cloning Stem Cells 9, 97–106.
Expression levels of growth-regulating imprinted genes in cloned piglets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVWrtbc%3D&md5=a58ed34e7f98fa6d95e72b114486053bCAS | 17386017PubMed |

Johnson, M. L., Levy, J., Supowit, S. C., Yu-Lee, L. Y., and Rosen, J. M. (1983). Tissue- and cell-specific casein gene expression. II. Relationship to site-specific DNA methylation. J. Biol. Chem. 258, 10 805–10 811..
| 1:CAS:528:DyaL3sXlsFeisbc%3D&md5=e0ca5dbb5c3f013d0d93d9b21af498f1CAS |

Jouneau, A., Zhou, Q., Camus, A., Brochard, V., Maulny, L., Collignon, J., and Renard, J.-P. (2006). Developmental abnormalities of NT mouse embryos appear early after implantation. Development 133, 1597–1607.
Developmental abnormalities of NT mouse embryos appear early after implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVamsb4%3D&md5=9d17a0237171afb18a2e6794c87107a2CAS | 16556918PubMed |

Kaminsky, Z., Wang, S. C., and Petronis, A. (2006). Complex disease, gender and epigenetics. Ann. Med. 38, 530–544.
Complex disease, gender and epigenetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitV2mtLY%3D&md5=5ee95b308a05b536c93d2fc3582d198aCAS | 17438668PubMed |

Katari, S., Turan, N., Bibikova, M., Erinle, O., Chalian, R., Foster, M., Gaughan, J. P., Coutifaris, C., and Sapienza, C. (2009). DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum. Mol. Genet. 18, 3769–3778.
DNA methylation and gene expression differences in children conceived in vitro or in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhurfE&md5=485b7dec4ab6c0c713decbfdb38c3463CAS | 19605411PubMed |

Khosla, S., Dean, W., Brown, D., Reik, W., and Feil, R. (2001). Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod. 64, 918–926.
Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVKjtrc%3D&md5=bdeb23888be85e7b46ed08236fd97347CAS | 11207209PubMed |

Kotsampasi, B., Balaskas, C., Papadomichelakis, G., and Chadio, S. E. (2009). Reduced Sertoli cell number and altered pituitary responsiveness in male lambs undernourished in utero. Anim. Reprod. Sci. 114, 135–147.
Reduced Sertoli cell number and altered pituitary responsiveness in male lambs undernourished in utero.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1yqu7c%3D&md5=4ad09cec7942891aaff73f6d64dbe069CAS | 18814977PubMed |

Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693–705.
Chromatin modifications and their function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis12ju7Y%3D&md5=43877d7b5b1dfc9809598e5574def76fCAS | 17320507PubMed |

Lachner, M., O’Carroll, N., Rea, S., Mechtler, K., and Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120.
Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVSltr8%3D&md5=1870528f2bf3ce3c16accfa8c3c06849CAS | 11242053PubMed |

Latham, K. E. (1999). Mechanisms and control of embryonic genome activation in mammalian embryos. Int. Rev. Cytol. 193, 71–124.
Mechanisms and control of embryonic genome activation in mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVSlsA%3D%3D&md5=b8e3f6c4d2d3f1616605d342a105b12cCAS | 10494621PubMed |

Li, T., Vu, T. H., Ulaner, G. A., Littman, E., Ling, J. Q., Chen, H. L., Hu, J. F., Behr, B., Giudice, L., and Hoffman, A. R. (2005). IVF results in de novo DNA methylation and histone methylation at an Igf2–H19 imprinting epigenetic switch. Mol. Hum. Reprod. 11, 631–640.
IVF results in de novo DNA methylation and histone methylation at an Igf2–H19 imprinting epigenetic switch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Wis7%2FN&md5=03051df8f1dfa4d84a3c843d95fb4febCAS | 16219628PubMed |

Liew, H. P., Choksi, S. P., Wong, K. N., and Roy, S. (2008). Specification of vertebrate slow-twitch muscle fiber fate by the transcriptional regulator Blimp1. Dev. Biol. 324, 226–235.
Specification of vertebrate slow-twitch muscle fiber fate by the transcriptional regulator Blimp1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGgsrvI&md5=ee09c1ea225d77d58e7715a52283a2f7CAS | 18948093PubMed |

Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G.,, et al. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322.
Human DNA methylomes at base resolution show widespread epigenomic differences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Kiu73E&md5=828313a57b59bdb1f52a15aafc882f76CAS | 19829295PubMed |

Lonergan, P., Gutierrez-Adan, A., Rizos, D., Pintalo, B., De La Fuente, J., and Boland, M. P. (2003). Relative messenger RNA abundance in bovine oocytes collected in vitro or in vivo before and 20 hr after the preovulatory luteinizing hormone surge. Mol. Reprod. Dev. 66, 297–305.
Relative messenger RNA abundance in bovine oocytes collected in vitro or in vivo before and 20 hr after the preovulatory luteinizing hormone surge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFOgtrY%3D&md5=3cc50719850c2103a0e854b70a7998f8CAS | 14502609PubMed |

Luedi, P. P., Hartemink, A. J., and Jirtle, R. L. (2005). Genome-wide prediction of imprinted murine genes. Genome Res. 15, 875–884.
Genome-wide prediction of imprinted murine genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1yjs7w%3D&md5=fb295a3f20bad9c11f4c0fa735131360CAS | 15930497PubMed |

Luedi, P. P., Dietrich, F. S., Weidman, J. R., Bosko, J. M., Jirtle, R. L., and Hartemink, A. J. (2007). Computational and experimental identification of novel human imprinted genes. Genome Res. 17, 1723–1730.
Computational and experimental identification of novel human imprinted genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhsLjP&md5=08e664d6ce96e51bcef1fa29f699faabCAS | 18055845PubMed |

Luense, L. J., Carletti, M. Z., and Christenson, L. K. (2009). Role of dicer in female fertility. Trends Endocrinol. Metab. 20, 265–272.
Role of dicer in female fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Sqsr0%3D&md5=3a4212e2ce3262a5fee273ea877a9e93CAS | 19646895PubMed |

Luger, K., Rechsteiner, T. J., Flaus, A. J., Waye, M. M. Y., and Richmond, T. J. (1997). Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol. 272, 301–311.
Characterization of nucleosome core particles containing histone proteins made in bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsV2jt7g%3D&md5=9c0be9d7ee6c8283ffa76ce9f2cee0c9CAS | 9325091PubMed |

Mann, M. R., Chung, Y. G., Nolen, L. D., Verona, R. I., Latham, K. E., and Bartolomei, M. S. (2003). Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod. 69, 902–914.
Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVeitbw%3D&md5=19d4193b8563a1aac76e6ebb8fa74e3bCAS | 12748125PubMed |

Mao, J., Zhang, X., Sieli, P. T., Falduto, M. T., Torres, K. E., and Rosenfeld, C. S. (2010). Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. Proc. Natl. Acad. Sci. USA 107, 5557–5562.
Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFKhsLc%3D&md5=a124ef76d3e15f52b942b40230c22a24CAS |

Marques, C. J., Carvalho, F., Sousa, M., and Barros, A. (2004). Genomic imprinting in disruptive spermatogenesis. Lancet 363, 1700–1702.
Genomic imprinting in disruptive spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktF2ns7w%3D&md5=1a5f372afdd78d87b86a4183e2e2a223CAS | 15158633PubMed |

Martin, C., Brochard, V., Migne, C., Zink, D., Debey, P., and Beaujean, N. (2006). Architectural reorganization of the nuclei upon transfer into oocytes accompanies genome reprogramming. Mol. Reprod. Dev. 73, 1102–1111.
Architectural reorganization of the nuclei upon transfer into oocytes accompanies genome reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvFahsbo%3D&md5=c75c5e7c1da5855484563efb6a201ca1CAS | 16736527PubMed |

Matsuda, R., Bandman, E., and Strohman, R. C. (1983). Regional differences in the expression of myosin light-chains and tropomyosin subunits during development of chicken breast muscle. Dev. Biol. 95, 484–491.
Regional differences in the expression of myosin light-chains and tropomyosin subunits during development of chicken breast muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXht1eiu78%3D&md5=dc2322d99dc9f9e5ec37e5a9d66d8237CAS | 6825943PubMed |

McKinsey, T. A., Zhang, C. L., and Olson, E. N. (2001). Control of muscle development by duelling HATs and HDACs. Curr. Opin. Genet. Dev. 11, 497–504.
Control of muscle development by duelling HATs and HDACs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1KrtrY%3D&md5=b3099704da31de03f4f827d8a38dafbaCAS | 11532390PubMed |

Nestor, C., Ruzov, A., Meehan, R. R., and Dunican, D. S. (2010). Enzymatic approaches and bisulfite sequencing cannot distinguish between 5 methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques 48, 317–319.
Enzymatic approaches and bisulfite sequencing cannot distinguish between 5 methylcytosine and 5-hydroxymethylcytosine in DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1WmtLY%3D&md5=9c6613a897d42e1445111450fcf2e0a9CAS | 20569209PubMed |

Niemann, H., Tian, X. C., King, W. A., and Lee, R. S. F. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 135, 151–163.
Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrt7c%3D&md5=3ea53fed2348eef553d21fccbad29863CAS | 18239046PubMed |

Ohnishi, Y., Totoki, Y., Toyoda, A., Watanabe, T., Yamamoto, Y., Tokunaga, K., Sakaki, Y., Sasaki, H., and Hohjoh, H. (2010). Small RNA class transition from siRNA/piRNA to miRNA during pre-implantation mouse development. Nucleic Acids Res. 38, 5141–5151.
Small RNA class transition from siRNA/piRNA to miRNA during pre-implantation mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2qsLbN&md5=6970d2234a150ff470629b29139e6b2dCAS | 20385573PubMed |

Owens, J. A., Thavaneswaran, P., De Blasio, M. J., McMillen, I. C., Robinson, J. S., and Gatford, K. L. (2007). Sex-specific effects of placental restriction on components of the metabolic syndrome in young adult sheep. Am. J. Physiol. Endocrinol. Metab. 292, E1879–E1889.
Sex-specific effects of placental restriction on components of the metabolic syndrome in young adult sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvF2mur0%3D&md5=bf09a5d8987daea142f013f6edc3eaefCAS | 17327366PubMed |

Park, C. S. (2005). Role of compensatory mammary growth in epigenetic control of gene expression. FASEB J. 19, 1586–1591.
Role of compensatory mammary growth in epigenetic control of gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2nurbM&md5=b0305737d8242706fd59e6cb8451ef11CAS | 16195367PubMed |

Park, J. S., Jeong, Y. S., Shin, S. T., Lee, K. K., and Kang, Y. K. (2007). Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev. Dyn. 236, 2523–2533.
Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKjurfN&md5=4087ac5484b82ecf5f17c3224437e3d4CAS | 17676637PubMed |

Petkov, S. G., Reh, W. A., and Anderson, G. B. (2009). Methylation changes in porcine primordial germ cells. Mol. Reprod. Dev. 76, 22–30.
Methylation changes in porcine primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFemtLzE&md5=db5e032039fb4a97f13212e9c4ef6604CAS | 18425774PubMed |

Pichugin, A., Le Bourhis, D., Adenot, P., Lehmann, G., Audouard, C., Renard, J. P., Vignon, X., and Beaujean, N. (2010). Dynamics of constitutive heterochromatin: two contrasted kinetics of genome restructuring in early cloned bovine embryos. Reproduction 139, 129–137.
Dynamics of constitutive heterochromatin: two contrasted kinetics of genome restructuring in early cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWmtg%3D%3D&md5=2422c28d4314ff97418ca753838be524CAS | 19778997PubMed |

Platenburg, G. J., Vollebregt, E. J., Karatzas, C. N., Kootwijk, E. P., De Boer, H. A., and Strijker, R. (1996). Mammary gland-specific hypomethylation of Hpa II sites flanking the bovine alpha S1-casein gene. Transgenic Res. 5, 421–431.
Mammary gland-specific hypomethylation of Hpa II sites flanking the bovine alpha S1-casein gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1eksb4%3D&md5=0b73b90a62cf9e56a90bfe72d906f5bfCAS | 8840525PubMed |

Popp, C., Dean, W., Feng, S., Cokus, S. J., Andrews, S., Pellegrini, M., Jacobsen, S. E., and Reik, W. (2010). Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463, 1101–1105.
Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitl2gs7Y%3D&md5=f69fb2d78be58dd8657a5b963b153e9bCAS | 20098412PubMed |

Racedo, S. E., Wrenzycki, C., Lepikhov, K., Salamone, D., Walter, J.,, and Niemann, H. (2009). Epigenetic modifications and related mRNA expression during bovine oocyte in vitro maturation. Reprod. Fertil. Dev. 21, 738–748.
Epigenetic modifications and related mRNA expression during bovine oocyte in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVOhu78%3D&md5=56a8d84f947b0b1b8829b27daacd4d28CAS | 19567217PubMed |

Reik, W., Dean, W., and Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science 293, 1089–1093.
Epigenetic reprogramming in mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVWltL8%3D&md5=d14f8494f24ee311e843717d9424e91fCAS | 11498579PubMed |

Renfree, M. B., Papenfuss, A. T., Shaw, G., and Pask, A. J. (2009). Eggs, embryos and the evolution of imprinting: insights from the platypus genome. Reprod. Fertil. Dev. 21, 935–942.
Eggs, embryos and the evolution of imprinting: insights from the platypus genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCjs7jN&md5=0790cfee2caa2ca328415c13ef548f4aCAS | 19874717PubMed |

Riggs, A. D. (1975). X inactivation, differentiation and DNA methylation. Cytogenet. Cell Genet. 14, 9–25.
X inactivation, differentiation and DNA methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXksVSrsbk%3D&md5=6985602f01d84ba5e035142b9ef542b5CAS | 1093816PubMed |

Rijnkels, M., Kabotyanski, E., Montazer-Torbati, M. B., Beauvais, C. H., Vassetzky, Y., Rosen, J. M., and Devinoy, E. (2010). The epigenetic landscape of mammary gland development and functional differentiation. J. Mammary Gland Biol. Neoplasia 15, 85–100.
The epigenetic landscape of mammary gland development and functional differentiation.Crossref | GoogleScholarGoogle Scholar | 20157770PubMed |

Rivera, R. M., Stein, P., Weaver, J. R., Mager, J., Schultz, R. M., and Bartolomei, M. S. (2008). Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on Day 9.5 of development. Hum. Mol. Genet. 17, 1–14.
Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on Day 9.5 of development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKiur%2FJ&md5=14666a678127dad90016660d8e8dbcc3CAS | 17901045PubMed |

Santos, F., Hendrich, B., Reik, W., and Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182.
Dynamic reprogramming of DNA methylation in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVWhsrg%3D&md5=c4e7ff449003e16d782eeb614a9fd9f7CAS | 11784103PubMed |

Santos, F., Peters, A. H., Otte, A. P., Reik, W., and Dean, W. (2005). Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev. Biol. 280, 225–236.
Dynamic chromatin modifications characterise the first cell cycle in mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1equrY%3D&md5=22d76306384cf7bcee34b818786e79e0CAS | 15766761PubMed |

Santos, M. A., Kuijk, E. W., and Macklon, N. S. (2010). The impact of ovarian stimulation for IVF on the developing embryo. Reproduction 139, 23–34.
The impact of ovarian stimulation for IVF on the developing embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWntw%3D%3D&md5=7ce50654d92195b02c10ccfd66e43e9aCAS | 19710204PubMed |

Sato, A., Otsu, E., Negishi, H., Utsunnomiya, T., and Arima, T. (2007). Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum. Reprod. 22, 26–35.
Aberrant DNA methylation of imprinted loci in superovulated oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlChtb%2FI&md5=77330f985d99059d9af3571b12885a10CAS | 16923747PubMed |

Sawai, K., Takahashi, M., Moriyasu, S., Hirayama, H., Minamihashi, A., Hashizume, T., and Onoe, S. (2010). Changes in the DNA methylation status of bovine embryos from the blastocyst to elongated stage derived from somatic cell nuclear transfer. Cell. Reprogram. 12, 15–22..
| 1:CAS:528:DC%2BC3cXitVOjur8%3D&md5=f0ba039e371527f4dd99236f4c433fddCAS | 19780699PubMed |

Shi, W., and Haaf, T. (2002). Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol. Reprod. Dev. 63, 329–334.
Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnslSnsbg%3D&md5=ad8c7f6e329279c6535044d8a70cffa9CAS | 12237948PubMed |

Singh, K., Erdman, R. A., Swanson, K. M., Molenaar, A. J., Maqbool, N. J., Wheeler, T. T., Arias, J. A., Quinn-Walsh, E. C., and Stelwagen, K. (2010). Epigenetic regulation of milk production in dairy cows. J. Mammary Gland Biol. Neoplasia 15, 101–112.
Epigenetic regulation of milk production in dairy cows.Crossref | GoogleScholarGoogle Scholar | 20131087PubMed |

Slack, J. M. (2002). Conrad Hal Waddington: the last Renaissance biologist? Nat. Rev. Genet. 3, 889–895.
Conrad Hal Waddington: the last Renaissance biologist?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlersbY%3D&md5=c1b19ab876211c07fe0f64d57ce47bcaCAS | 12415319PubMed |

Smith, S. L., Everts, R. E., Tian, X. C., Du, F., Sung, L.-Y., Rodriguez-Zas, S. L., Jeong, B.-S., Renard, J.-P., Lewin, H. A., and Yang, X. (2005). Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. Proc. Natl. Acad. Sci. USA 102, 17 582–17 587.
Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlegs77L&md5=c61506bb8c13ab7dc3aef440a651cf1dCAS |

Strahl, B. D., and Allis, C. D. (2000). The language of covalent histone modifications. Nature 403, 41–45.
The language of covalent histone modifications.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7gt1arsQ%3D%3D&md5=f9d7c815f03971de4e7622e017fb0065CAS | 10638745PubMed |

Sugden, M. C., and Holness, M. J. (2002). Gender-specific programming of insulin secretion and action. J. Endocrinol. 175, 757–767.
Gender-specific programming of insulin secretion and action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvVKhtg%3D%3D&md5=fa2cde388db8eab2a438382fa80c4eb8CAS | 12475386PubMed |

Suzuki, M. M., and Bird, A. (2008). DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465–476.
DNA methylation landscapes: provocative insights from epigenomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFKrtL0%3D&md5=fe3334d2d941f655f0c471b850803b3fCAS | 18463664PubMed |

Telford, N. A., Watson, A. J., and Schultz, G. A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90–100.
Transition from maternal to embryonic control in early mammalian development: a comparison of several species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3mslOhtQ%3D%3D&md5=b968b10fa5b00b623c64d40da5886da8CAS | 2189447PubMed |

Thompson, M. D., and Nakhasi, H. L. (1985). Methylation and expression of rat kappa-casein gene in normal and neoplastic rat mammary gland. Cancer Res. 45, 1291–1295..
| 1:CAS:528:DyaL2MXht12ksLc%3D&md5=a68a6a4168926b03a6b238f1ef1f65c5CAS | 3971374PubMed |

Topper, Y. J., and Freeman, C. S. (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60, 1049–1106..
| 1:CAS:528:DyaL3cXmtlGksLk%3D&md5=20a146c4bca4f95cfccd503501309cfeCAS | 7001510PubMed |

Torres-Padilla, M. E. (2008). Cell identity in the preimplantation mammalian embryo: an epigenetic perspective from the mouse. Hum. Reprod. 23, 1246–1252.
Cell identity in the preimplantation mammalian embryo: an epigenetic perspective from the mouse.Crossref | GoogleScholarGoogle Scholar | 18272526PubMed |

Tsai, H. W., Grant, P. A., and Rissman, E. F. (2009). Sex differences in histone modifications in the neonatal mouse brain. Epigenetics 4, 47–53.
Sex differences in histone modifications in the neonatal mouse brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovF2jtL4%3D&md5=e85c221a9223e198b2b4474951d5f62fCAS | 19029819PubMed |

Van der Auwera, I., and D’Hooghe, T. (2001). Superovulation of female mice delays embryonic and fetal development. Hum. Reprod. 16, 1237–1243.
Superovulation of female mice delays embryonic and fetal development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzhsVWgsA%3D%3D&md5=09c02161fa6733b50ac1dce45e6e0aa1CAS | 11387298PubMed |

Walker, A. M., Kimura, K., and Roberts, R. M. (2009). Expression of bovine interferon-tau variants according to sex and age of conceptuses. Theriogenology 72, 44–53.
Expression of bovine interferon-tau variants according to sex and age of conceptuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Smtr0%3D&md5=1f7404c5e82bf144beedbd05d2a4088dCAS | 19324401PubMed |

Weaver, I. C. G., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M., and Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854.
Epigenetic programming by maternal behavior.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVamt7c%3D&md5=96043183e58d7c1c699f1984522469d7CAS | 15220929PubMed |

Weaver, I. C., Champagne, F. A., Brown, S. E., Dymov, S., Sharma, S., Meaney, M. J., and Szyf, M. (2005). Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J. Neurosci. 25, 11 045–11 054.
Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yks7zK&md5=966dc5004ccf6ebc7f864f082e9deb00CAS |

Weaver, I. C., Meaney, M. J., and Szyf, M. (2006). Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviours in the offspring that are reversible in adulthood. Proc. Natl. Acad. Sci. USA 103, 3480–3485.
Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviours in the offspring that are reversible in adulthood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksF2ku7c%3D&md5=c1d0c6e8bdb0a1a251dd2ea106fdb396CAS |

Wilmut, I. (2006). Are there any normal clones? In ‘Nuclear Transfer Protocols: Cell Reprogramming and Transgenesis. Vol. 348’. (Eds P. J. Verma and A. O. Trounson.) (Humana Press: Totowa, NJ.)

Witt, O., Deubzer, H. E., Milde, T., and Oehme, I. (2009). HDAC family: what are the cancer-relevant targets? Cancer Lett. 277, 8–21.
HDAC family: what are the cancer-relevant targets?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFOhsL4%3D&md5=54a8cf008479e25b2ddc89cdb26ebe2cCAS | 18824292PubMed |

Yang, L., Chavatte-Palmer, P., Kubota, C., O’Neill, M., Hoagland, T., Renard, J. P., Taneja, M., Yang, X. Z., and Tian, X. C. (2005). Expression of imprinted genes is aberrant in deceased newborn cloned calves and relatively normal in surviving adult clones. Mol. Reprod. Dev. 71, 431–438.
Expression of imprinted genes is aberrant in deceased newborn cloned calves and relatively normal in surviving adult clones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFSltb4%3D&md5=dc0623a2a5608c039e409716a02a04fbCAS | 15895469PubMed |

Yang, X., Schadt, E. E., Wang, S., Wang, H., Arnold, A. P., Ingram-Drake, L., Drake, T. A., and Lusis, A. J. (2006). Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 16, 995–1004.
Tissue-specific expression and regulation of sexually dimorphic genes in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kktbg%3D&md5=893cf5a38d3916020cdfd9cc1a3410c0CAS | 16825664PubMed |

Young, L. E., Fernandes, K., McEvoy, T. G., Butterwith, S. C., Gutierrez, C. G., Carolan, C., Broadbent, P. J., Robinson, J. J., Wilmut, I., and Sinclair, K. D. (2001). Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat. Genet. 27, 153–154.
Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFGktL8%3D&md5=6295be8551c556801ac702b0ebb8d617CAS | 11175780PubMed |

Zaitseva, I., Zaitsev, S., Alenina, N., Bader, M., and Krivokharchenko, A. (2007). Dynamics of DNA demethylation in early mouse and rat embryos developed in vivo and in vitro. Mol. Reprod. Dev. 74, 1255–1261.
Dynamics of DNA demethylation in early mouse and rat embryos developed in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmsbfN&md5=71b025338cf24a2a9f1ad8fe730ef735CAS | 17290422PubMed |

Zamudio, N. M., Chong, S. Y., and O’Bryan, M. K. (2008). Epigenetic regulation in male germ cells. Reproduction 136, 131–146.
Epigenetic regulation in male germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGqtbnL&md5=7b6f4a49462698c9000661421d3abef2CAS | 18515312PubMed |