Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Perspectives on transgenic livestock in agriculture and biomedicine: an update

Jorge A. Piedrahita A C and Natasha Olby B
+ Author Affiliations
- Author Affiliations

A Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.

B Department of Clinical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.

C Corresponding author. Email: jorge_piedrahita@ncsu.edu

Reproduction, Fertility and Development 23(1) 56-63 https://doi.org/10.1071/RD10246
Published: 7 December 2010

Abstract

It has been 30 years since the first transgenic mouse was generated and 26 years since the first example of transferring the technology to livestock was published. While there was tremendous optimism in those initial years, with most convinced that genetically modified animals would play a significant role in agricultural production, that has not come to be. So at first sight one could conclude that this technology has, to a large extent, failed. On the contrary, it is believed that it has succeeded beyond our original expectations, and we are now at what is perhaps the most exciting time in the development and implementation of these technologies. The original goals, however, have drastically changed and it is now biomedical applications that are playing a central role in pushing both technical and scientific developments. The combination of advances in somatic cell nuclear transfer, the development of induced pluripotent stem cells and the completion of the sequencing of most livestock genomes ensures a bright and exciting future for this field, not only in livestock but also in companion animal species.

Additional keywords: animal models, bioreactors, somatic cell nuclear transfer, spinal cord repair, xenotransplantation.


References

Aigner, B., Renner, S., Kessler, B., Klymiuk, N., Kurome, M., Wünsch, A., and Wolf, E. (2010). Transgenic pigs as models for translational biomedical research. J. Mol. Med. 88, 653–664.
Transgenic pigs as models for translational biomedical research.Crossref | GoogleScholarGoogle Scholar | 20339830PubMed |

Baldassarre, H., Hockley, D. K., Olaniyan, B., Brochu, E., Zhao, X., Mustafa, A., and Bordignon, V. (2008). Milk composition studies in transgenic goats expressing recombinant human butyrylcholinesterase in the mammary gland. Transgenic Res. 17, 863–872.
Milk composition studies in transgenic goats expressing recombinant human butyrylcholinesterase in the mammary gland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtValt7vJ&md5=6f284c4930c50c1b6a116e9ea47920b7CAS | 18483775PubMed |

Bennett, D. J., Gorassini, M., Fouad, K., Sanelli, L., Han, Y., and Cheng, J. (1999). Spasticity in rats with sacral spinal cord injury. J. Neurotrauma 16, 69–84.
Spasticity in rats with sacral spinal cord injury.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7kt1GksQ%3D%3D&md5=075d0456d9455a135dc248273a9dfa30CAS | 9989467PubMed |

Betthauser, J., Forsberg, E., Augenstein, M., Childs, L., Eilertsen, K., et al. (2000). Production of cloned pigs from in vitro systems. Nat. Biotechnol. 18, 1055–1059.
Production of cloned pigs from in vitro systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntlOhtr0%3D&md5=6300392bc7e7d6280e21c0d643946622CAS | 11017042PubMed |

Brevini, T. A. L., Antonini, S., Pennarossa, G., and Gandolfi, F. (2008). Recent progress in embryonic stem cell research and its application in domestic species. Reprod. Domest. Anim. 43, 193–199.
Recent progress in embryonic stem cell research and its application in domestic species.Crossref | GoogleScholarGoogle Scholar | 18638123PubMed |

Brevini, T. A. L., Pennarossa, G., and Gandolfi, F. (2010). No shortcuts to pig embryonic stem cells. Theriogenology 74, 544–550.
No shortcuts to pig embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjmslSktw%3D%3D&md5=47d383895e6dfa2e08cf827dc4e75772CAS | 20570327PubMed |

Brunetti, D., Perota, A., Lagutina, I., Colleoni, S., Duchi, R., et al. (2008). Transgene expression of green fluorescent protein and germ line transmission in cloned pigs derived from in vitro-transfected adult fibroblasts. Cloning Stem Cells 10, 409–420.
Transgene expression of green fluorescent protein and germ line transmission in cloned pigs derived from in vitro-transfected adult fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGhtbjI&md5=1045df952784c7630f21d0ab4588244cCAS | 18823265PubMed |

Campbell, K. H., McWhir, J., Ritchie, W. A., and Wilmut, I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–66.
Sheep cloned by nuclear transfer from a cultured cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsFeisLY%3D&md5=bce65154cf19d00f70881f0e16c719c5CAS | 8598906PubMed |

Cho, S.-K., Hwang, K.-C., Choi, Y.-J., Bui, H.-T., Nguyen, V. T., Park, C., Kim, J.-H., and Kim, J.-H. (2009). Production of transgenic pigs harbouring the human erythropoietin (hEPO) gene using somatic cell nuclear transfer. J. Reprod. Dev. 55, 128–136.
Production of transgenic pigs harbouring the human erythropoietin (hEPO) gene using somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVOls7w%3D&md5=75aa43804c39afa677cad96145bf2b11CAS | 19106487PubMed |

Choi, Y.-J., Cho, S.-K., Hwang, K.-C., Park, C., Kim, J.-H., Park, S.-B., Hwang, S., and Kim, J.-H. (2009). Nm23–M5 mediates round and elongated spermatid survival by regulating GPX-5 levels. FEBS Lett. 583, 1292–1298.
Nm23–M5 mediates round and elongated spermatid survival by regulating GPX-5 levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVCkt7c%3D&md5=4656219115b873afb0db41d1d847c79fCAS | 19303412PubMed |

Cibelli, J. B., Stice, S. L., Golueke, P. J., Kane, J. J., Jerry, J., Blackwell, C., Ponce de León, F. A., and Robl, J. M. (1998). Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256–1258.
Cloned transgenic calves produced from nonquiescent fetal fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1Gqt78%3D&md5=8efad7de7ce0d4369109def475718efeCAS | 9596577PubMed |

Durai, S., Mani, M., Kandavelou, K., Wu, J., Porteus, M. H., and Chandrasegaran, S. (2005). Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 33, 5978–5990.
Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1OmtrnL&md5=7cf9d7e115632dc702e9ccc1df3a2e0bCAS | 16251401PubMed |

Echelard, Y., Williams, J. L., Destrempes, M. M., Koster, J. A., Overton, S. A., et al. (2009). Production of recombinant albumin by a herd of cloned transgenic cattle. Transgenic Res. 18, 361–376.
Production of recombinant albumin by a herd of cloned transgenic cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFCms7w%3D&md5=20afc8569fb8a286bad41fabb3e15cf0CAS | 19031005PubMed |

Folger, K., Thomas, K., and Capecchi, M. R. (1984). Analysis of homologous recombination in cultured mammalian cells. Cold Spring Harb. Symp. Quant. Biol. 49, 123–138.
| 1:CAS:528:DyaL28Xks1GlsQ%3D%3D&md5=7e5c46e66a45a865a6e394492988eb9bCAS | 6099232PubMed |

Fox, S., Filichkin, S., and Mockler, T. C. (2009). Applications of ultra-high-throughput sequencing. Methods Mol. Biol. 553, 79–108.
Applications of ultra-high-throughput sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFWksrk%3D&md5=98e5539fb69cb7751ec4771df812b5aeCAS | 19588102PubMed |

Freitas, V. J. F., Serova, I. A., Andreeva, L. E., Dvoryanchikov, G. A., Lopes, E. S., et al. (2007). Production of transgenic goat (Capra hircus) with human granulocyte colony-stimulating factor (hG-CSF) gene in Brazil. An. Acad. Bras. Cienc. 79, 585–592.
Production of transgenic goat (Capra hircus) with human granulocyte colony-stimulating factor (hG-CSF) gene in Brazil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ejsb4%3D&md5=e322128bd68b14098632992ab159c746CAS | 18066430PubMed |

Galli, C., Lagutina, I., Crotti, G., Colleoni, S., Turini, P., Ponderato, N., Duchi, R., and Lazzari, G. (2003). Pregnancy: a cloned horse born to its dam twin. Nature 424, 635.
Pregnancy: a cloned horse born to its dam twin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVektbc%3D&md5=f9c601497f887e99d6809ad5f2c3db39CAS | 12904778PubMed |

Gil, G.-C., Velander, W. H., and Van Cott, K. E. (2008). Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk. Glycobiology 18, 526–539.
Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Smtrg%3D&md5=5f667d3271eb3e9006e2dfe89d68b9e5CAS | 18456721PubMed |

Golovan, S. P., Meidinger, R. G., Ajakaiye, A., Cottrill, M., Wiederkehr, M. Z., et al. (2001). Pigs expressing salivary phytase produce low-phosphorus manure. Nat. Biotechnol. 19, 741–745.
Pigs expressing salivary phytase produce low-phosphorus manure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslekt78%3D&md5=67251fee3953de273ef7875cde6c58f3CAS | 11479566PubMed |

Guo, X., Yang, D., Ao, X., Wu, X., Li, G., Wang, L., Bao, M.-T., Xue, L., and Bou, S. (2009). Production of transgenic cashmere goat embryos expressing red fluorescent protein and containing IGF1 hair-follicle-cell specific expression cassette by somatic cell nuclear transfer. Sci. China C Life Sci. 52, 390–397.
Production of transgenic cashmere goat embryos expressing red fluorescent protein and containing IGF1 hair-follicle-cell specific expression cassette by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslOjsr4%3D&md5=8c8d863234b78827a8b97a5c57abd39bCAS | 19381465PubMed |

Kawarasaki, T., Uchiyama, K., Hirao, A., Azuma, S., Otake, M., et al. (2009). Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source. J. Biomed. Opt. 14, 054017.
Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source.Crossref | GoogleScholarGoogle Scholar | 19895119PubMed |

Keefer, C. L., Baldassarre, H., Keyston, R., Wang, B., Bhatia, B., et al. (2001). Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and non-transfected fetal fibroblasts and in vitro-matured oocytes. Biol. Reprod. 64, 849–856.
Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and non-transfected fetal fibroblasts and in vitro-matured oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVKjtr4%3D&md5=6ed5b3a458e31075114e89407f55f05eCAS | 11207200PubMed |

Klassen, H., Warfvinge, K., Schwartz, P. H., Kiilgaard, J. F., Shamie, N., Jiang, C., Samuel, M., Scherfig, E., Prather, R. S., and Young, M. J. (2008). Isolation of progenitor cells from GFP-transgenic pigs and transplantation to the retina of allorecipients. Cloning Stem Cells 10, 391–402.
Isolation of progenitor cells from GFP-transgenic pigs and transplantation to the retina of allorecipients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOmu7zE&md5=8641443505007c50fd27e11e47867ffeCAS | 18729769PubMed |

Klymiuk, N., Aigner, B., Brem, G., and Wolf, E. (2010). Genetic modification of pigs as organ donors for xenotransplantation. Mol. Reprod. Dev. 77, 209–221.
| 1:CAS:528:DC%2BC3cXotFSmsw%3D%3D&md5=72f47c5d3577c19d3a2e3ba5892968f4CAS | 19998476PubMed |

Kragh, P. M., Nielsen, A. L., Li, J., Du, Y., Lin, L., et al. (2009). Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res. 18, 545–558.
Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFKisLs%3D&md5=987fc71c94172f033bc6edc0f7a38e39CAS | 19184503PubMed |

Lai, L., Kang, J. X., Li, R., Wang, J., Witt, W. T., et al. (2006). Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat. Biotechnol. 24, 435–436.
Generation of cloned transgenic pigs rich in omega-3 fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1Wisb4%3D&md5=007ceeddbc10896eb909abe13bbae797CAS | 16565727PubMed |

Laible, G., and Alonso-González, L. (2009). Gene targeting from laboratory to livestock: current status and emerging concepts. Biotechnol. J. 4, 1278–1292.
Gene targeting from laboratory to livestock: current status and emerging concepts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2gs7fO&md5=3a225a18166ae27cf2977e8748bce8c9CAS | 19606430PubMed |

Lee, B. C., Kim, M. K., Jang, G., Oh, H. J., Yuda, F., et al. (2005). Dogs cloned from adult somatic cells. Nature 436, 641.
Dogs cloned from adult somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFentLY%3D&md5=61c10962bb987f29425981bbd95f2a34CAS | 16079832PubMed |

Lee, H.-G., Lee, H.-C., Kim, S. W., Lee, P., Chung, H.-J., et al. (2009). Production of recombinant human von Willebrand factor in the milk of transgenic pigs. J. Reprod. Dev. 55, 484–490.
Production of recombinant human von Willebrand factor in the milk of transgenic pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFahsLzN&md5=8e5880b493596bc9e3ab635c6d30f200CAS | 19521054PubMed |

Lee, H., Lee, B., Kim, Y., Paik, N., and Rho, H. (2010). Characterization of transgenic pigs that express human decay accelerating factor and cell membrane-tethered human tissue factor pathway inhibitor. Reprod. Domest. Anim. , .
Characterization of transgenic pigs that express human decay accelerating factor and cell membrane-tethered human tissue factor pathway inhibitor.Crossref | GoogleScholarGoogle Scholar | 20626677PubMed |

Li, L., Pang, D., Wang, T., Li, Z., Chen, L., et al. (2009). Production of a reporter transgenic pig for monitoring Cre recombinase activity. Biochem. Biophys. Res. Commun. 382, 232–235.
Production of a reporter transgenic pig for monitoring Cre recombinase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkt1Slur8%3D&md5=b7dd92d601ba720e8e0d4f39a9904e9aCAS | 19268654PubMed |

Lim, J.-H., Piedrahita, J. A., Jackson, L., Ghashghaei, T., and Olby, N. J. (2010). Development of a model of sacrocaudal spinal cord injury in cloned Yucatan minipigs for cellular transplantation research. Cell. Reprogram., in press.

Matsunari, H., Onodera, M., Tada, N., Mochizuki, H., Karasawa, S., et al. (2008). Transgenic-cloned pigs systemically expressing red fluorescent protein, Kusabira-Orange. Cloning Stem Cells 10, 313–324.
Transgenic-cloned pigs systemically expressing red fluorescent protein, Kusabira-Orange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOmu7zJ&md5=20b991faf82e8cb500419225675beea3CAS | 18729767PubMed |

McCalla-Martin, A. C., Chen, X., Linder, K. E., Estrada, J. L., and Piedrahita, J. A. (2010). Varying phenotypes in swine versus murine transgenic models constitutively expressing the same human Sonic hedgehog transcriptional activator, K5-HGLI2DeltaN. Transgenic Res. 19, 869–887.
Varying phenotypes in swine versus murine transgenic models constitutively expressing the same human Sonic hedgehog transcriptional activator, K5-HGLI2DeltaN.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFamtrjF&md5=81e91c5c163d2371415aec2c0dcbfc81CAS | 20099029PubMed |

McCreath, K. J., Howcroft, J., Campbell, K. H., Colman, A., Schnieke, A. E., and Kind, A. J. (2000). Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066–1069.
Production of gene-targeted sheep by nuclear transfer from cultured somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFKku74%3D&md5=01cb8c4851fa2fe4bbc745ccfaf1fa69CAS | 10890449PubMed |

Niemann, H., and Kues, W. A. (2007). Transgenic farm animals: an update. Reprod. Fertil. Dev. 19, 762–770.
Transgenic farm animals: an update.Crossref | GoogleScholarGoogle Scholar | 17714630PubMed |

Opsahl, M. L., McClenaghan, M., Springbett, A., Reid, S., Lathe, R., Colman, A., and Whitelaw, C. B. A. (2002). Multiple effects of genetic background on variegated transgene expression in mice. Genetics 160, 1107–1112.
| 1:CAS:528:DC%2BD38XjtFSitrw%3D&md5=f2d8efb743849d97c36fb0156b1feea6CAS | 11901126PubMed |

Oropeza, M., Petersen, B., Carnwath, J. W., Lucas-Hahn, A., Lemme, E., et al. (2009). Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 16, 522–534.
Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli.Crossref | GoogleScholarGoogle Scholar | 20042052PubMed |

Pan, D., Zhang, L., Zhou, Y., Feng, C., Long, C., et al. (2010). Efficient production of omega-3 fatty acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer. Sci. China Life Sci. 53, 517–523.
Efficient production of omega-3 fatty acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslWntLw%3D&md5=d8bee02f65500358dc9b659b18beffcbCAS | 20596920PubMed |

Pengyan, W., Jianjun, J., Ning, L., Jinliang, S., Yan, R., Chuangfu, C., and Zhiru, G. (2010). Transgenic mouse model integrating siRNA targeting the foot and mouth disease virus. Antiviral Res. 87, 265–268.
Transgenic mouse model integrating siRNA targeting the foot and mouth disease virus.Crossref | GoogleScholarGoogle Scholar | 20176056PubMed |

Petersen, B., Ramackers, W., Tiede, A., Lucas-Hahn, A., Herrmann, D., et al. (2009). Pigs transgenic for human thrombomodulin have elevated production of activated protein C. Xenotransplantation 16, 486–495.
Pigs transgenic for human thrombomodulin have elevated production of activated protein C.Crossref | GoogleScholarGoogle Scholar | 20042048PubMed |

Phelps, C. J., Ball, S. F., Vaught, T. D., Vance, A. M., Mendicino, M., et al. (2009). Production and characterization of transgenic pigs expressing porcine CTLA4-Ig. Xenotransplantation 16, 477–485.
Production and characterization of transgenic pigs expressing porcine CTLA4-Ig.Crossref | GoogleScholarGoogle Scholar | 20042047PubMed |

Piedrahita, J. A., Moore, K., Lee, C., Oetama, B., Weaks, R., Ramsoondar, J., Thomson, J., and Vasquez, J. (1997). Advances in the generation of transgenic pigs via embryo-derived and primordial germ cell-derived cells. J. Reprod. Fertil. Suppl. 52, 245–254.
| 1:STN:280:DyaK1c3msFCnsQ%3D%3D&md5=91a8c2f08c17f6bd7da975112a2aac6eCAS | 9602733PubMed |

Podoly, E., Bruck, T., Diamant, S., Melamed-Book, N., Weiss, A., Huang, Y., Livnah, O., Langermann, S., Wilgus, H., and Soreq, H. (2008). Human recombinant butyrylcholinesterase purified from the milk of transgenic goats interacts with beta-amyloid fibrils and suppresses their formation in vitro. Neurodegener. Dis. 5, 232–236.
Human recombinant butyrylcholinesterase purified from the milk of transgenic goats interacts with beta-amyloid fibrils and suppresses their formation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1Whtbs%3D&md5=2c9e0585bd3d4eec9631c419b3cf062eCAS | 18322399PubMed |

Quaranta, A., Siniscalchi, M., and Vallortigara, G. (2007). Asymmetric tail-wagging responses by dogs to different emotive stimuli. Curr. Biol. 17, R199–R201.
Asymmetric tail-wagging responses by dogs to different emotive stimuli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1SltLk%3D&md5=5f2f643ac1add4a41ce88b4c76284114CAS | 17371755PubMed |

Ramsoondar, J., Vaught, T., Ball, S., Mendicino, M., Monahan, J., Jobst, P., Vance, A., Duncan, J., Wells, K., and Ayares, D. (2009). Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 16, 164–180.
Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs.Crossref | GoogleScholarGoogle Scholar | 19566656PubMed |

Regenberg, A., Mathews, D. J. H., Blass, D. M., Bok, H., Coyle, J. T., et al. (2009). The role of animal models in evaluating reasonable safety and efficacy for human trials of cell-based interventions for neurologic conditions. J. Cereb. Blood Flow Metab. 29, 1–9.
The role of animal models in evaluating reasonable safety and efficacy for human trials of cell-based interventions for neurologic conditions.Crossref | GoogleScholarGoogle Scholar | 18728679PubMed |

Reichenbach, M., Lim, T., Reichenbach, H.-D., Guengoer, T., Habermann, F. A., et al. (2010). Germ-line transmission of lentiviral PGK-EGFP integrants in transgenic cattle: new perspectives for experimental embryology. Transgenic Res. 19, 549–556.
Germ-line transmission of lentiviral PGK-EGFP integrants in transgenic cattle: new perspectives for experimental embryology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Ghur8%3D&md5=fa4011468545d3455dc2c06cc23672fdCAS | 19862638PubMed |

Rémy, S., Tesson, L., Ménoret, S., Usal, C., Scharenberg, A. M., and Anegon, I. (2010). Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res. 19, 363–371.
Zinc-finger nucleases: a powerful tool for genetic engineering of animals.Crossref | GoogleScholarGoogle Scholar | 19821047PubMed |

Renner, S., Fehlings, C., Herbach, N., Hofmann, A., von Waldthausen, D. C., et al. (2010). Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59, 1228–1238.
Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFegtrw%3D&md5=cfb51e2a9a36982520fa6bf60b0e2eb4CAS | 20185813PubMed |

Ritchie, W. A., King, T., Neil, C., Carlisle, A. J., Lillico, S., McLachlan, G., and Whitelaw, C. B. A. (2009). Transgenic sheep designed for transplantation studies. Mol. Reprod. Dev. 76, 61–64.
Transgenic sheep designed for transplantation studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFemtL3O&md5=8e0b345edb236deb9910d424b54994e6CAS | 18449866PubMed |

Ritz, L. A., Friedman, R. M., Rhoton, E. L., Sparkes, M. L., and Vierck, C. J., Jr (1992). Lesions of cat sacrocaudal spinal cord: a minimally disruptive model of injury. J. Neurotrauma 9, 219–230.
Lesions of cat sacrocaudal spinal cord: a minimally disruptive model of injury.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s7hs1Sqsg%3D%3D&md5=79bbfbe487f4efae791e78e6773e7cf9CAS | 1474609PubMed |

Rogers, C. S., Abraham, W. M., Brogden, K. A., Engelhardt, J. F., Fisher, J. T., et al. (2008a). The porcine lung as a potential model for cystic fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L240–L263.
The porcine lung as a potential model for cystic fibrosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVaktrfO&md5=0bb8e4a9500bf7d23c498dda44ca3194CAS | 18487356PubMed |

Rogers, C. S., Hao, Y., Rokhlina, T., Samuel, M., Stoltz, D. A., et al. (2008b). Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J. Clin. Invest. 118, 1571–1577.
Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1Cnu7k%3D&md5=44f0a157c0b633ffe1bbfcaeddbab79dCAS | 18324337PubMed |

Schnieke, A. E., Kind, A. J., Ritchie, W. A., Mycock, K., Scott, A. R., Ritchie, M., Wilmut, I., Colman, A., and Campbell, K. H. (1997). Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278, 2130–2133.
Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFyh&md5=5cb14b86da8a19b7ab416ad5053ef922CAS | 9405350PubMed |

Sheng, H., Goich, S., Wang, A., Grachtchouk, M., Lowe, L., et al. (2002). Dissecting the oncogenic potential of Gli2: deletion of an NH(2)-terminal fragment alters skin tumour phenotype. Cancer Res. 62, 5308–5316.
| 1:CAS:528:DC%2BD38Xnt1ynsbs%3D&md5=d579cf7e1879b39770901442ff733162CAS | 12235001PubMed |

Shin, T., Kraemer, D., Pryor, J., Liu, L., Rugila, J., Howe, L., Buck, S., Murphy, K., Lyons, L., and Westhusin, M. (2002). A cat cloned by nuclear transplantation. Nature 415, 859.
A cat cloned by nuclear transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhs1yhtbk%3D&md5=35330644c85c6e76c47015a5426ce704CAS | 11859353PubMed |

Smithies, O., Koralewski, M. A., Song, K. Y., and Kucherlapati, R. S. (1984). Homologous recombination with DNA introduced into mammalian cells. Cold Spring Harb. Symp. Quant. Biol. 49, 161–170.
| 1:CAS:528:DyaL28Xmt12qtQ%3D%3D&md5=7e88820f3d54307e28bbcb2650005457CAS | 6597754PubMed |

Stoltz, D. A., Meyerholz, D. K., Pezzulo, A. A., Ramachandran, S., Rogan, M. P., et al. (2010). Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci. Transl. Med. 2, 29–31.

Tong, J., Wei, H., Liu, X., Hu, W., Bi, M., Wang, Y., Li, Q., and Li, N. (2010). Production of recombinant human lysozyme in the milk of transgenic pigs. Transgenic Res , .
Production of recombinant human lysozyme in the milk of transgenic pigs.Crossref | GoogleScholarGoogle Scholar | 20549346PubMed |

Walker, C., Vierck, C. J., and Ritz, L. A. (1998). Balance in the cat: role of the tail and effects of sacrocaudal transection. Behav. Brain Res. 91, 41–47.
Balance in the cat: role of the tail and effects of sacrocaudal transection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3jslGnuw%3D%3D&md5=70e6d292234b2173491540eee0eb43a6CAS | 9578438PubMed |

Wall, R. J., Hawk, H. W., and Nel, N. (1992). Making transgenic livestock: genetic engineering on a large scale. J. Cell. Biochem. 49, 113–120.
Making transgenic livestock: genetic engineering on a large scale.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s%2Fhs1eisg%3D%3D&md5=f55fd781a8cfb106a0b65c369e44a910CAS | 1400618PubMed |

Weiss, E. H., Lilienfeld, B. G., Müller, S., Müller, E., Herbach, N., et al. (2009). HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation 87, 35–43.
HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2lsw%3D%3D&md5=8948042b7d231fe76f72362d06d52103CAS | 19136889PubMed |

Whyte, J., and Laughlin, M. H. (2010). Placentation in the pig visualized by eGFP fluorescence in eNOS over-expressing cloned transgenic swine. Mol. Reprod. Dev. 77, 565.
Placentation in the pig visualized by eGFP fluorescence in eNOS over-expressing cloned transgenic swine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVahsLc%3D&md5=7b95aa939f5e3251b16a5c87787e13ecCAS | 20578058PubMed |

Wise, T. G., Schafer, D. S., Lowenthal, J. W., and Doran, T. J. (2008). The use of RNAi and transgenics to develop viral disease-resistant livestock. Dev. Biol. (Basel) 132, 377–382.
The use of RNAi and transgenics to develop viral disease-resistant livestock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1Crug%3D%3D&md5=128496fea7f727f0d1f2b37f9837970cCAS | 18817330PubMed |

Xia, X.-G., Zhou, H., and Xu, Z. (2006). Transgenic RNAi: accelerating and expanding reverse genetics in mammals. Transgenic Res. 15, 271–275.
Transgenic RNAi: accelerating and expanding reverse genetics in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVGrt7Y%3D&md5=7cf79a260c2a1e383c6680825c316378CAS | 16779643PubMed |

Yamaguchi, S., Kurimoto, K., Yabuta, Y., Sasaki, H., Nakatsuji, N., Saitou, M., and Tada, T. (2009). Conditional knockdown of Nanog induces apoptotic cell death in mouse migrating primordial germ cells. Development 136, 4011–4020.
Conditional knockdown of Nanog induces apoptotic cell death in mouse migrating primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislSktg%3D%3D&md5=184371d1421a1b445e90645b72a09d26CAS | 19906868PubMed |

Yang, P., Wang, J., Gong, G., Sun, X., Zhang, R., et al. (2008). Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin. PLoS ONE 3, e3453.
Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin.Crossref | GoogleScholarGoogle Scholar | 18941633PubMed |

Zhang, J., Li, L., Cai, Y., Xu, X., Chen, J., et al. (2008). Expression of active recombinant human lactoferrin in the milk of transgenic goats. Protein Expr. Purif. 57, 127–135.
Expression of active recombinant human lactoferrin in the milk of transgenic goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOltrzO&md5=afd6a4c756e277ce9593325d8dcb66b6CAS | 18054499PubMed |

Zhang, Y. L., Wan, Y. J., Wang, Z. Y., Xu, D., Pang, X. S., Meng, L., Wang, L. H., Zhong, B. S., and Wang, F. (2010). Production of dairy goat embryos, by nuclear transfer, transgenic for human acid beta-glucosidase. Theriogenology 73, 681–690.
Production of dairy goat embryos, by nuclear transfer, transgenic for human acid beta-glucosidase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVOhsrs%3D&md5=1a4ca217d585e301028d1b124c67c7f6CAS | 20053430PubMed |

Zhao, R., and Daley, G. Q. (2008). From fibroblasts to iPS cells. Induced pluripotency by defined factors. J. Cell. Biochem. 105, 949–955.
From fibroblasts to iPS cells. Induced pluripotency by defined factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2hsLbO&md5=058ff51338518844962649224b23b747CAS | 18668528PubMed |