Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Efficient purification of neonatal porcine gonocytes with Nycodenz and differential plating

Yanfei Yang A and Ali Honaramooz A B
+ Author Affiliations
- Author Affiliations

A Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada.

B Corresponding author. Email: ali.honaramooz@usask.ca

Reproduction, Fertility and Development 23(3) 496-505 https://doi.org/10.1071/RD10042
Submitted: 4 March 2010  Accepted: 1 November 2010   Published: 16 March 2011

Abstract

Gonocytes are the only type of germ cells present in the postnatal testis and give rise to spermatogonial stem cells. Purification of gonocytes has important implications for the study and manipulation of these cells and may provide insights for the ongoing investigation of the male germline stem cells. To obtain a pure population of gonocytes from piglet testis cells, a wide range of Nycodenz concentrations were investigated for density gradient centrifugation. We also examined differential plating of testis cells for various culture durations with different extracellular matrix (ECM) components (fibronectin, poly-d-lysine, poly-l-lysine, laminin and collagen Types I and IV). Gonocytes were highly enriched in pellets of testis cells after using 17% Nycodenz centrifugation to a purity of 81 ± 9%. After culturing testis cells on plates precoated with different ECM components for 120 min, the proportion of gonocytes increased among non-adherent cells (suspended in the medium), with fibronectin or poly-d-lysine resulting in the greatest (up to 85%) and laminin in the lowest (54%) gonocyte proportion. Combining the most promising ECM coatings (fibronectin and poly-d-lysine) and further extension of their culture duration to 240 min did not improve final gonocyte purity. However, centrifugation with 17% Nycodenz followed by differential plating with fibronectin and poly-d-lysine coating further purified gonocytes among the collected cells to >90%. These results provide a simple, quick and efficient approach for obtaining highly enriched populations of piglet gonocytes for use in the study and manipulation of these germline stem cells.

Additional keywords: density gradient centrifugation, extracellular matrix, pig, spermatogonial stem cell.


References

Adams, I. R., and McLaren, A. (2002). Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development 129, 1155–1164.
| 1:CAS:528:DC%2BD38XisVWrur0%3D&md5=3c98003b7a340f07795e6fb1c81ee2fdCAS | 11874911PubMed |

Bacci, M. L. (2007). A brief overview of transgenic farm animals. Vet. Res. Commun. 31, 9–14.
A brief overview of transgenic farm animals.Crossref | GoogleScholarGoogle Scholar |

Bashamboo, A., Taylor, A. H., Samuel, K., Panthier, J.-J., Whetton, A. D., and Forrester, L. M. (2006). The survival of differentiating embryonic stem cells is dependent on the SCF-KIT pathway. J. Cell Sci. 119, 3039–3046.
The survival of differentiating embryonic stem cells is dependent on the SCF-KIT pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1alt7k%3D&md5=5d7b2c266617f5f366ef17ecaf4b721eCAS | 16820414PubMed |

Bendel-Stenzel, M. R., Gomperts, M., Anderson, R., Heasman, J., and Wylie, C. (2000). The role of cadherins during primordial germ cell migration and early gonad formation in the mouse. Mech. Dev. 91, 143–152.
The role of cadherins during primordial germ cell migration and early gonad formation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVagsLY%3D&md5=b81e5e23d3b41357666d99df0ea80e44CAS | 10704839PubMed |

Chuma, S., Kanatsu-Shinohara, M., Inoue, K., Ogonuki, N., Miki, H., Toyokuni, S., Hosokawa, M., Nakatsuji, N., Ogura, A., and Shinohara, T. (2005). Spermatogenesis from epiblast and primordial germ cells following transplantation into postnatal mouse testis. Development 132, 117–122.
Spermatogenesis from epiblast and primordial germ cells following transplantation into postnatal mouse testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSru7Y%3D&md5=a1ff29e0f9649c2fbb03b7f18177cf78CAS | 15576408PubMed |

Coucouvanis, E. C., Sherwood, S. W., Carswell-Crumpton, C., Spack, E. G., and Jones, P. P. (1993). Evidence that the mechanism of prenatal germ cell death in the mouse is apoptosis. Exp. Cell Res. 209, 238–247.
Evidence that the mechanism of prenatal germ cell death in the mouse is apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2FosFCquw%3D%3D&md5=2a6214e203bf108f847e526d3c2463f7CAS | 8262141PubMed |

Culty, M. (2009). Gonocytes, the forgotten cells of the germ cell lineage. Birth Defects Res. C Embryo Today 87, 1–6.
Gonocytes, the forgotten cells of the germ cell lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVKrsrY%3D&md5=167979baa15faed1de544cc313027328CAS | 19306346PubMed |

de Rooij, D. G. (1998). Stem cells in the testis. Int. J. Exp. Pathol. 79, 67–80.
Stem cells in the testis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1cznsFSgug%3D%3D&md5=e0fe70ac6dbf3232f8d516fc1d6afcf2CAS | 9709376PubMed |

Dirami, G., Ravindranath, N., Pursel, V., and Dym, M. (1999). Effects of stem cell factor and granulocyte macrophage-colony stimulating factor on survival of porcine type a spermatogonia cultured in KSOM. Biol. Reprod. 61, 225–230.
Effects of stem cell factor and granulocyte macrophage-colony stimulating factor on survival of porcine type a spermatogonia cultured in KSOM.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFKgu7s%3D&md5=8a8dd4ecb46076910d546e168012eef1CAS | 10377053PubMed |

Dobrinski, I., Ogawa, T., Avarbock, M. R., and Brinster, R. L. (1999). Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cells from transgenic donor mice. Mol. Reprod. Dev. 53, 142–148.
Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cells from transgenic donor mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFKmt7g%3D&md5=4745e5067f68ddb05500837a11f1e7cbCAS | 10331452PubMed |

Forand, A., Fouchet, P., Lahaye, J. B., Chicheportiche, A., Habert, R., and Bernardino-Sgherri, J. (2009). Similarities and differences in the in vivo response of mouse neonatal gonocytes and spermatogonia to genotoxic stress. Biol. Reprod. 80, 860–873.
Similarities and differences in the in vivo response of mouse neonatal gonocytes and spermatogonia to genotoxic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVWqurc%3D&md5=f5446b2fb973d361f5a8378e328d41caCAS | 19144961PubMed |

Gassei, K., Ehmcke, J., and Schlatt, S. (2009). Efficient enrichment of undifferentiated GFR alpha 1+ spermatogonia from immature rat testis by magnetic activated cell sorting. Cell Tissue Res. 337, 177–183.
Efficient enrichment of undifferentiated GFR alpha 1+ spermatogonia from immature rat testis by magnetic activated cell sorting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVSrtrY%3D&md5=d700c22ab27e9b3c3d75b34a0efec121CAS | 19434428PubMed |

Gilner, J. B., Walton, W. G., Gush, K., and Kirby, S. L. (2007). Antibodies to stem cell marker antigens reduce engraftment of hematopoietic stem cells. Stem Cells 25, 279–288.
Antibodies to stem cell marker antigens reduce engraftment of hematopoietic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVOlsbk%3D&md5=8b95fa56143cd4bbb6397baca6dcc5c9CAS | 17008427PubMed |

Giuili, G., Tomljenovic, A., Labrecque, N., Oulad-Abdelghani, M., Rassoulzadegan, M., and Cuzin, F. (2002). Murine spermatogonial stem cells: targeted transgene expression and purification in an active state. EMBO Rep. 3, 753–759.
Murine spermatogonial stem cells: targeted transgene expression and purification in an active state.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVGltrk%3D&md5=32c12a3cc3fd4ffdc82d56f4a6bec3e4CAS | 12151334PubMed |

Goel, S., Sugimoto, M., Minami, N., Yamada, M., Kume, S., and Imai, H. (2007). Identification, isolation, and in vitro culture of porcine gonocytes. Biol. Reprod. 77, 127–137.
Identification, isolation, and in vitro culture of porcine gonocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntV2gtrk%3D&md5=c24bcd88462f21fb1788d4d486d61b74CAS | 17377141PubMed |

Goel, S., Fujihara, M., Minami, N., Yamada, M., and Imai, H. (2008). Expression of NANOG, but not POU5F1, points to the stem cell potential of primitive germ cells in neonatal pig testis. Reproduction 135, 785–795.
Expression of NANOG, but not POU5F1, points to the stem cell potential of primitive germ cells in neonatal pig testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVOksrs%3D&md5=cc818db1ff7323c52cabe2e1632a9a73CAS | 18367503PubMed |

Goel, S., Fujihara, M., Tsuchiya, K., Takagi, Y., Minami, N., Yamada, M., and Imai, H. (2009). Multipotential ability of primitive germ cells from neonatal pig testis cultured in vitro. Reprod. Fertil. Dev. 21, 696–708.
Multipotential ability of primitive germ cells from neonatal pig testis cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVCrurY%3D&md5=39adc82a9f11886cdcc205716724500aCAS | 19486607PubMed |

Hamra, F. K., Schultz, N., Chapman, K. M., Grellhesl, D. M., Cronkhite, J. T., Hammer, R. E., and Garbers, D. L. (2004). Defining the spermatogonial stem cell. Dev. Biol. 269, 393–410.
Defining the spermatogonial stem cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVaqurY%3D&md5=73d1f52a7cd9718285ad26b3a2d69e57CAS | 15110708PubMed |

Hasthorpe, S. (2003). Clonogenic culture of normal spermatogonia: in vitro regulation of postnatal germ cell proliferation. Biol. Reprod. 68, 1354–1360.
Clonogenic culture of normal spermatogonia: in vitro regulation of postnatal germ cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVertbc%3D&md5=475c7c0569daf82f4136f8089fb288b1CAS | 12606414PubMed |

Hasthorpe, S., Barbie, S., Farmer, P. J., and Hutson, J. M. (1999). Neonatal mouse gonocyte proliferation assayed by an in vitro clonogenic method. J. Reprod. Fertil. 116, 335–344.
Neonatal mouse gonocyte proliferation assayed by an in vitro clonogenic method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOltbs%3D&md5=2fff674fe7076807a5cac257a5c23151CAS | 10615259PubMed |

Herrid, M., Vignarajan, S., Davey, R., Dobrinski, I., and Hill, J. R. (2006). Successful transplantation of bovine testicular cells to heterologous recipients. Reproduction 132, 617–624.
Successful transplantation of bovine testicular cells to heterologous recipients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ahs7rP&md5=2d2223c5fea2390fcbda010674ee132dCAS | 17008473PubMed |

Herrid, M., Davey, R. J., Hutton, K., Colditz, I. G., and Hill, J. R. (2009). A comparison of methods for preparing enriched populations of bovine spermatogonia. Reprod. Fertil. Dev. 21, 393–399.
A comparison of methods for preparing enriched populations of bovine spermatogonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFemtr8%3D&md5=47839b7844e626688689f79ca15c8e6cCAS | 19261216PubMed |

Hill, J. R., and Dobrinski, I. (2006). Male germ cell transplantation in livestock. Reprod. Fertil. Dev. 18, 13–18.
Male germ cell transplantation in livestock.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28%2FptlWmsg%3D%3D&md5=c8559f70baf66233452deadabbf92d3bCAS | 16478598PubMed |

Honaramooz, A., and Yang, Y. (2011). Recent advances in application of male germ cell transplantation in farm animals. Vet. Med. Int , .
Recent advances in application of male germ cell transplantation in farm animals.Crossref | GoogleScholarGoogle Scholar |

Honaramooz, A., Megee, S. O., and Dobrinski, I. (2002). Germ cell transplantation in pigs. Biol. Reprod. 66, 21–28.
Germ cell transplantation in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1ylsg%3D%3D&md5=5ad02283ad3e18802fc85a678fe79757CAS | 11751259PubMed |

Honaramooz, A., Behboodi, E., Blash, S., Megee, S. O., and Dobrinski, I. (2003a). Germ cell transplantation in goats. Mol. Reprod. Dev. 64, 422–428.
Germ cell transplantation in goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislOqsr0%3D&md5=e6c330c0982ceb627c9f57a6ec3cc8a4CAS | 12589654PubMed |

Honaramooz, A., Behboodi, E., Megee, S. O., Overton, S. A., Galantino-Homer, H., Echelard, Y., and Dobrinski, I. (2003b). Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol. Reprod. 69, 1260–1264.
Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsL8%3D&md5=1c51bc83916661ed74c44799035eb18eCAS | 12801978PubMed |

Honaramooz, A., Megee, S., Zeng, W., Destrempes, M. M., Overton, S. A., Luo, J., Galantino-Homer, H., Modelski, M., Chen, F., Blash, S., Melican, D. T., Gavin, W. G., Ayres, S., Yang, F., Wang, P. J., Echelard, Y., and Dobrinski, I. (2008). Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB J. 22, 374–382.
Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVSqsLY%3D&md5=fb73af2cdcfe0b4f94197a9fe916d4f8CAS | 17873102PubMed |

Izadyar, F., Spierenberg, G., Creemers, L., den Ouden, K., and de Rooij, D. (2002). Isolation and purification of Type A spermatogonia from the bovine testis. Reproduction 124, 85–94.
Isolation and purification of Type A spermatogonia from the bovine testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtFaksL8%3D&md5=2a76b9cc2f43b9c7a5a4afc13e32e2abCAS | 12090922PubMed |

Jiang, F. X. (2001). Male germ cell transplantation: promise and problems. Reprod. Fertil. Dev. 13, 609–614.
Male germ cell transplantation: promise and problems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD383lvFyqtg%3D%3D&md5=12c9dabce8b5426d1e9edfd8dd3a1122CAS | 11999312PubMed |

Jiang, F. X., and Short, R. V. (1995). Male germ cell transplantation in rats: apparent synchronization of spermatogenesis between host and donor seminiferous epithelia. Int. J. Androl. 18, 326–330.
Male germ cell transplantation in rats: apparent synchronization of spermatogenesis between host and donor seminiferous epithelia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28zktFOqtA%3D%3D&md5=c11e6ccc5958dc9c4447ca6b51d34d49CAS | 8719849PubMed |

Jiang, F. X., and Short, R. V. (1998a). Different fate of primordial germ cells and gonocytes following transplantation. APMIS 106, 58–62.
Different fate of primordial germ cells and gonocytes following transplantation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7osFamsg%3D%3D&md5=d2b45c785d027a9c91d460973d8db91eCAS | 9524562PubMed |

Jiang, F. X., and Short, R. V. (1998b). Male germ cell transplantation: present achievements and future prospects. Int. J. Dev. Biol. 42, 1067–1073.
| 1:STN:280:DyaK1M%2FmvVOhtQ%3D%3D&md5=ee2c31fd3c127b191f04edc5f6b1c698CAS | 9853838PubMed |

Kanatsu-Shinohara, M., Ogonuki, N., Iwano, T., Lee, J., Kazuki, Y., Inoue, K., Miki, H., Takehashi, M., Toyokuni, S., Shinkai, Y., Oshimura, M., Ishino, F., Ogura, A., and Shinohara, T. (2005). Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development 132, 4155–4163.
Genetic and epigenetic properties of mouse male germline stem cells during long-term culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCgs7%2FL&md5=dd97a44913d7167c9f8ba6af54c24277CAS | 16107472PubMed |

Khaira, H., McLean, D., Ohl, D. A., and Smith, G. D. (2005). Spermatogonial stem cell isolation, storage, and transplantation. J. Androl. 26, 442–450.
Spermatogonial stem cell isolation, storage, and transplantation.Crossref | GoogleScholarGoogle Scholar | 15955880PubMed |

Kim, B.-G., Cho, C. M., Lee, Y.-A., Kim, B.-J., Kim, K.-J., Kim, Y.-H., Min, K.-S., Kim, C. G., and Ryu, B.-Y. (2010). Enrichment of testicular gonocytes and genetic modification using lentiviral transduction in pigs. Biol. Reprod. 82, 1162–1169.
Enrichment of testicular gonocytes and genetic modification using lentiviral transduction in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgt7c%3D&md5=7ba49602c16bc170a136fec5d8c4b3f6CAS | 20147734PubMed |

Kubota, H., Avarbock, M. R., and Brinster, R. L. (2003). Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc. Natl Acad. Sci. USA 100, 6487–6492.
Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlyhuro%3D&md5=c749c1e83c67883ee6c22a5be0406e38CAS |

Kubota, H., Avarbock, M. R., and Brinster, R. L. (2004). Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol. Reprod. 71, 722–731.
Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFejtLk%3D&md5=587e721ab9f2ae831cfcd45642c47b40CAS | 15115718PubMed |

Lee, C. K., and Piedrahita, J. A. (2003). Transgenesis and germ cell engineering in domestic animals. Asian-Australas. J. Anim. Sci. 16, 910–927.
| 1:CAS:528:DC%2BD3sXktF2gsL8%3D&md5=118492a97d7f7bfcfaf24cbff4f1f1ffCAS |

Li, H., Papadopoulos, V., Vidic, B., Dym, M., and Culty, M. (1997). Regulation of rat testis gonocyte proliferation by platelet-derived growth factor and estradiol: identification of signaling mechanisms involved. Endocrinology 138, 1289–1298.
Regulation of rat testis gonocyte proliferation by platelet-derived growth factor and estradiol: identification of signaling mechanisms involved.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXht1yltrk%3D&md5=0ef9a68ee6ba12ae84a10ad6ca65e57aCAS | 9048638PubMed |

Lo, K. C., Brugh Iii, V. M., Parker, M., and Lamb, D. J. (2005). Isolation and enrichment of murine spermatogonial stem cells using rhodamine 123 mitochondrial dye. Biol. Reprod. 72, 767–771.
Isolation and enrichment of murine spermatogonial stem cells using rhodamine 123 mitochondrial dye.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVeisbg%3D&md5=fb1bbc1a7b68521ad557f7cad76b9c45CAS | 15576830PubMed |

Luo, J., Megee, S., Rathi, R., and Dobrinski, I. (2006). Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol. Reprod. Dev. 73, 1531–1540.
Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGhtr%2FO&md5=33d230c3ee193a9e4484ffebc7a4a9fbCAS | 16894537PubMed |

Marret, C., and Durand, P. (2000). Culture of porcine spermatogonia: effects of purification of the germ cells, extracellular matrix and fetal calf serum on their survival and multiplication. Reprod. Nutr. Dev. 40, 305–319.
Culture of porcine spermatogonia: effects of purification of the germ cells, extracellular matrix and fetal calf serum on their survival and multiplication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVWqsrs%3D&md5=94896f4dc8dd1b2245c2b0f95a38fa71CAS | 10943609PubMed |

Mayanagi, T., Kurosawa, R., Ohnuma, K., Ueyama, A., Ito, K., and Takahashi, J. (2003). Purification of mouse primordial germ cells by Nycodenz. Reproduction 125, 667–675.
Purification of mouse primordial germ cells by Nycodenz.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVKmurk%3D&md5=2210a3d2d72b92b9d9138acf8bb70195CAS | 12713429PubMed |

McGuinness, M. P., and Orth, J. M. (1992). Reinitiation of gonocyte mitosis and movement of gonocytes to the basement membrane in testes of newborn rats in vivo and in vitro. Anat. Rec. 233, 527–537.
Reinitiation of gonocyte mitosis and movement of gonocytes to the basement membrane in testes of newborn rats in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zivVaiuw%3D%3D&md5=04cbd63b8a41c24ee57da61ce9e2ea9dCAS | 1626712PubMed |

McLean, D. J., Friel, P. J., Johnston, D. S., and Griswold, M. D. (2003). Characterization of spermatogonial stem cell maturation and differentiation in neonatal mice. Biol. Reprod. 69, 2085–2091.
Characterization of spermatogonial stem cell maturation and differentiation in neonatal mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVCntr8%3D&md5=d8b44d9425139fa99818e171070025acCAS | 12954735PubMed |

Meehan, T., Schlatt, S., O’Bryan, M. K., De Kretser, D. M., and Loveland, K. L. (2000). Regulation of germ cell and sertoli cell development by activin, follistatin, and FSH. Dev. Biol. 220, 225–237.
Regulation of germ cell and sertoli cell development by activin, follistatin, and FSH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1ClsL4%3D&md5=2d076298e521822d4526ef23bef0c031CAS | 10753512PubMed |

Moore, T. J., De Boer-Brouwer, M., and Van Dissel-Emiliani, F. M. F. (2002). Purified gonocytes from the neonatal rat form foci of proliferating germ cells in vitro. Endocrinology 143, 3171–3174.
Purified gonocytes from the neonatal rat form foci of proliferating germ cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Sgtb0%3D&md5=944c1772c6f0c0330d89eef20af8a89dCAS | 12130583PubMed |

Moudgal, N. R., Sairam, M. R., Krishnamurthy, H. N., Sridhar, S., Krishnamurthy, H., and Khan, H. (1997). Immunization of male bonnet monkeys (M. radiata) with a recombinant FSH receptor preparation affects testicular function and fertility. Endocrinology 138, 3065–3068.
Immunization of male bonnet monkeys (M. radiata) with a recombinant FSH receptor preparation affects testicular function and fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktVyhsLo%3D&md5=9cce56100f5e520646f6f28d2611b367CAS | 9202254PubMed |

Nagano, M., Avarbock, M. R., and Brinster, R. L. (1999). Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes. Biol. Reprod. 60, 1429–1436.
Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVeisrs%3D&md5=ebf640156196b85a20b93cd3090dca90CAS | 10330102PubMed |

Ohbo, K., Yoshida, S., Ohmura, M., Ohneda, O., Ogawa, T., Tsuchiya, H., Kuwana, T., Kehler, J., Abe, K., Schöler, H. R., and Suda, T. (2003). Identification and characterization of stem cells in prepubertal spermatogenesis in mice. Dev. Biol. 258, 209–225.
Identification and characterization of stem cells in prepubertal spermatogenesis in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFGit7Y%3D&md5=4d30df113c98e31ef691db28b9f15d6eCAS | 12781694PubMed |

Ohmura, M., Yoshida, S., Ide, Y., Nagamatsu, G., Suda, T., and Ohbo, K. (2004). Spatial analysis of germ stem cell development in Oct-4/EGFP transgenic mice. Arch. Histol. Cytol. 67, 285–296.
Spatial analysis of germ stem cell development in Oct-4/EGFP transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslKrs7c%3D&md5=f7833415a66b38653ef01916a32c2653CAS | 15700536PubMed |

Ohta, H., Yomogida, K., Yamada, S., Okabe, M., and Nishimune, Y. (2000). Real-time observation of transplanted ‘green germ cells’: proliferation and differentiation of stem cells. Dev. Growth Differ. 42, 105–112.
Real-time observation of transplanted ‘green germ cells’: proliferation and differentiation of stem cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvlslOntA%3D%3D&md5=45ab4aa498448add599132c988543256CAS | 10830433PubMed |

Ohta, H., Wakayama, T., and Nishimune, Y. (2004). Commitment of fetal male germ cells to spermatogonial stem cells during mouse embryonic development. Biol. Reprod. 70, 1286–1291.
Commitment of fetal male germ cells to spermatogonial stem cells during mouse embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFelt7c%3D&md5=45e6b6f62458d62c91fde7185c09b896CAS | 14695910PubMed |

Orwig, K. E., Ryu, B.-Y., Avarbock, M. R., and Brinster, R. L. (2002a). Male germ-line stem cell potential is predicted by morphology of cells in neonatal rat testes. Proc. Natl Acad. Sci. USA 99, 11 706–11 711.
Male germ-line stem cell potential is predicted by morphology of cells in neonatal rat testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFWqsbc%3D&md5=571ad1b5b63fb6d7bf5c33f9d457da10CAS |

Orwig, K. E., Shinohara, T., Avarbock, M. R., and Brinster, R. L. (2002b). Functional analysis of stem cells in the adult rat testis. Biol. Reprod. 66, 944–949.
Functional analysis of stem cells in the adult rat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlCltb4%3D&md5=a10655b9f274f31d7a6917d56c62292aCAS | 11906912PubMed |

Pertoft, H. (2000). Fractionation of cells and subcellular particles with Percoll. J. Biochem. Biophys. Methods 44, 1–30.
Fractionation of cells and subcellular particles with Percoll.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks12ru78%3D&md5=ccd45d2ba4fed52807d2d6d4c8318b87CAS | 10889273PubMed |

Rodriguez-Sosa, J. R., Dobson, H., and Hahnel, A. (2006). Isolation and transplantation of spermatogonia in sheep. Theriogenology 66, 2091–2103.
Isolation and transplantation of spermatogonia in sheep.Crossref | GoogleScholarGoogle Scholar | 16870245PubMed |

Ryu, B. Y., Orwig, K. E., Avarbock, M. R., and Brinster, R. L. (2003). Stem cell and niche development in the postnatal rat testis. Dev. Biol. 263, 253–263.
Stem cell and niche development in the postnatal rat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Cis74%3D&md5=78fc1e4ecc1ad08ad9cc6204e1815082CAS | 14597200PubMed |

Semple, J. W., and Szewczuk, M. R. (1986). Natural killer cells in murine muscular dystrophy: IV. characterization of percoll fractionated splenic and thymic natural killer cells and natural killer-sensitive thymocyte targets. Clin. Immunol. Immunopathol. 41, 116–129.
Natural killer cells in murine muscular dystrophy: IV. characterization of percoll fractionated splenic and thymic natural killer cells and natural killer-sensitive thymocyte targets.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL283pvFagsQ%3D%3D&md5=c6f6fb165e2f97a0f967093a322c56e0CAS | 3017622PubMed |

Shinohara, T., Avarbock, M. R., and Brinster, R. L. (1999). β1- and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA 96, 5504–5509.
β1- and α6-integrin are surface markers on mouse spermatogonial stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFCnsbg%3D&md5=8e5061586225f929f988c2151aa45e08CAS |

Shinohara, T., Orwig, K. E., Avarbock, M. R., and Brinster, R. L. (2000). Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc. Natl Acad. Sci. USA 97, 8346–8351.
Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1Ggtb8%3D&md5=73ce00d485172654230fc1337a5372b8CAS |

Shinohara, T., Orwig, K. E., Avarbock, M. R., and Brinster, R. L. (2001). Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc. Natl Acad. Sci. USA 98, 6186–6191.
Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3pt1Wltg%3D%3D&md5=7764ba2171b17763ea33917c4603f694CAS |

Shinohara, T., Inoue, K., Ogonuki, N., Kanatsu-Shinohara, M., Miki, H., Nakata, K., Kurome, M., Nagashima, H., Toyokuni, S., Kogishi, K., Honjo, T., and Ogura, A. (2002). Birth of offspring following transplantation of cyropreserved immature testicular pieces and in vitro microinsemination. Hum. Reprod. 17, 3039–3045.
Birth of offspring following transplantation of cyropreserved immature testicular pieces and in vitro microinsemination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFaiuw%3D%3D&md5=976c60203e8b295b5d8331ebd684e037CAS | 12456600PubMed |

Tagelenbosch, R. A. J., and De Rooij, D. G. (1993). A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat. Res. 290, 193–200.
A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse.Crossref | GoogleScholarGoogle Scholar | 7694110PubMed |

Takagi, Y., Talbot, N. C., Rexroad, C. E. , and Pursel, V. G. (1997). Identification of pig primordial germ cells by immunocytochemistry and lectin binding. Mol. Reprod. Dev. 46, 567–580.
Identification of pig primordial germ cells by immunocytochemistry and lectin binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXit1aisLY%3D&md5=578120b59552ebb2b5e22bd3fd6d67b7CAS | 9094103PubMed |

Van den Ham, R., van Pelt, A. M. M., De Miguel, M. P., Van Kooten, P. J. S., Walther, N., and van Dissel-Emilani, F. M. F. (1997). Immunomagnetic isolation of fetal rat gonocytes. Am. J. Reprod. Immunol. 38, 39–45.
| 1:STN:280:DyaK2svhtV2lsg%3D%3D&md5=99bcae3f0232a12d54778bf9db56f9b1CAS | 9266009PubMed |

Van den Ham, R., van Dissel-Emiliani, F. M. F., and van Pelt, A. M. M. (2002). Identification of candidate genes involved in gonocyte development. J. Androl. 23, 410–418.
| 1:CAS:528:DC%2BD38XjvVKmtLg%3D&md5=348c7a52ea133a56526bf0ec970c94e1CAS | 12002443PubMed |

van Dissel-Emiliani, F. M. F., de Rooij, D. G., and Meistrich, M. L. (1989). Isolation of rat gonocytes by velocity sedimentation at unit gravity. J. Reprod. Fertil. 86, 759–766.
Isolation of rat gonocytes by velocity sedimentation at unit gravity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1Mzkt1eltA%3D%3D&md5=62fcabf0a95377c5e08dba63a66350efCAS | 2760901PubMed |

von Schönfeldt, V., Krishnamurthy, H., Foppiani, L., and Schlatt, S. (1999). Magnetic cell sorting is a fast and effective method of enriching viable spermatogonia from djungarian hamster, mouse, and marmoset monkey testes. Biol. Reprod. 61, 582–589.
Magnetic cell sorting is a fast and effective method of enriching viable spermatogonia from djungarian hamster, mouse, and marmoset monkey testes.Crossref | GoogleScholarGoogle Scholar | 10456832PubMed |

Wilhelm, D., Palmer, S., and Koopman, P. (2007). Sex determination and gonadal development in mammals. Physiol. Rev. 87, 1–28.
Sex determination and gonadal development in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVahu7o%3D&md5=d9db83a7edb2726cf6d45ddec2999b08CAS | 17237341PubMed |

Yan, W., Suominen, J., and Toppari, J. (2000). Stem cell factor protects germ cells from apoptosis in vitro. J. Cell Sci. 113, 161–168.
| 1:CAS:528:DC%2BD3cXhtVaks78%3D&md5=555929cae02e184a5268b618e4412425CAS | 10591635PubMed |

Yang, Y., Yarahmadi, M., and Honaramooz, A. (2010). Development of novel strategies for isolation of piglet testis cells with high proportion of gonocytes. Reprod. Fertil. Dev. 22, 1057–1065.
Development of novel strategies for isolation of piglet testis cells with high proportion of gonocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOgu7rE&md5=95204bd12a60006595b42dc4d57eddb1CAS | 20797343PubMed |

Zhao, D. F., and Kuwana, T. (2003). Purification of avian circulating primordial germ cells by Nycodenz density gradient centrifugation. Br. Poult. Sci. 44, 30–35.
Purification of avian circulating primordial germ cells by Nycodenz density gradient centrifugation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s3hs1egsg%3D%3D&md5=4be7ccc29a4686eaf9782669a6728b5cCAS | 12737222PubMed |